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Abstract: We investigate the age structured data for the COVID-19 outbreak in Japan. We consider
a mathematical model for the epidemic with unreported infectious patient with and without age
structure. In particular, we build a new mathematical model and a new computational method to fit
the data by using age classes dependent exponential growth at the early stage of the epidemic. This
allows to take into account differences in the response of patients to the disease according to their
age. This model also allows for a heterogeneous response of the population to the social distancing
measures taken by the local government. We fit this model to the observed data and obtain a snapshot
of the effective transmissions occurring inside the population at different times, which indicates
where and among whom the disease propagates after the start of public mitigation measures.

Keywords: coronavirus; age-structured data; reported and unreported cases; isolation; quarantine;
public closings; epidemic mathematical model

1. Introduction

COVID-19 disease caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2)
first appeared in Wuhan, China, and the first cases were notified to WHO on 31 December 2019 [1,2].
Beginning in Wuhan as an epidemic, it then spread very quickly and was characterized a pandemic on 11
March 2020 [1]. Symptoms of this disease include fever, shortness of breath, cough, and a non-negligible
proportion of infected individuals may develop severe forms of the symptoms leading to their transfer
to intensive care units and, in some cases, death, see e.g., Guan et al. [3] and Wei et al. [4]. Both
symptomatic and asymptomatic individuals can be infectious [4–6], which makes the control of the
disease particularly challenging.

The virus is characterized by its rapid progression among individuals, most often exponential in
the first phase, but also a marked heterogeneity in populations and geographic areas [7–9]. The number
of reported cases worldwide exceeded 3 millions as of 3 May 2020 [10]. The heterogeneity of the
number of cases and the severity according to the age groups, especially for children and elderly
people, aroused the interest of several researchers [11–15]. Indeed, several studies have shown that
the severity of the disease increases with the age and co-morbidity of hospitalized patients (see e.g.,
To et al. [15] and Zhou et al. [8]). Wu et al. [16] have shown that the risk of developing symptoms
increases by 4% per year in adults aged between 30 and 60 years old while Davies et al. [17] found that
there is a strong correlation between chronological age and the likelihood of developing symptoms.
Since completely asymptomatic individuals can also be contagious, a higher probability of developing
symptoms does not necessarily imply greater infectiousness: Zou et al. [6] found that, in some cases,
the viral load in asymptomatic patients was similar to that in symptomatic patients. Moreover while
adults are more likely to develop symptoms, Jones et al. [18] found that the viral loads in infected
children do not differ significantly from those of adults.
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These findings suggest that a study of the dynamics of inter-generational spread is fundamental to
better understand the spread of the coronavirus and most importantly to efficiently fight the COVID-19
pandemic. To this end the distribution of contacts between age groups in society (work, school, home,
and other locations) is an important factor to take into account when modeling the spread of the
epidemic. To account for these facts, some mathematical models have been developed [13,14,17,19,20].
In Ayoub et al. [19] the authors studied the dependence of the COVID-19 epidemic on the demographic
structures in several countries but did not focus on the contacts distribution of the populations.
In [13,14,17,20] a focus on the social contact patterns with respect to the chronological age has been
made by using the contact matrices provided in Prem et al. [21]. While Ayoub et al. [19], Chikina
and Pegden [20] and Davies et al. [17] included the example of Japan in their study, their approach is
significantly different from ours. Indeed, Ayoub et al. [19] use a complex mathematical model to discuss
the influence of the age structure on the infection in a variety of countries, mostly through the basic
reproduction number R0. They use parameter values from the literature and from another study of
the same group of authors [22], where the parameter identification is done by a nonlinear least-square
minimization. Chikina and Pegden [20] use an age-structured model to investigate age-targeted mitigation
strategies. They rely on parameter values from the literature and do discuss using age-structured temporal
series to fit their model. Finally, Davies et al. [17] also discuss age-related effects in the control of the
COVID epidemic, and use statistical inference to fit an age-structured SIR variant to data; the model is
then used to discuss the efficiency of different control strategies. We provide a new, explicit computational
solution for the parameter identification of an age-structured model. The model is based on the SIUR
model developed in Liu et al. [23], which accounts for a differentiated infectiousness for reported
and unreported cases (contrary to, for instance, other SIR-type models). In particular, our method is
significantly different from nonlinear least-squares minimization and does not involve statistical inference.

In this article we focus on an epidemic model with unreported infectious symptomatic patients
(i.e., with mild or no symptoms). Our goal is to investigate the age structured data of the COVID-19
outbreak in Japan. In Section 2 we present the age structured data and in Section 3 the mathematical
models (with and without age structure). One of the difficulties in fitting the model to the data is that
the growth rate of the epidemic is different in each age class, which lead us to adapt our early method
presented in Liu et al. [23]. The new method is presented in the Appendix A. In Section 4 we present
the comparison of the model with the data. In the last section we discuss our results.

