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Abstract: This article describes a simple Susceptible Infected Recovered (SIR) model fitting with
COVID-19 data for the month of March 2020 in New York (NY) state. The model is a classical SIR,
but is non-autonomous; the rate of susceptible people becoming infected is adjusted over time in
order to fit the available data. The death rate is also secondarily adjusted. Our fitting is made under
the assumption that due to limiting number of tests, a large part of the infected population has
not been tested positive. In the last part, we extend the model to take into account the daily fluxes
between New Jersey (NJ) and NY states and fit the data for both states. Our simple model fits the
available data, and illustrates typical dynamics of the disease: exponential increase, apex and decrease.
The model highlights a decrease in the transmission rate over the period which gives a quantitative
illustration about how lockdown policies reduce the spread of the pandemic. The coupled model
with NY and NJ states shows a wave in NJ following the NY wave, illustrating the mechanism of
spread from one attractive hot spot to its neighbor.
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1. Introduction and Model

From a scientific perspective, the COVID-19 pandemic has highlighted the crucial role of
mathematical and statistical models in providing guidance for health policies. Expressions such
as “flatten the curve”, the “apex”, the “plateau” have been widely heard in media and employed by
decision makers to explain their choices regarding rules and policies during this critical period. In this
short article, we first introduce a simple Susceptible Infected Recovered (SIR) model, in which we adjust
a key parameter k standing for a control on the Susceptible-Infected rate, and secondarily the death rate,
in order to fit the data of the pandemic in New York (NY) state in March 2020, and provide predictions
for a near future. Then, we add a node in the model to take into account the daily fluxes between NY
and New Jersey (NJ) states. Note that these two close states, are, up to the day of publication of this
article, the most severely hit by the pandemic in United States. Of course, the coupling may be extended
to other states. However, in this article, we restrict ourselves to NY and NJ. Accordingly, the main key
points of this article are that, (1) it highlights the dynamics and epidemiological characteristics which
have been discussed in press and health policies; it highlights qualitatively how lockdown policies
have decreased the spread of the virus and provides prediction and explanation of an upcoming apex,
(2) it fits real data provided for the New York state and (3) it fits the data of NJ state by considering
coupled equations taking into account the daily fluxes between NY and NJ. This provides a quantitative
visualization of how the virus may spread from an attractive hot spot (New York City in NY state)
towards close states trough the daily fluxes of commuters.

Biology 2020, 9, 135; doi:10.3390/biology9060135 www.mdpi.com/journal/biology

http://www.mdpi.com/journal/biology
http://www.mdpi.com
http://dx.doi.org/10.3390/biology9060135
http://www.mdpi.com/journal/biology
https://www.mdpi.com/2079-7737/9/6/135?type=check_update&version=2


Biology 2020, 9, 135 2 of 11

We especially focus on fitting the total number of cases tested positive for COVID-19 as well as
the number of deaths in both NY and NJ states. We also give insights in prediction of the number of
people needing hospitalization in NY state.

SIR models are very classical in literature. For some reader’s convenience, we mention here a few
contextual elements and references. The simplest classical SIR model is the Kermack–McKendrick
(KMcK) model which goes back to 1927, see [1,2]. It is written

(KMcK)


St = −kSI
It = kIS− rI

Rt = rI
(1)

In this original KMcK model, the population splits into three classes. The class S stands for
susceptible, who can catch the disease, I stands for infective, who have the disease and can transmit it
and R stands for the removed, namely, those who have or have had the disease but do not transmit
it anymore. Note that our terminology is slightly different as explained below. In (1), the dynamics
follow the scheme

S→ I → R

with respective transfer rates between classes of k and r.
SIR type models, and more generally mathematical models of epidemics have in fact a significant

history. We refer to [2] for a textbook on these models and a brief history of epidemics. Models have
become more sophisticated and may include more compartments such as exposed, infective
asymptomatic, infective with symptoms, and also reservoirs such as bats, and include stochastic
dynamics. Recently, SIR type models have been widely used in the context of the COVID-19
pandemic, to model the spread all around the world, see for example [3–9] and reference therein cited.
Here are also some examples of references for SIR models in other epidemic diseases: Dengue [10],
Chikungunya [11,12] and Ebola [13]. See also references therein cited.

