
Article

Acetylation of Alcohols, Amines, Phenols, Thiols
under Catalyst and Solvent-Free Conditions

Nagaraj Anbu 1, Nagarathinam Nagarjun 1, Manju Jacob 2, J. Mary Vimala Kumari Kalaiarasi 2

and Amarajothi Dhakshinamoorthy 1,*
1 School of Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India
2 Department of Advanced Zoology and Biotechnology, Loyola College, Chennai 600 034, Tamil Nadu, India
* Correspondence: admguru@gmail.com; Tel.: +91-99764-73669

Received: 12 June 2019; Accepted: 8 July 2019; Published: 10 July 2019
����������
�������

Abstract: In the present study, an easy and an efficient approach is reported for the acetylation of
alcohols, amines, phenols, and thiols under solvent- and catalyst-free conditions. The experimental
conditions were milder than conventional methods and the reactions were completed in shorter
reaction time. The examined substrates afforded higher yields of the acetylated products under
the short reaction time. Comparison of this work with earlier reported procedures reveals that
this method offers some advantages than with reported catalysts and solvents. The as-synthesized
products were characterized by 1H-NMR and GC-MS techniques to ensure their purity and identity.
In addition, a possible mechanism was also proposed for this reaction.
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1. Introduction

Acetylation is one of the most important reactions in organic synthesis because acetyl
groups can be conveniently used to protect a wide range of functional groups including
alcohols, amines, phenols, and thiols, among others [1,2]. Acetylation with acyl halides or acid
anhydrides has been reported using either homogeneous or heterogeneous acid catalysts [3–12]
or base catalysts [13–17]. Subsequently, a wide range of homogeneous transition-metal-based
or organocatalysts have been developed for the acetylation of alcohols using RuCl3 [18],
CeCl3 [19], ZrCl4 [20], La(NO3)·6H2O [21], Al(OTf)3 [22], AgOTf [23], Co(II)salen-complex [24],
NiCl2 [25], CoCl2 [26], iodine [27], Ph3P+CH2COMeBr− [28], Cp2ZrCl2 [29], Mg(NTf2)2 [30],
H3[P(Mo3O10)4]·nH2O [31], 3-nitrobenzeneboronic acid [32], (4-dimethylaminopyridine) [33],
(4-(N,N′-dimethylamino)pyridine hydrochloride) [34], CuZr(PO4)2 NPs [35], melamine trisulfonic
acid [36], tin(IV)porphyrin-hexamolybdate [37], and NaOAc·3H2O [38]. Furthermore, acetylation
has also been reported with a series of heterogeneous catalysts, such as ionic liquids [39],
ZnO [40,41], CuO-ZnO [42], nano γ-Fe2O3 [43], Fe3O4@PDA-SO3H [44], polymer-supported
Gd(OTf)3 [45], silica-sulfamic acid [46], borated zirconia [47], ZnAl2O4 [48], P2O5/Al2O3 [49],
poly(N-vinylimidazole) [50], CMK-5-SO3H [51], 4-dimethylaminopyridine-microporous organic
nanotube networks [52], maghemite-ZnO [53], and graphene-grafted N-methyl-4-pyridinamine [54].
These methods exhibit some obvious advantages like low reaction temperature, higher conversions of
substrates at short reaction time, and the ability of heterogeneous catalysts to be recycled. On the other
hand, some of these reported methods use either acid or base, metal salts, and metal nanoparticles,
thus experiencing some limitations in the work-up procedure and purification process.

Nardi and co-workers have reported sustainable methods for the protection of functional groups
which include Er(OTf)3 as an environmentally benign catalyst for the protection and derivatization
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of biomolecules [55], derivatization of functional groups employing aqueous microwave-assisted
conditions [56] and a simple and an efficient method for the removal of Fmoc in an ionic liquid [57].

In contrast to these reports, Ranu and co-workers have developed a simple and efficient method
for the acetylation of alcohols, amines, and thiols with acetic anhydride or acetyl chloride under
solvent- and catalyst-free conditions under nitrogen atmosphere at 80–85 ◦C [58]. However, this
method possesses some limitations, including the requirement of high reaction temperature (80–85
◦C), the need of inert atmosphere throughout the reaction time, and incomplete conversion of some
substrates under the optimized reaction conditions.

Therefore, there is a space to develop an efficient protocol for the acetylation reaction involving
solvent and catalyst-free conditions under mild reaction temperature. Hence, the present work aims
to provide an alternative method to the previously reported procedures by developing a simple and
efficient method for the acetylation of alcohols, amines, phenols, and thiols using acetic anhydride
(Scheme 1) under solvent- and catalyst-free conditions. This method provides complete conversion
of substrates with very high selectivity of the desired products at moderate reaction temperature
under air atmosphere. The optimized reaction conditions are further extended to synthesize a series of
acetylated derivatives with very high yields.
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Scheme 1. Acetylation of alcohols, phenols, thiols, and amines under catalyst and solvent-free 
conditions. 