2. Data

Patient data in Japan have been made public since the early stages of the epidemic with the
quarantine of the Diamond Princess in the Haven of Yokohama. We used data from the website
covid19japan.com (https://covid19japan.com. Accessed 6 May 2020) which is based on reports from
national and regional authorities. Patients are labeled “confirmed” when tested positive to COVID-19
by PCR. Interestingly, the age class of the patient is provided for 13,660 out of 13,970 confirmed patients
(97.8% of the confirmed population) as of 29 April. The age distribution of the infected population is
represented in Figure 1 compared to the total population per age class (data from the Statistics Bureau
of Japan estimate for 1 October 2019). In Figure 2 we plot the number of reported cases per 10,000
people of the same age class (i.e., the number of infected patients divided by the population of the age
class times 10,000). Both datasets are given in Table 1 and a statistical summary is provided by Table 2.
Note that the high proportion of 20–60 years old confirmed patients may indicate that the severity of
the disease is lower for those age classes than for older patients, and therefore the disease transmits
more easily in those age classes because of a higher number of asymptomatic individuals. Elderly
infected individuals might transmit less because they are identified more easily. The cumulative
number of death (Figure 3) is another argument in favor of this explanation. We also reconstructed the
time evolution of the reported cases in Figures 4 and 5. Note that the steepest curves precisely concern
the 20–60-year old, probably because they are economically active and therefore have a high contact
rate with the population.

https://covid19japan.com
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Figure 1. In this figure we plot in blue bars the age distribution of the Japanese population for 10,000
people and we plot in orange bars the age distribution of the number of reported cases of SARS-CoV-2
for 10,000 patient on 29 April (based on the total of 13,660 reported cases). We observe that 77% of the
confirmed patients belong to the 20–60 years age class.
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Figure 2. In this figure we plot the number of infected patients for each age class per 10,000 individuals
of the same age class (i.e., the number of infected individuals divided by the population of the age class
times 10,000). The figure shows that the individuals are more or less likely to becomes infected depending
on their age class. The bars describe the susceptibility of people to the SARS-CoV-2 depending on their
age class.
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Figure 3. Cumulative number of SARS-CoV-2-induced deaths per age class (red bars). We observe
that 83% of death occur in between 70 and 100 years old.
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Figure 4. Time evolution of the cumulative number of reported cases of SARS-CoV-2 per age class.
The vertical axis represents the total number of cumulative reported cases in each age class.
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Figure 5. Time evolution of the cumulative number of reported cases of SARS-CoV-2 per age class.
The vertical axis represents the total number of cumulative reported cases in each age class.
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Table 1. The age distribution of Japan is taken from the Statistics Bureau of Japan [24]. The number of cases and the number of death the data come from Prefectural
Governments and Japan Ministry of Health, Labour and Welfare.

Age group [0, 10[ [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50, 60[ [60, 70[ [70, 80[ [80, 90[ [90, 100[

Age class for 2019 9,859,515 11,171,044 12,627,964 14,303,042 18,519,755 16,277,853 16,231,582 15,926,926 8,939,954 2,309,313

Age class per 10,000 people 781 885 1000 1133 1467 1290 1286 1262 709 183

Confirmed Cases 211 327 2216 2034 2220 2355 1566 1289 857 304

Death 0 0 0 2 6 4 7 37 49 9

Table 2. Statistical summary of the data from Table 1.

Dataset Japanese Population Infected Deceased

First Quartile 28 28 68

Median 48 44 75

Third Quartile 67 59 81
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3. Methods

3.1. SIUR Model

The model consists of the following system of ordinary differential equations:
S′(t) = −τ(t)S(t)

I(t) + U(t)
N

,

I′(t) = τ(t)S(t)
I(t) + U(t)

N
− νI(t),

R′(t) = ν1 I(t)− ηR(t),
U′(t) = ν2 I(t)− ηU(t).

(1)

This system is supplemented by initial data

S(t0) = S0 ≥ 0, I(t0) = I0 ≥ 0, R(t0) ≥ 0 and U(t0) = U0 ≥ 0. (2)

Here t ≥ t0 is time in days, t0 is the starting date of the epidemic in the model, S(t) is the
number of individuals susceptible to infection at time t, I(t) is the number of asymptomatic infectious
individuals at time t, R(t) is the number of reported symptomatic infectious individuals at time t,
and U(t) is the number of unreported symptomatic infectious individuals at time t. A flow chart of
the model is presented in Figure 6.

Asymptomatic infectious individuals I(t) are infectious for an average period of 1/ν days.
Reported symptomatic individuals R(t) are infectious for an average period of 1/η days, as are unreported
symptomatic individuals U(t). We assume that reported symptomatic infectious individuals R(t) are
reported and isolated immediately, and cause no further infections. The asymptomatic individuals I(t)
can also be viewed as having a low-level symptomatic state. All infections are acquired from either I(t) or
U(t) individuals. A summary of the parameters involved in the model is presented in Table 3.