In the present article, we first consider the following model
St = −k(t) S

I+S+R I
It = k(t) S

I+S+R I − r(t)I − d(t)I
Rt = r(t)I

(2)

This simple model has classically three classes: S for susceptible, I for infected and R for recovered.
Specifically, the class I is intended to represent all the people who bear effectively the virus at a given
time, and can transmit it if in contact with other people. It includes all infected people with or without
symptoms, reported or not. There are some differences with Equation (1). First, it includes a death rate
d(t). Even though the number of deaths does not appear explicitly as a variable, it is simply given by
the integral

∫ t
0 d(u)I(u)du. Note that in expression

St = −k(t)
S

S + I + R
I,

the rate of contamination from S to I is proportional to the proportion of susceptible (S) in the whole
population (S + I + R). This is a classical expression standing for the fact that the probability for each
individual in the I class to spread the virus among the class S is proportional to the portion of S in
the whole population, see for example [14,15] and references therein cited. This rate is corrected by
a crucial coefficient k(t) which is intended to fit the real transfer rate and which contains the effects
inherent to the properties of the virus (for example change of propagation rate due to genetic mutation
of the virus) or to specific policies (like quarantine, social distancing, lockdown). This time dependence
allows us to adjust the dynamics to fit the data. This is a specificity of our model and turns it into a
non-autonomous equation. This time dependence of k is obviously relevant in our model since the
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rate of transfer from S to R is the main target of health policies and is subsequently subject to vary
over time. Secondarily, we also allow the death rate to vary. Many internal or external factors may
affect the death rate among which are concomitant lethal disease, temperature, hospital conditions.
More significantly, one has to note that the rate transfers considered here are instantaneous transfer
between compartments, and the function d(t) is different from the Case Fatality Rate (CFR). Recall that
the CFR is the death rate per confirmed case over a given period of time, and is a typical indicator for
death rate. In South Korea, the country which led the highest number of tests, it has been reported
to be of 1 percent, see [16]. In China as of 20 February, this rate varied between 3.8 in the region
of Wuhan and 0.7 in others regions, see [17] and also [18]. Using Tables 1 and 2 gives a CFR in NY
from 1 March to 1 April of 1941

83804 ' 2.3 per cent. Since our model fits the data, by definition, it fits
the CFR. At the end of the epidemic, if the whole number of people that contracted the virus would
be tested positive the CFR would provide the probability to die for an individual who catches the
virus. However, during a growing phase such as the month of March considered here, the CFR has
large variations. Moreover, there is a delay between the time a person is tested positive and the time
he dies. The time between symptom onset and death has been reported to range from about 2 to
8 weeks, see [18], the typical average being 23 days according to [16]. One could for example introduce
a time-integral death expression

∫ t
0 d̃(u, t)I(u)du to take into account these informations. However,

the time-window considered here is short and corresponds to the beginning of reported cases in NY.
Furthermore, in this short article, we wanted to focus on a simple model able to fit data, highlight
relevant dynamics and provide estimations. Since a person in the I compartment will either recover
or die, above remarks on the function d hold for the coefficient r. In the present work, for sake of
simplicity, we have set the r coefficient to the constant value 0.64. This is a simplification which is
classical in SIR models. Note that setting the coefficient r to a constant value is equivalent to assume
that people recovering between times t− 1 and t, which is given by R(t)− R(t− 1) would also write
r
∫ t

t−1 I(u)du according to Equation (2). A more meaningful expression for R(t)− R(t− 1) would be∫ t
0 r̃(u, t)I(u)du standing to the fact that people recovering between time t− 1 and t have been infected

from a period ranging from 0 to t, with a transfer rate given by r̃(u, t). This would lead to the equation

