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Abstract: Intercellular communication is an essential hallmark of multicellular organisms and can be
mediated through direct cell–cell contact or transfer of secreted molecules. In the last two decades,
a third mechanism for intercellular communication has emerged that involves intercellular transfer
of extracellular vesicles (EVs). EVs are membranous vesicles of 30–5000 nm in size. Based on
their dimension and biogenesis, EVs can be divided into different categories, such as microvesicles,
apoptotic bodies, ectosomes, and exosomes. It has already been demonstrated that protein changes,
expressed on the surfaces or in the content of these vesicles, may reflect the status of producing
cells. For this reason, EVs, and exosomes in particular, are considered ideal biomarkers in several
types of disease—from cancer diagnosis to heart rejection. This aspect opens different opportunities
in EVs clinical application, considering the importance given to liquid biopsy in the recent years.
Furthermore, extracellular vesicles can be natural or engineered carriers of cytoprotective or cytotoxic
factors and applied, as a therapeutic tool, from regenerative medicine to target cancer therapy. This is
of pivotal importance in the so called “era of the 4P medicine”. This Editorial focuses on recent
findings pertaining to EVs in different medical areas, from biomarkers to therapeutic applications.

Keywords: extracellular vesicles; exosomes; biomarkers; drug carrier; liquid biopsy; extracellular
vesicle engineering and isolation

1. Introduction

Intercellular communication is essential in multicellular organisms and can be mediated through
direct cell–cell contact or transfer of secreted molecules [1]. In the last two decades, a third mechanism
for intercellular communication, that involves the intercellular transfer of extracellular vesicles
(EVs), has emerged [2]. EVs are membrane vesicles of 30–1000 nm in size. They can be isolated
in vitro from cell-conditioned medium, as well as from different body fluids (e.g., such as plasma,
urine, breast milk) [3]. Based on their dimension EVs can be divided into different categories:
small vesicles, such as exosome (<200 nm), and large vesicles, such as microvesicles (MVs),
ectosomes/oncosomes (200–1000 nm) [4]. EVs are also categorized based on their biogenesis. EVs can be
released either through the outward budding of the plasma membrane, termed shedding microvesicles
(MVs), or ectosomes [5]. The other mechanism involves the inward budding of the endosomal
membrane, resulting in the formation of multivesicular bodies (MVBs), with exosomes released by
fusion of the outer MVB membrane to the plasma membrane [6].

EVs are loaded with a diverse range of proteins, some of which are common to most EVs subsets
released from most cell types, such as the membrane-bound tetraspanins CD9, CD81, and CD63 [4].
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Others, instead, are detected in EVs derived from only a specific subset of cell types. This is due to their
capability of carrying different markers from the cell of origin. For such reasons EVs have been recently
pointed out as one of the main characters for liquid biopsy (biomarkers) and therapeutic application.

2. EVs as Biomarkers

These shuttled markers may be proteins, as well as nucleic acids and lipids, and are sheltered
and conserved in their original stability, structure and sequence [7]. Moreover, EVs cargoes have been
analyzed and characterized from many sources, with their identities used to investigate the biogenesis
of the vesicles and to develop diagnostic biomarker panels for human disease [8]. In fact, the circulating
EVs, both in peripheral blood and other biological fluids, such as cerebrospinal fluid and urine [9,10],
are dynamically monitorable and reflect the physiological and pathophysiological characteristics
of the parental cell. In addition, their concentration in biological fluids seems to be disease-state
dependent [11–13]. Thanks to these features, EVs, and exosomes in particular, have been identified
as reliable biomarkers for diagnostic and minimal residual disease monitoring purposes. Moreover,
their prognostic impacts have been demonstrated in different clinical settings, such as cardiac [14],
neurological and neurodegenerative [15–17], immune and autoimmune [18,19], oncological [20] and
onco-hematological diseases [11,21], and pregnancy complications [22]. Nevertheless, the isolation and
characterization of EVs and exosomes’ cargoes remained a big challenge for years because of the low
quantity. In particular, the challenge of protein cargo identification from exosomes preparations was
the lack of amplification techniques compared to nucleic acids investigation. However, thanks to rapid
improvements in proteomic technologies, such as mass spectrometry [23] and Raman technology [12,23],
EVs protein characterization is not only feasible, but of great interest from a biological and medical
point of view.