Our study begins in the second phase of the epidemics, i.e., after the pathogen has succeeded in
surviving in the population. During this second phase τ(t) ≡ τ0 is constant. When strong government
measures such as isolation, quarantine, and public closings are implemented, the third phase begins.
The actual effects of these measures are complex, and we use a time-dependent decreasing transmission
rate τ(t) to incorporate these effects. The formula for τ(t) is{

τ(t) = τ0, 0 ≤ t ≤ D,

τ(t) = τ0 exp (−µ (t− D)) , D < t.
(3)

The date D is the first day of public intervention and µ characterises the intensity of the
public intervention.

A similar model has been used to describe the epidemics in mainland China, South Korea, Italy,
and other countries, and give reasonable trajectories for the evolution of the epidemic based on actual
data [23,25–29]. Compared with these models, we added a scaling with respect to the total population
size N, for consistency with the age-structured model (12). This only changes the value of the parameter
τ and does not impact the qualitative or quantitative behavior of the model.
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Table 3. Parameters of the model.

Symbol Interpretation Method

t0 Time at which the epidemic started fitted
S0 Number of susceptible at time t0 fixed
I0 Number of asymptomatic infectious at time t0 fitted

U0 Number of unreported symptomatic infectious at time t0 fitted
τ(t) Transmission rate at time t fitted
D First day of public intervention fitted
µ Intensity of the public intervention fitted

1/ν Average time during which asymptomatic infectious are asymptomatic fixed
f Fraction of asymptomatic infectious that become reported symptomatic infectious fixed

ν1 = f ν Rate at which asymptomatic infectious become reported symptomatic fixed
ν2 = (1− f ) ν Rate at which asymptomatic infectious become unreported symptomatic fixed

1/η Average time symptomatic infectious have symptoms fixed

S I

R

U

SymptomaticAsymptomatic

τS[I + U ]

ν1
I

ν
2I

Removed

ηR

ηU

Figure 6. Compartments and flow chart of the model.

3.2. Comparison of the Model (1) with the Data

At the early stages of the epidemic, the infectious components of the model I(t), U(t) and R(t)
must be exponentially growing. Therefore, we can assume that

I(t) = I0 exp (χ2 (t− t0)) .

The cumulative number of reported symptomatic infectious cases at time t, denoted by CR(t), is

CR(t) = ν1

t∫
t0

I(s)ds. (4)

Since I(t) is an exponential function and CR(t0) = 0 it is natural to assume that CR(t) has the
following special form:

CR(t) = χ1 exp (χ2t)− χ3. (5)

As in our early articles [23,26–29], we fix χ3 = 1 and we evaluate the parameters χ1 and χ2 by
using an exponential fit to

χ1 exp (χ2t) ' CRdata(t).

We use only early data for this part, from day t = d1 until day t = d2, because we want to catch the
exponential growth of the early epidemic and avoid the influence of saturation arising at later stages.

Remark 1. The estimated parameters χ1 and χ2 will vary if we change the interval [d1, d2].

Once χ1, χ2, χ3 are known, we can compute the starting time of the epidemic t0 from (5) as :

CR(t0) = 0⇔ χ1 exp (χ2t0)− χ3 = 0 ⇒ t0 =
1

χ2
(ln (χ3)− ln (χ1)) .
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We fix S0 = 126.8× 106, which corresponds to the total population of Japan. The quantities
I0, R0, and U0 correspond to the values taken by I(t), R(t) and U(t) at t = t0 (and in particular R0

should not be confused with the basic reproduction numberR0). We fix the fraction f of symptomatic
infectious cases that are reported. We assume that between 80% and 100% of infectious cases are
reported. Thus, f varies between 0.8 and 1. We assume that the average time during which the patients
are asymptomatic infectious 1/ν varies between 1 day and 7 days. We assume that the average time
during which a patient is symptomatic infectious 1/η varies between 1 day and 7 days. In other words
we fix the parameters f , ν, η. Since f and ν are known, we can compute

ν1 = f ν and ν2 = (1− f ) ν. (6)

Computing further (see below for more details), we should have

I0 =
χ1χ2 exp (χ2t0)

f ν
=

χ3χ2

f ν
, (7)

τ = N
χ2 + ν

S0

η + χ2

ν2 + η + χ2
, (8)

R0 =
ν1

η + χ2
I0 =

f ν

η + χ2
I0, (9)

and

U0 =
ν2

η + χ2
I0 =

(1− f )ν
η + χ2

I0. (10)

By using the approach described in Diekmann et al. [30], van den Driessche and Watmough [31],
the basic reproductive number for model (1) is given by

R0 =
τS0

νN

(
1 +

ν2

η

)
.