r =
∫ t

0 r̃(u,t)I(u)du∫ t
t−1 I(u)du

. Once r is set to a constant value, to fit data over a reasonable period, numerical tries

provide a unique choice for constants k and d. It was still possible to use different values of r to fit the
data. However, different values of r result in different dynamics over time, and notably different time
for apex. Our choice of r = 0.64 was made to provide dynamics that seem relevant to us regrading the
timely dynamics beyond the data. In particular, too smaller of values for r would provide dynamics
with a late apex and less relevant regarding the timely effects of the disease. Other studies have
considered models with a constant r, with different values. See for example [19] and references therein
cited. Remarkably, varying r, and making it depend on time, provides some freedom to later fit data
over a longer period of time, taking in account the end of the first wave in NY.

Upon the above discussions, our strategy is rather simple: set r to a constant value. Then choose
a constant k which fits the data of positive cases during a period of time. Next, choose a constant d
to fit deaths data for the same period of time. Note that since the parameter k has much more effect
than the small parameter d, this procedure is possible and efficient. After, repeat the procedure over
a subsequent period. The overall procedure results in a constant function r and two piecewise constant
functions k(t) and d(t). For our model and the given data, the procedure was efficient allowing us
to provide these choices by successive tries. Note that this could be done automatically by cooking
an algorithm to set the parameters following these guidelines. Note finally that our assumptions do
not a include birth rate for the susceptible population but rather focus on the short time effects of
the disease.
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Table 1. Total number of cases reported in NY state from 1 March to 1 April. See [20].

Day 3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 3/9 3/10 3/11

Number of Cases 1 1 2 11 22 44 89 106 142 173 217

Day 3/12 3/13 3/14 3/15 3/16 3/17 3/18 3/19 3/20 3/21 3/22

Number of Cases 326 421 610 732 950 1374 2382 4152 7102 10356 15168

Day 3/23 3/24 3/25 3/26 3/27 3/28 3/29 3/30 3/31 4/1

Number of Cases 20875 25665 33066 38987 44635 53363 59568 67174 75832 83804

Table 2. Total number of deaths reported in NY state from 1 March to 1 April. See [20].

Day 3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 3/9 3/10 3/11

Number of Deaths 0 0 0 0 0 0 0 0 0 0 0

Day 3/12 3/13 3/14 3/15 3/16 3/17 3/18 3/19 3/20 3/21 3/22

Number of Deaths 0 0 2 6 10 17 27 30 57 80 122

Day 3/23 3/24 3/25 3/26 3/27 3/28 3/29 3/30 3/31 4/1

Number of Deaths 159 218 325 432 535 782 965 1224 1550 1941

2. Numerical Simulations, Data and Dynamics

2.1. Fitting the Total Number of Infected People and the Number of Deaths

Data from total infected people and total number of deaths in New York state are available at the
New York times web site, see [20]. We downloaded the data from there from 1 March to 1 April, which
makes 32 days. We reported the number of total cases in Table 1 and the number of deaths in Table 2.

For numerical simulations of Equation (2), the parameter r was set to 0.64. Then, in order to fit
the data of the total number of infected people, we chose:

k(t) =


k1 = 1.057 if 0 ≤ t < 21

k2 = 0.9 if 21 ≤ t < 24
k3 = 0.67 if 24 ≤ t < 27
k4 = 0.71 if 27 ≤ t ≤ 32

(3)

and to fit the total number of deaths, we chose:

d(t) =


d1 = 0.0016 if 0 ≤ t < 21

d2 = 0.00232 if 21 ≤ t < 24
d3 = 0.00232 if 24 ≤ t < 27

d4 = 0.0068 if 27 ≤ t ≤ 32

(4)