Regarding their isolation, the possibility to isolate a specific subset of exosomes or EVs released
by a specific cell population is of pivotal importance in order to increase the sensitivity of the markers
detection, and to improve the specificity of the investigation [24,25]. In recent years, different approaches
have been described and compared with ultra-centrifuge or conventional isolation kits. In particular,
many efforts have been focused on the immuno-selection of exosomes based on the binding of
specific antigens expressed on their membrane [25] or on peptide affinity. These methods normally
involve antibodies that are either conjugated to beads (i.e., magnetic) or conjugated with a secondary
antibody bead. This aspect presents a particular impact in oncology and onco-hematology diseases
because it enables the scientists to detect active malignant cells [19,26,27], overcoming the need of
their localization. In addition, the isolation of a specific EVs population released by pathogenic cells
seems of great interest in the screening of people considered under risk of development of particular
diseases [28,29]. Moreover, the feasibility of the isolation of a specific exosomes or vesicles population
opens the opportunity to set up effective liquid biopsy approaches, in order to reduce invasive and
painful conventional tissue biopsies [30–32]—in particular for the very challenging anatomical districts
such as the brain [33,34]. In fact, in diseases affecting the central nervous system, neurologists have
no access to the diseased tissue, with the exception of extreme cases requiring a cerebral biopsy.
Therefore, EVs released by neural and non-neural cells are considered as possible vehicles of both
clinical and biological information. In addition to the anatomical challenge, central nervous system
diseases are disadvantaged by the very reduced amount of EVs released by neural cells. Therefore,
brain specific EVs are very diluted, if present, in peripheral biological fluids, increasing the limit of
EVs biomarkers detection by current available technologies [35]. In this scenario, immuno-selection
of exosomes seems the most suitable approach in order to overcome this limit. These approaches
have been explored in different studies focused on central nervous system disease. EVs markers for
extra-cranial (CD62E+) and intra-cranial (CD31+CD42b−PS+) localization of the stenosis have been
recognized in the case of stroke and stroke mimics. Other specific markers useful for the isolation of
EVs released by neural cell populations are L1CAM and CD171. The isolation of EVs exposing these
markers on their surface opened the possibility to better estimate the time of stroke and the clinical
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severity. In the future, the routinely available and standardized detection techniques for specific EVs
sub-populations may result as an additional tool to improve therapeutic strategies, or to better stratify
the patients’ risk [36,37]. Additionally, in brain tumors, the feasibility of overcoming a conventional
tissue biopsy and of following disease progression through EVs is based on the detection limits. Up to
now, some central nervous system tumor-EVs specific markers have already been identified, and they
may help the set-up of valuable liquid biopsy approaches in future clinical neurology [38].

Therefore, the synergy between the isolation and enrichment strategies and the new technologies
for the analysis of proteins and nucleic acids, such as proteomics and genomics, are increasing the
present clinical application of the EVs and exosomes as reliable biomarkers, and are the bases for
the future.

3. EVs as Therapeutic Tools

The capability of these vesicles to carry messages and information to target cells inspired the
scientists in using exosomes and EVs as potential shutters for drug delivery. Compared to the synthetic
carriers, such as LNPs or polymeric micelles, that present toxicity problems, EVs are safe. Furthermore,
EVs possess the unique ability to cross tissue and cellular barriers [39]. Loading of molecules into
extracellular vesicles is a strategy that combines the physiological activity of the extracellular vesicles
with the apported modification. For example, modification of EVs from mesenchymal stem cells
(MSCs) will result in a double effect: the inhibitory effects on immune responses exerted by MSCs
derived EVs [40] plus the drug activity. This type of strategy was successfully used in a mouse model
of pancreatic cancer. EVs derived from MSCs and loaded with high amounts of anti-KRASG12D siRNA
showed a significant increase in mouse survival [41].

EVs can also be engineered to target specific organs. Indeed, the fate of this carrier, when not
locally injected, remains elusive. Mentkowski et al., for example, modified cardiosphere derived cells
in order to express Lamp2b, an exosome membrane protein, fused to a cardiomyocyte specific peptide
(CMP). Such a stratagem increased retention of the exosome by cardiomyocyte, compared to the naive
one, and resulted in higher cardioprotection activity [42].

As suggested previously, EVs derived from stem or progenitor cells can also be used unmodified,
thanks to their ability to deliver exogenous therapeutic cargo [43].

The evidence that extracellular vesicles secreted by certain cells could be used for therapeutic
application, especially in the regenerative medicine field, derives from previous studies on cell
therapy. For example, in the cardiovascular field, researchers initially thought that the cardioprotective
properties of mesenchymal stem cells (MSCs), injected into the injured heart, resulted from their
differentiation into healthy myocardium [44]. However, different studies later showed that such
effects were due to the paracrine activity exploited by MSCs, and in particular from the vesicular
part [45]. Furthermore, EVs possess numerous advantages over cell-based therapies in the context
of regenerative medicine, such as less limitation related to safety and feasibility of canonical cell
transplantation like cell engraftment, survival and immunocompatibility. Moreover, EVs can be easily
stored and transported for long periods. Additionally, the injection of EVs does not present risk of
tumor generation because they are unable to replicate.

The current “state of the art” of extracellular vesicles fractions used as a therapeutic agent has
presented different active clinical trials. Phase-1 and phase-2 clinical trials (ClinicalTrials.gov Identifier:
NCT01159288) have evaluated the safety and ability of autologous dendritic cell-derived exosomes,
loaded with tumor antigens, to activate tumor-specific cytotoxic T cells in cancer patients [46]. There are
also active trials with unmodified stem or progenitor cells EVs. For example, an early phase-1
clinical trial using adipose derived stem cell exosomes in treatment for periodontitis is now recruiting
patients for safety evaluation (ClinicalTrials.gov Identifier: NCT4270006). A position paper from the
International Society of Extracellular Vesicle (ISEV) highlighted safety and regulatory aspects that
must be considered for pharmaceutical manufacturing and clinical application [47].

ClinicalTrials.gov
ClinicalTrials.gov
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A concrete future of EVs application in therapy seems not so far away. The scientific community is
moving fast, but for a future effective and safe translation of EVs-based therapies into clinical practice,
a high level of cooperation between researchers, clinicians and competent authorities should not
be neglected.

4. Conclusions

In the end, we hope the reviews and articles presented in this Special Issue of Biology will help to
shed light on the relevance of extracellular vesicles in different human diseases. Steady research on the
components and functions of extracellular vesicles would facilitate the use of extracellular vesicles in
diagnostics and therapeutics. Finally, we appreciate the efforts of all contributors to this Special Issue.
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