By using (8) we obtain

R0 =
χ2 + ν

ν

(η + χ2)

ν2 + η + χ2

(
1 +

ν2

η

)
. (11)

3.3. Model SIUR with Age Structure

In what follows we will denote N1, . . . , N10 the number of individuals respectively for the age
classes [0, 10[, . . . , [90, 100[. The model for the number of susceptible individuals S1(t), . . . , S10(t),
respectively for the age classes [0, 10[, . . . , [90, 100[, is the following

S′1(t) = −τ1S1(t)
[

φ1,1
(I1(t) + U1(t))

N1
+ . . . + φ1,10

(I10(t) + U10(t))
N10

]
,

...

S′10(t) = −τ10S10(t)
[

φ10,1
(I1(t) + U1(t))

N1
+ . . . + φ10,10

(I10(t) + U10(t))
N10

]
.

(12)

The model for the number of asymptomatic infectious individuals I1(t), . . . , I10(t), respectively
for the age classes [0, 10[, . . . , [90, 100[, is the following

I′1(t) = τ1S1(t)
[

φ1,1
(I1(t) + U1(t))

N1
+ . . . + φ1,10

(I10(t) + U10(t))
N10

]
− νI1(t),

...

I′10(t) = τ10S10(t)
[

φ10,1
(I1(t) + U1(t))

N1
+ . . . + φ10,10

(I10(t) + U10(t))
N10

]
− νI10(t).

(13)
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The model for the number of reported symptomatic infectious individuals R1(t), . . . , R10(t),
respectively for the age classes [0, 10[, . . . , [90, 100[, is

R′1(t) = ν1
1 I1(t)− ηR1(t),

...
R′10(t) = ν10

1 I10(t)− ηR10(t).

(14)

Finally the model for the number of unreported symptomatic infectious individuals U1(t), . . . , U10(t),
respectively in the age classes [0, 10[, . . . , [90, 100[, is the following

U′1(t) = ν1
2 I1(t)− ηU1(t),

...
U′10(t) = ν10

2 I10(t)− ηU10(t).

(15)

In each age class [0, 10[, . . . , [90, 100[ we assume that there is a fraction f1, . . . , f10 of asymptomatic
infectious individual who become reported symptomatic infectious (i.e., with severe symptoms) and
a fraction (1 − f1), . . . , (1 − f10) who become unreported symptomatic infectious (i.e., with mild
symptoms). Therefore we define

ν1
1 = ν f1 and ν1

2 = ν(1− f1),
...

ν10
1 = ν f10 and ν10

2 = ν(1− f10).

(16)

In this model τ1, . . . , τ10 are the respective transmission rates for the age classes [0, 10[, . . . , [90, 100[.
The matrix φij represents the probability for an individual in the class i to meet an individual in

the class j. In their survey, Prem and co-authors [21] present a way to reconstruct contact matrices
from existing data and provide such contact matrices for a number of countries including Japan.
Based on the data provided by Prem et al. [21] for Japan we construct the contact probability matrix φ.
More precisely, we inferred contact data for the missing age classes [80, 90[ and [90, 100[. The precise
method used to construct the contact matrix γ is detailed in Appendix B. An analogous contact matrix
for Japan has been proposed by Munasinghe, Asai and Nishiura [32]. The contact matrix γ we used is
the following

[
γij
]
=



4.03 0.92 0.47 1.69 0.83 0.92 0.78 0.56 0.57 0.57

0.71 8.06 1.38 1.36 1.96 1.74 0.75 0.86 0.74 0.57

0.55 1.05 4.63 2.25 1.84 1.92 0.94 0.46 0.74 0.73

1.52 1.20 2.54 4.97 2.98 2.40 1.76 0.99 0.53 0.73

0.69 1.42 1.93 2.87 3.91 2.76 1.35 1.33 0.95 0.53

0.34 0.48 1.20 1.46 1.61 2.97 1.40 0.98 1.23 0.95

0.28 0.18 0.20 0.52 0.38 0.77 2.67 1.72 0.92 1.23

0.12 0.10 0.09 0.18 0.19 0.25 0.76 1.99 1.18 0.93

0.09 0.10 0.08 0.09 0.13 0.17 0.27 0.64 1.61 1.19

0.09 0.09 0.10 0.08 0.09 0.13 0.17 0.27 0.64 1.61



, (17)

where the ith line of the matrix γij is the average number of contact made by an individuals in the age
class i with an individual in the age class j during one day. Notice that the higher number of contacts
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are achieved within the same age class. The matrix of conditional probability φ of contact between age
classes is given by (18) and we plot a visual representation of this matrix in Figure 7.