Initial conditions were set to
(19453556, 5, 0),

19453556 being the number of people living in NY state in 2019 according to USA Census bureau.
Regarding reported data in Tables 1 and 2, as a matter of fact, not all infected people in March 2020
were tested. To take into account this fact in our model, we adjusted the parameters to fit the quantity
0.2× (I + R) from the model, with the total number of infected people (data in Table 1) minus the
total number of deaths (data in Table 2), i.e., we assumed here that only 20 percent of living people
that have contracted the virus has been tested positive. Note that shortly after the first submission of
this work, NY state reported the result of a random antibody test over a sample of 3000 individuals.
Statewide, 13.9 percent of people tested positive, ranging form 21.2 percent in New York City (NYC),
to 3.6 percent in upstate counties. See [21,22]. Comparing with data from [20], this gave a ratio of
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approximatively 10; only about 10 percent of people having caught the virus in NY would have tested
positive. Statistical estimates of related ratio, depending on the number of estimates provide a range
of [5, 3000], see [23]. Simulation of system (2), and comparison with data resulting from Tables 1 and
2 are plotted in Figure 1a. In Figure 1b, we plotted the total number of deaths from the model and
compared it to the data. In Figure 1c, we have plotted four curves corresponding to various I(t) for
different simulations of (2).

• The curve I1(t) in red corresponds to the simulation of (2) with k(t) = k1 = 1.057 and d(t) = d1 =

0.0016 for all time.
• The curve I2(t) in green corresponds to the simulation of (2) with k(t) = k1 = 1.057 and d(t) =

d1 = 0.016 for 0 ≤ t ≤ 21, and k(t) = k2 = 0.9 and d(t) = d2 = 0.00232 for 21 ≤ t < 24.
• The curve I3(t) in pink corresponds to the simulation of (2) with k(t) as given in (3), i.e., k(t) = ki

and d(t) = di, t ∈ [ti−1, ti), i ∈ {1, ..., 4} with t0 = 0, t1 = 21, t2 = 24, t3 = 27, t4 = 32.

For reader’s convenience, these values are summarized in Table 3. This panel illustrates how the
health policies flatten the curve. In Figure 1d, we have again plotted the solution I(t) for k(t) as in (3),
for a longer period.

Figure 1. This figure illustrates the simulation of system (2) and how it fits the data. In (a), we have
plotted the quantity 0.2× (I + R) as a function of time in red. The blue dots correspond to the data
retrieved from [20]. Analogously, in (b), we have plotted the quantity

∫ t
0 d(s)I(s)ds, which represents

the total number of deaths according with the model, as a function of time in red. The blue dots
correspond to the data retrieved from [20]. In (c), we have illustrated the quantity I(t) corresponding to
different values of k(t), d(t): the curve I1(t) in red corresponds to the simulation of (2) with k(t) = k1

and d(t) = d1 for all time. The curve I2(t) in green corresponds to the simulation of (2) with k(t) = k1

and d(t) = d1 for 0 ≤ t ≤ 21, and k(t) = k2 and d(t) = d2 for t ≥ 21. The curve I3(t) in pink
corresponds to the simulation of (2) with k(t) as given in (3), i.e., k(t) = ki and d(t) = di, t ∈ [ti−1, ti),
i ∈ {1, ..., 4} with t0 = 0, t1 = 21, t2 = 24, t3 = 27, t4 = 32. It illustrates how the health policies flatten
the curve. In (d), we have again plotted the solution I(t) for k(t) as in (3), for a longer period.
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Table 3. Summary of the values used in Figure 1c to obtain the curves I1(t), I2(t) and I3(t). Recall that
k1 = 1.057, k2 = 0.9, k3 = 0.67, k4 = 0.71, d1 = 0.0016, d2 = 0.00232, d3 = 0.00232, d4 = 0.0068, t0 = 0,
t1 = 21, t2 = 24, t3 = 27 and t4 = 32.

k(t) d(t)

I1(t) k(t) = 1.057 d(t) = 0.0016

I2(t) 1.057 if t < 21; 0.9 otherwise 0.0016 if t < 21; 0.00232 otherwise

I3(t) ki if ti−1 ≤ t < ti, i ∈ {1, ..., 4} di if ti−1 ≤ t < ti, i ∈ {1, ..., 4}

Table 4. Total number of daily current hospitalizations reported in NY state from 16 March to 1 April.
See [23,24].