[
φij
]
=



0.35 0.08 0.04 0.14 0.07 0.08 0.06 0.04 0.05 0.05

0.03 0.44 0.07 0.07 0.10 0.09 0.04 0.04 0.04 0.03

0.03 0.06 0.30 0.14 0.12 0.12 0.06 0.03 0.04 0.04

0.07 0.06 0.12 0.25 0.15 0.12 0.08 0.05 0.02 0.03

0.03 0.07 0.10 0.16 0.22 0.15 0.07 0.07 0.05 0.03

0.02 0.03 0.09 0.11 0.12 0.23 0.11 0.07 0.09 0.07

0.03 0.02 0.02 0.05 0.04 0.08 0.30 0.19 0.10 0.13

0.02 0.01 0.01 0.03 0.03 0.04 0.13 0.34 0.20 0.16

0.02 0.02 0.01 0.02 0.02 0.03 0.06 0.14 0.36 0.27

0.02 0.02 0.03 0.02 0.02 0.03 0.05 0.08 0.19 0.48



. (18)
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Figure 7. Graphical representation of the contact matrix φ. The intensity of blue in the cell (i, j) indicates the
conditional probability that, given a contact between an individual of age group i and another individual,
the latter belongs to the age class j. The matrix was reconstructed from the data of Prem et al. [21], with the
method described in Appendix B.

4. Results

4.1. Model without Age Structure

The daily number of reported cases from the model can be obtained by computing the solution of
the following equation:

DR′(t) = ν1 I(t)− DR(t), for t ≥ t0 and DR(t0) = DR0. (19)

In Figures 8 and 9 we employ the method presented previously in Liu et al. [29] to fit the data for
Japan without age structure.

The model to compute the cumulative number of death from the reported individuals is
the following

D′(t) = ηD p R(t), for t ≥ t0 and D(t0) = 0, (20)

where ηD is the death rate of reported infectious symptomatic individuals and p is the case fatality
rate (namely the fraction of death per reported infectious individuals).

In the simulation we chose 1/ηD = 6 days and the case fatality rate p = 0.286 is computed by
using the cumulative number of confirmed cases and the cumulative number of deaths (as of 29 April)
as follows

p =
cumulative number of deaths

cumulative number of reported cases
=

393
13744

. (21)

In Figure 10 we plot the cumulative number of D(t) by using the same simulations than in
Figures 8 and 9.
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Figure 8. Cumulative number of cases. We plot the cumulative data (reds dots) and the best fits of the
model CR(t) (black curve) and CU(t) (green curve). We fix f = 0.8, 1/η = 7 days and 1/ν = 7 and we
apply the method described in Liu et al. [29]. The best fit is d1 = 2 April, d2 = 5 April, D = 27 April,
µ = 0.6, χ1 = 179, χ2 = 0.085, χ3 = 1 and t0 = 13 January.
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Figure 9. Daily number of cases. We plot the daily data (black dots) with DR(t) (blue curve). We fix
f = 0.8, 1/η = 7 days and 1/ν = 7 and we apply the method described in Liu et al. [29]. The best fit is
d1 = 2 April, d2 = 5 April, N = 27 April, µ = 0.6, χ1 = 179, χ2 = 0.085, χ3 = 1 and t0 = 13 January.
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Figure 10. In this figure we plot the data for the cumulative number of death (black dots), and our best
fits for D(t) (red curves).

4.2. Model with Age Structure

In order to describe the confinement for the age structured model (12)–(15) we will use for each
age class i = 1, . . . , 10 a different transmission rate having the following form{

τi(t) = τi, 0 ≤ t ≤ Di,

τi(t) = τi exp (−µi (t− Di)) , Di < t.
(22)

The date Di is the first day of public intervention for the age class i and µi is the intensity of the
public intervention for each age class.

In Figure 11 we plot the cumulative number of reported cases as given by our model (12)–(15)
(solid lines), compared with reported cases data (black dots). We used the method described in the
Appendix A to estimate the parameters τi from the data. In Figure 12 we plot the cumulative number
of unreported cases (solid lines) as given by our model with the same parameter values, compared to
the existing data of reported cases (black dots).
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Figure 11. We plot a comparison between the model (12)–(15) and the age structured data from Japan
by age class. We took 1/ν = 1/η = 7 days for each age class. Our best fit is obtained for fi which
depends linearly on the age class until it reaches 90%, with f1 = 0.1, f2 = 0.2, f3 = 0.3, f4 = 0.4,
f5 = 0.5, f6 = 0.6, f7 = 0.7, f8 = 0.8, f9 = 0.9, and f10 = 0.9. The values we used for the first day
of public intervention are Di = 13 April for the 0–20 years age class i = 1, 2, Di = 11 April for the
age class going from [20, 30[ to [60, 70[ i = 3, 4, 5, 6, 7, and Di = 16 April for the remaining age classes.
We fit the data from 30 March to 20 April to derive the value of χi

1 and χi
2 for each age class. For the

intensity of confinement we use the values µ1 = µ2 = 0.4829, µ3 = µ4 = 0.2046, µ5 = µ6 = 0.1474,
µ7 = 0.0744, µ8 = 0.1736, µ9 = µ10 = 0.1358. By applying the method described in Appendix A,
we obtain τ1 = 0.1630, τ2 = 0.1224, τ3 = 0.3028, τ4 = 0.2250, τ5 = 0.1520, τ6 = 0.1754, τ7 = 0.1289,
τ8 = 0.1091, τ9 = 0.1211 and τ10 = 0.1642. The matrix φ is the one defined in (18).
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Figure 12. Cumulative number of unreported cases as given by the fit of the model (12)–(15) to Japanese
data. The solid curves represent the solution of the model and the black dots correspond to the reported
cases data. Parameters are the same as in Figure 11.

In order to understand the role of transmission network between age groups in this epidemic,
we plot in Figure 13 the transmission matrices computed at different times. The transmission matrix is
the following

C(t) = diag (τ1(t), τ2(t), . . . , τ10(t))× φ, (23)

where the matrix φ describes contacts and is given in (18), and the transmission rates are the ones fitted
to the data as in Figure 11

τi(t) = τ0
i (t) exp(−µi(t− Di)+).

During the early stages of the epidemic, the transmission seems to be evenly distributed among
age classes, with a little bias towards younger age classes (Figure 13a). Younger age classes seem to
react more quickly to social distancing policies than older classes, therefore their transmission rate
drops rapidly (Figure 13b,c); one month after the start of social distancing measures, the transmission
mostly occurs within elderly classes (60–100 years, Figure 13d).
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Figure 13. Rate of contact between age classes according to the fitted data. For each age class in the
y-axis we plot the rate of contacts between one individual of this age class and another individual of
the age class indicated on the x-axis. (a) is the rate of contacts before the start of public measures (11
April). (b) is the rate of contacts at the date of effect of the public measures for the last age class (16
April). (c) is the rate of contacts one week later (23 April). (d) is the rate of contacts one month later (16
May). In this figure we use τ1 = 0.1630, τ2 = 0.1224, τ3 = 0.3028, τ4 = 0.2250, τ5 = 0.1520, τ6 = 0.1754,
τ7 = 0.1289, τ8 = 0.1091, τ9 = 0.1211 and τ10 = 0.1642, µ1 = µ2 = 0.4829, µ3 = µ4 = 0.2046,
µ5 = µ6 = 0.1474, µ7 = 0.0744, µ8 = 0.1736, µ9 = µ10 = 0.1358, and D1 = D2 = 13 April,
D3 = D4 = D5 = D6 = D7 = 11 April, D8 = D9 = D10 = 16 April.

5. Discussion

The recent COVID-19 pandemic has lead many local governments to enforce drastic control
measures in an effort to stop its progression. Those control measures were often taken in a state
of emergency and without any real visibility concerning the later development of the epidemics,
to prevent the collapse of the health systems under the pressure of severe cases. Mathematical models
can precisely help see more clearly what could be the future of the pandemic provided that the
particularities of the pathogen under consideration are correctly identified. In the case of COVID-19,
one of the features of the pathogen which makes it particularly dangerous is the existence of a high
contingent of unidentified infectious individuals who spread the disease without notice. This makes
non-intensive containment strategies such as quarantine and contact-tracing relatively inefficient but
also renders predictions by mathematical models particularly challenging.

Early attempts to reconstruct the epidemics by using SIUR models were performed in
Liu et al. [23,26–28], who used them to fit the behavior of the epidemics in many countries, by including
undetected cases into the mathematical model. Here we extend our modeling effort by adding the
time series of deaths into the equation. In Section 4 we present an additional fit of the number of
disease-induced deaths coming from symptomatic (reported) individuals (see Figure 10). In order
to fit properly the data, we were forced to reduce the length of stay in the R-compartment to 6
days (on average), meaning that death induced by the disease should occur on average faster than
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recovery. A shorter period between infection and death (compared to remission) has also been
observed, for instance, by Verity et al. [7].

The major improvement in this article is to combine our early SIUR model with chronological age.
Early results using age structured SIR models were obtained by Kucharski et al. [33] but no unreported
individuals were considered and no comparison with age-structured data were performed. Indeed in
this article we provide a new method to fit the data and the model. The method extends our previous
method for the SIUR model without age (see Appendix A).

The data presented in Section 2 suggests that the chronological age plays a very important role
in the expression of the symptoms. The largest part of the reported patients are between 20 and 60
years old (see Figure 1), while the largest part of the deceased are between 60 and 90 years old (see
Figure 3). This suggests that the symptoms associated with COVID-19 infection are more severe
in elderly patients, which has been reported in the literature several times (see e.g., Lu et al. [12],
Zhou et al. [8]). In particular, the probability of being asymptomatic (our parameter f ) should in fact
depend on the age class.

Indeed, the best match for our model (see Figure 11) was obtained under the assumption that
the proportion of symptomatic individual among the infected increases with the age of the patient.
This linear dependency of f as a function of age is consistent with the observations of Wu et al. [16]
that the severity of the symptoms increase linearly with age. As a consequence, unreported cases
are a majority for young age classes (for age classes less than 50 years) and become a minority for
older age classes (more than 50 years), see Figure 12. Moreover, our model reveals the fact that the
policies used by the government to reduce contacts between individuals have strongly heterogeneous
effects depending on the age classes. Plotting the transmission matrix at different times (see Figure 13)
shows that younger age classes react more quickly and more efficiently than older classes. This may
be due to the fact that the number of contacts in a typical day is higher among younger individuals.
As a consequence, we predict that one month after the effective start of public measures, the new
transmissions will almost exclusively occur in elderly classes. The observation that younger ages
classes play a major roles in the transmission of the disease has been highlighted several times in the
literature, see e.g., Davies et al. [17], Cao et al. [11], Kucharski et al. [33] for the COVID-19 epidemic,
but also Mossong et al. [34] in a more general context.