Day 3/16 3/17 3/18 3/19 3/20 3/21 3/22 3/23 3/24 3/25

Total Number of Hospitalized 326 496 617 1042 1496 2043 2629 3343 4079 5327

Day 3/26 3/27 3/28 3/29 3/30 3/31 4/1

Total Number of Hospitalized 6481 7328 8503 9517 10929 12226 13383

2.2. Fitting the Total Number of People at Hospital

Next, we have retrieved data corresponding to the number of people at the hospital between 16
March and 1 April, see Table 4. During this period, and after, NY state officially reported daily useful
charts and statistics, on the local spread. We then computed an estimation of people being effectively
at hospital at a given date. We denote H(ti), ti ∈ {16, 17, ..., 32} the total number of hospitalizations
at a given date. In order to fit the solution of (2) with this data, we performed a linear regression
between (I(ti)), ti ∈ {16, 17, ..., 32} and (H(ti)), ti ∈ {16, 17, ..., 32}. The coefficients a and b of the
linear regression were determined by the least-square method, leading to the formulas:

a =
< x, y > −nx̄ȳ
||x||2 − x̄2

b = ȳ− ax̄

with
x = (H(ti), ti ∈ {16, 17, ..., 32}

y = (I(ti)), ti ∈ {16, 17, ..., 32}

< x, y >=
n

∑
i=1

xiyi, ||x||2 =< x, x >, x̄ =
1
n

n

∑
i=1

xi, ȳ =
1
n

n

∑
i=1

yi, n = 14.

The result is plotted in Figure 2a. It clearly shows a good approximation by two distinct lines,
corresponding to

a1 = 10.3301, b1 = −1227.61

and
a2 = 1.91478, b2 = 33560.3.

Then, a prevision of number of people needing hospitalization can be provided by the formula:

H(t) =
I(t)− b2

a2
if I(t) ≥ 41475.76, H(t) =

I(t)− b1

a1
otherwise.

The result is plotted in Figure 2b.
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Figure 2. This figure illustrates how to provide an estimation for people needing hospitalization thanks
to Equation (2) and statistical methods. Panel (a) illustrates an approximation of I(ti), ti ∈ {16, 17, ..., 32}
by a vector (a1H(ti) + b1), ti ∈ {16, 17, ..., 23} and another vector (a2H(ti) + b2), ti ∈ {24, 25, ..., 32}
where aj and bj, j ∈ {1, 2} are the coefficients obtained thanks to the least-square method. Panel (b) then

provides a prediction of people in need of hospitalization by plotting the quantity H(t) = I(t)−b2
a2

if

I(t) ≥ 41, 475.76, H(t) = I(t)−b1
a1

otherwise.

2.3. Dynamics

Summing up the equations in (2) and looking for stationary solutions yield the following theorem.

Theorem 1. We assume that initial condition of system (2) satisfies S(0) > 0, I(0) > 0 and R(0) = 0.
Then for t > 0, all variables remain bounded and positive: there exists a positive constant M < R(0) + I(0)
such that for all t > 0:

0 < S(t) < M, 0 < I(t) < M, 0 < R(t) < M

and

S(t) + I(t) + R(t) ≤ S(0) + I(0)−
∫ t

0
d(s)I(s)ds.

Non-negative stationary solutions of the system are given by (S̄, 0, R̄), with S̄ ≥ 0 and R̄ ≥ 0. Furthermore,
S(t) is decreasing, R(t) is increasing and the variation of I(t) is given by the sign of

k(t)
S(t)

S(t) + I(t) + R(t)
− r− d(t). (5)

Remark 1. It is worth noting that this theorem, whose proof is relatively straightforward, provides two simple
but relevant interpretations from the applicative point of view. The first thing is that the stationary solutions are
given by (S̄, 0, R̄), with S̄ ≥ 0 and R̄ ≥ 0. This means that the stationary solutions, are all with 0 infected but
may take arbitrary non-negative values (within a bounded interval) for susceptible and recovered. This reflects
the reality of the disappearance of the virus. The second thing we want to mention is that the variation of I is
given by the sign of expression (5). In particular, basically during a classical wave, this sign will be positive
before the apex and negative after.

3. Two Coupled SIR Systems Fitting COVID-19 for NY and NJ States

It is estimated that around 400,000 people used to commute from NJ to NY before the lockdown
policies due to the pandemic. It is natural to integrate these effects in the model, since those commuters
played the role of vector for virus before the lockdown. We therefore built a small network by
coupling two nodes, representing NY (node 1) and NJ (node 2). To this end, we coupled two copies
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of the local model (2) to take into account the daily fluxes between those two states. This led to the
following model:

S1t = −k1(t)I1
S1

I1+S1+R1
+ l(t)

(
cS

12(t)S2 − cS
21(t)S1

)
I1t = k1(t)I1

S1
I1+S1+R1

− rI1 − d1(t)I1 + l(t)
(
cI

12(t)I2 − cI
21(t)I1

)
R1t = rI1 + l(t)

(
cR

12(t)R2 − cR
21(t)R1

)
S2t = −k2(t)I2

S2
I2+S2+R2

+ l(t)
(
− cS

12(t)S2 + cS
21(t)S1

)
I2t = k2(t)I2

S2
I2+S2+R2

− rI2 − d2(t)I2 + l(t)
(
− cI

12(t)I2 + cI
21(t)I1

)
R2t = rI2 + l(t)

(
− cR

12(t)R2 + cR
21(t)R1

)
(6)

The assumptions are analogous to those given Section 2, but we aimed here to take into account
the daily fluxes between NJ and NY. For sake of simplicity, we considered that there was a flux of
people coming from NJ to NY in the morning and returning home at night. The coupling functions,
which are non-autonomous here are given by: l(t)

(
cS

12(t)S2 − cS
21(t)S1

)
l(t)
(
cI

12(t)I2 − cI
21(t)I1

)
l(t)
(
cR

12(t)R2 − cR
21(t)R1

)


for node 1 and  l(t)
(
− cS

12(t)S2 + cS
21(t)S1

)
l(t)
(
− cI

12(t)I2 + cI
21(t)I1

)
l(t)
(
− cR

12(t)R2 + cR
21(t)R1

)


for node 2, where functions +cij stand for the densities of population coming from mode j and going
into node i. In the remaining of the manuscript we assume that these functions cij do not depend on
S, I and R and drop the superscripts. Furthermore, we assume c12 and c21 to be periodic of period 1
(one day), with a Gaussian profile and respective apex at 8:30 am and 6:30 pm. Note that the amplitude
c21 is multiplied by a coefficient greater than 1, in comparison with c12 to take into account the amount
of population int NY and NJ. We want to emphasize here the attractivity of NYC, and therefore
assume that the fluxes are mainly from NJ to NY in the morning and form NY to NJ in the evening.
The function l(t) integrates policies of lockdown: after March 23, in the model, the daily fluxes are
divided by 1000. Therefore, the function l(t) is a piecewise constant function given by:

l(t) :=

{
1 if 0 ≤ t < 23

10−3 if t ≥ 23.
(7)

Initial conditions were set to
(19453556, 5, 0),

for node 1 and
(8882190, 0, 0),

for node 2. Note there are no infected cases at initial time in NJ. This means that in our model, initial
spread in NJ follows from infection in NY. The same methods as in Section 2 were used to fit the
data for both NY and NJ for the network model (6). Illustrations are provided in Figure 3. It shows
how the model fits the data. In Figure 3a, we have plotted the quantity 0.2(I2 + R2) as a function
of time in red. Recall that, in the model I2 + R2, represents the number of people in the population
which has been infected by the virus and are still alive. The blue dots correspond to the data retrieved
from [20] and plots the total number of infected minus the number of total deaths. Analogously,
in Figure 3b we have plotted the quantity

∫ t
0 d2(u)I2(u)du as a function of time, in red. The blue dots
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correspond to the data retrieved from [20]. Finally, Figure 3c illustrates I1t) and I2(t), which represent
respectively the infected population in NY and NJ. It shows how the curve of NJ follows the curve in
NY, with a small attenuation.