We develop a new model for age-structured epidemic and provided a new and efficient method
to identify the parameters of this model based on observed data. Our method differs significantly from
the existing nonlinear least-squares and statistical inference methods and we believe that it produces
high-quality results. Moreover, we only use the initial phase of the epidemic for the identification of
the epidemiological parameters, which shows that the model itself is consistent with the observed
phenomenon and argues against overfitting. Yet our study could be improved in several direction.
We only use reported cases which were confirmed by PCR tests, and therefore the number of tests
performed could introduce a bias in the observed data – and therefore our results. We are currently
working on an integration of this number of tests in our model. We use a phenomenological model
to describe the response of the population in terms of number of contacts to the mitigation measures
imposed by the government. This could probably be described more precisely by investigating the
mitigation strategies in terms of social network. Nevertheless we believe that our study offers a precise
and robust mathematical method which adds to the existing literature.
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Appendix A. Method to Fit of the Age Structured Model to the Data

We first choose two days d1 and d2 between which each cumulative age group grows like an
exponential. By fitting the cumulative age classes [0, 10[, [10, 20[, . . . and [90, 100[ between d1 and d2,
for each age class j = 1, . . . 10 we can find χ

j
1 and χ

j
2

CRdata
j (t) ' χ

j
1 eχ

j
2t.

We choose a starting time t0 ≤ d1 and we fix

χ
j
3 = χ

j
1 eχ

j
2t0 , ∀j = 1, . . . , n,

and we obtain 
CR1(t) = χ1

1 eχ1
2t − χ1

3,
...

CRn(t) = χn
1 eχn

2 t − χn
3 i

(A1)

where
χi

j ≥ 0, ∀i = 1, . . . , n, ∀j = 1, 2, 3.
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Figure A1. We plot an exponential fit for each age classes using the data from Japan.
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We assume that
CR1(t)′ = ν1

1 I1(t),
...

CRn(t)′ = νn
1 In(t),

(A2)

where
νi

1 = ν fi, and νi
2 = ν (1− fi), ∀i = 1, . . . , n.

Therefore we obtain
Ij(t) = I?j eχ

j
2t (A3)

where

I?j :=
χ

j
1 χ

j
2

ν
j
1

.

By assuming that the number of susceptible individuals remains constant we have
I′1(t) = τ1S1

[
φ11

I1(t) + U1(t)
N1

+ . . . + φ1n
In(t) + Un(t)

Nn

]
− νI1(t),

...

I′n(t) = τnSn

[
φn1

I1(t) + U1(t)
N1

+ . . . + φnn
In(t) + Un(t)

Nn

]
− νIn(t),

(A4)

and 
U′1(t) = ν1

2 I1(t)− ηU1(t),
...

U′n(t) = νn
2 In(t)− ηUn(t).

(A5)

If we assume that the Uj(t) have the following form

Uj(t) = U?
j eχ

j
2t, (A6)

then by substituting in (A5) we obtain

U?
j =

ν
j
2 I?j

η + χ
j
2

. (A7)

The cumulative number of unreported cases CUj(t) is computed as

CUj(t)′ = ν
j
2 Ij(t),

and we used the following initial condition:

CUj(0) = CU∗j =
∫ 0

−∞
ν

j
2 I∗j eχ

j
2sds =

ν
j
2 I∗j

χ
j
2

.

We define the error between the data and the model as follows
ε1(t) = I′1(t)− τ1S1

[
φ11

I1(t) + U1(t)
N1

+ . . . + φ1n
In(t) + Un(t)

Nn

]
+ νI1(t),

...

εn(t) = I′n(t)− τnSn

[
φn1

I1(t) + U1(t)
N1

+ . . . + φnn
In(t) + Un(t)

Nn

]
+ νIn(t),

(A8)
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or equivalently
ε1(t) =

(
χ1

2 + ν
)

I?1 eχ1
2t − τ1S1

[
φ11

I?1 + U?
1

N1
eχ1

2t + . . . + φ1n
I?n + U?

n
Nn

eχn
2 t
]

,

...

εn(t) = (χn
2 + ν) I?n eχn

2 t − τnSn

[
φn1

I?1 + U?
1

N1
eχ1

2t + . . . + φnn
I?n + U?

n
Nn

eχn
2 t
]

.

(A9)

Let the matrix φ be fixed. We look for the vector τ = (τ1, . . . , τn) which minimizes of

min
τ∈Rn ∑

j=1,...,n

∫ d2

d1

ε j(t)2dt.