Figure 3. This figure illustrates the simulation of system (6) and how it fits the data. In (a), we have
plotted the quantity 0.2(I2 + R2) as a function of time in red. Recall that, in the model I2 + R2, represents
the number of people in the population which has been infected by the virus and are still alive. The blue
dots correspond to the data retrieved from [20] and plots the total number of infected minus the number
of total deaths. Analogously, in (b) we have plotted the quantity

∫ t
0 d2(u)I2(u)du) as a function of time

in red. The blue dots correspond to the total number of deaths in NJ according with data retrieved
from [20]. Panel (c) illustrates I1(t) and I2(t), which represent respectively the infected in NY and NJ.

An analog theoretical result as in section 2 holds for solutions of (6).

Theorem 2. We assume that initial condition of system (6) satisfies S1(0) > 0, I1(0) > 0, R2(0) = 0,
S2(0) > 0, I2(0) = 0 and R1(0) = 0. Then for t > 0, all variables remain bounded and positive: there exists
a positive constant M < R(0) + I(0) such that for all t > 0:

0 < Si(t) < M, 0 < Ii(t) < M, 0 < Ri(t) < M, i ∈ {1, 2}

and

S1(t) + I1(t) + R1(t) + S2(t) + I2(t) + R2(t) ≤ S1(0) + I1(0) + S2(0)−
∫ t

0
(d1(s)I1(s) + d2(s)I2(s))ds.
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For any non-negative S1(0), R1(0), S2(0), R2(0), the following functions satisfying for t > 0

I1(t) = I2(t) = 0
S1(t) + S2(t) = S1(0) + S2(0)

R1(t) + R2(t) = R1(0) + R2(0)
S1t = −S2t = l(t)

(
c12(t)S2 − c21(t)S1

)
R1t = −R2t = l(t)

(
c12(t)R2 − c21(t)R1

)
are solutions of (6). Furthermore, S1(t) + S2(t) is decreasing, R1(t) + R2(t) is increasing and I1(t) + I2(t) is
non-increasing if and only if

I1(t)k1(t)
S1(t)

S1(t)+I1(t)+R1(t)
+ I2(t)k2(t)

S2(t)
S2(t)+I2(t)+R2(t)

≤ I1(t)(r + d1(t)) + I2(t)(r + d2(t)). (8)

Remark 2. As in Remark 1, we want to point out some interpretation of this theorem in the context of the
pandemic. Here, we have described some solutions with free epidemic component (I(t) = I2(t) = 0). Note that
in this case however, Si and Ri are not constant since they vary according to the fluxes between the two nodes.
Again the last inequality, quantifies the idea that when the spread of the virus becomes lower than the death
and recovery the infected population starts to decrease. The difference here is that we take into account the two
nodes together.

4. Conclusions

In this article, we have considered a simple non-autonomous SIR model to fit the data of COVID-19
in New York state. The model illustrates and quantifies how acting on the control k(t) allows us to
flatten the curve of infected people over the time. From the model, using classical statistical methods,
it is then possible to provide predictions of the number of people in needs of hospitalization. Lastly,
we have fitted data from NJ state thanks to a coupled SIR model taking into account the daily fluxes
between NJ and NY. It allows us to predict similar dynamics in NY and NJ, with a delay and small
attenuation. Note that, despite its simplicity, our model fits, as good as more sophisticated models,
the available data during the growing phase of March 2020. In a forthcoming work, we aim to
fit data with the model over a longer period . This would provide an accurate estimation of the
different parameters.
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