Define for each j = 1, . . . , n

Kj(t) :=
(

χ
j
2 + ν

)
I?j eχ

j
2t

and

Hj(t) := Sj

[
φj1

I?1 + U?
1

N1
eχ1

2t + . . . + φjn
I?n + U?

n
Nn

eχn
2 t
]

,

so that
ε j(t) = Kj(t)− τjHj(t).

Hence for each j = 1, . . . , n

∫ d2

d1

ε j(t)2dt =
∫ d2

d1

Kj(t)2dt− 2τj

∫ d2

d1

Kj(t)Hj(t)dt + τ2
j

∫ d2

d1

Hj(t)2dt,

and by setting

0 =
∂

∂τj

∫ d2

d1

ε j(t)2dt = −2
∫ d2

d1

Kj(t)Hj(t)dt + 2τj

∫ d2

d1

Hj(t)2dt

we deduce that

τj =

∫ d2
d1

Kj(t)Hj(t)dt∫ d2
d1

Hj(t)2dt
. (A10)

Remark A1. It does not seem possible to estimate the matrix of contact φ by using similar optimization method.
Indeed, if we look for a matrix φ =

(
φij
)

which minimizes

min
φ∈Mn(R)

∑
j=1,...,n

∫ d2

d1

ε j(t)2dt,

it turns out that

∑
j=1,...,n

∫ d2

d1

ε j(t)2dt = 0

whenever φ is diagonal. Therefore the optimum is reached for any diagonal matrix. Moreover by using similar
considerations, if several χ2

j are equal, we can find a multiplicity of optima (possibly with φ not diagonal).
This means that trying to optimize by using the matrix φ does not yield significant and reliable information.

In the Figure A2 below, we present an example of application of our method to fit the Japanese
data. We use the period going from 20 March to 15 April.
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Figure A2. We plot a comparison between the model (12)–(15) (without public intervention) and the
age structured data from Japan. We set 1/ν = 1/η = 7 days, fi which actually depends on the age class,
with f1 = 0.1, f2 = 0.2, f3 = 0.4, f4 = 0.4, f5 = 0.6, f6 = 0.6, f7 = 0.8, f8 = 0.8, f9 = 0.8, and f10 = 0.9.
and we obtain τ1 = 0.1264, τ2 = 0.1655, τ3 = 0.3538, τ4 = 0.2966, τ5 = 0.1513, τ6 = 0.1684, τ7 = 0.1251,
τ8 = 0.1168, τ9 = 0.1015, τ10 = 0.1258. The matrix φ is the one defined in (18).

Appendix B. Construction of the Contact Matrix

The survey [21] presents reconstructed contact matrices for a number of countries including
Japan for the 5-year age classes [0, 5), [5, 10), ..., [75, 80) at various locations (work, school, home, and
other locations) and a compilation of those contact matrices to account for all locations. The precise
description of the compilation is presented in the paper. Note that this paper is a follow-up of
Mossong et al. [34] where the survey procedure is described (including the data collection protocol)
for several European countries participating in the POLYMOD study.

The data is publicly available online (Prem et al. [21], Supporting dataset, DOI: https://doi.org/
10.1371/journal.pcbi.1005697.s002) and is presented in the form of a zipped collection of spreadsheets,
containing the data for several countries in columns X1 X2 ... X16. The columns stand for the average
number of contact of one individual of the corresponding age class (0–5 years for X1, 5–10 years for
X2, etc...), with an individual of the age class indicated by the row (first row is 0–5 years, second is
5–10 years etc...). Since the age span covered by the study stops at 80, we had to infer the number of
contacts for people over the age of 80. We postulated that most people aged 80 or more are retired and
that their behaviour does not significantly differs from the behavior of people in the age class [75, 80).
Therefore we completed the missing columns by copying the last available information and shifting it
to the bottom. We repeated the procedure for lines. We believe that the introduced bias is kept to a
minimum since the numerical values are relatively low compared to the diagonal.

Because we use 10-year ages classes and the data is given in 5-year age classes, we had to combine
adjacent columns to recover the average number of contacts. To combine columns together, we used
the weighted average

C′i =
N2(i−1)+1C2(i−1)+1 + N2(i−1)+2C2(i−1)+2

N2(i−1)+1 + N2(i−1)+2
,

https://doi.org/10.1371/journal.pcbi.1005697.s002
https://doi.org/10.1371/journal.pcbi.1005697.s002
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where the column C′i corresponds to the average number of contacts of an individual taken at random
in the [10(i− 1), 10i) and Ci is the average number of contacts of an individual taken at random in the
age class [5(i− 1), 5i). To combine two lines, we simply use the sum of the data

L′i = L2(i−1)+1 + L2(i−1)+2.

The matrix γ in (17) is the transpose of the array obtained by the former procedure applied to the
“all locations” dataset. Then φ is obtained by scaling the lines of γ to 1, i.e.,

φij =
γij

∑10
k=1 γik

.
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