2. Results 

In the initial stage of our investigation, benzyl alcohol was selected as a model substrate to 
optimize the reaction conditions. The observed results are presented in Table 1. The acetylation of 
benzyl alcohol with acetic anhydride gave 63% conversion with 100% selectivity of benzyl acetate 
after 24 h at room temperature (Table 1, entry 1). Interestingly, complete conversion of benzyl 
alcohol with 100% selectivity to benzyl acetate was achieved at 60 °C after 7 h (Table 1, entry 1). The 
benzyl alcohol conversion was only 88% when the reaction mixture was stirred magnetically under 
identical conditions (Table 1, entry 1). Therefore, further experiments were carried out at moderate 
temperature (60 °C) without magnetic stirring to accomplish complete conversion of substituted 
benzyl alcohols within a short reaction time. With these optimized conditions in hand, a series of 
benzyl alcohols with electron-donating and electron-withdrawing substituents were examined and 
achieved more than 99% conversions with 100% selectivities of the corresponding acetylated 
products after 8 h (Table 1, entries 2–4). However, 4-nitrobenzyl alcohol provided quantitative 
conversion with 100% selectivity after 12 h under identical conditions (Table 1, entry 5). 
Furthermore, a heterocyclic alcohol like furfuryl alcohol gave complete conversion and selectivity 
after 7 h (Table 1, entry 6). On the other hand, the aliphatic and alicyclic alcohols like 1-octanol and 
cyclohexanol furnished quantitative conversions to their respective esters with high selectivities 
after 7 and 8 h, respectively (Table 1, entries 7 and 8). Moreover, sterically crowded substrates like 
1-phenylethanol and diphenylmethanol afforded more than 99% and 98% conversions, respectively, 
after 20 h (Table 1, entries 9 and 10). Furthermore, the substrate scope was further expanded to 
generalize this method by examining phenols and their derivatives under identical conditions. 
Phenol exhibited quantitative conversion with complete selectivity towards phenylacetate after 12 h 
(Table 1, entry 11). Substituted phenols such as 4-methyl-, 3-bromo- and 4-nitrophenols resulted in 
more than 99% conversions to their corresponding esters after 20 h (Table 1, entries 12–14). In 
addition, α- and β-naphthols showed more than 98% and 99% conversions, respectively, to their 
corresponding esters after 20 h (Table 1, entries 15 and 16). In general, the observed data under the 
present experimental conditions show that phenols reacted comparatively slower than alcohols, and 
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2. Results

In the initial stage of our investigation, benzyl alcohol was selected as a model substrate to
optimize the reaction conditions. The observed results are presented in Table 1. The acetylation of
benzyl alcohol with acetic anhydride gave 63% conversion with 100% selectivity of benzyl acetate
after 24 h at room temperature (Table 1, entry 1). Interestingly, complete conversion of benzyl alcohol
with 100% selectivity to benzyl acetate was achieved at 60 ◦C after 7 h (Table 1, entry 1). The benzyl
alcohol conversion was only 88% when the reaction mixture was stirred magnetically under identical
conditions (Table 1, entry 1). Therefore, further experiments were carried out at moderate temperature
(60 ◦C) without magnetic stirring to accomplish complete conversion of substituted benzyl alcohols
within a short reaction time. With these optimized conditions in hand, a series of benzyl alcohols with
electron-donating and electron-withdrawing substituents were examined and achieved more than 99%
conversions with 100% selectivities of the corresponding acetylated products after 8 h (Table 1, entries
2–4). However, 4-nitrobenzyl alcohol provided quantitative conversion with 100% selectivity after 12 h
under identical conditions (Table 1, entry 5). Furthermore, a heterocyclic alcohol like furfuryl alcohol
gave complete conversion and selectivity after 7 h (Table 1, entry 6). On the other hand, the aliphatic and
alicyclic alcohols like 1-octanol and cyclohexanol furnished quantitative conversions to their respective
esters with high selectivities after 7 and 8 h, respectively (Table 1, entries 7 and 8). Moreover, sterically
crowded substrates like 1-phenylethanol and diphenylmethanol afforded more than 99% and 98%
conversions, respectively, after 20 h (Table 1, entries 9 and 10). Furthermore, the substrate scope was
further expanded to generalize this method by examining phenols and their derivatives under identical
conditions. Phenol exhibited quantitative conversion with complete selectivity towards phenylacetate
after 12 h (Table 1, entry 11). Substituted phenols such as 4-methyl-, 3-bromo- and 4-nitrophenols
resulted in more than 99% conversions to their corresponding esters after 20 h (Table 1, entries 12–14).
In addition, α- and β-naphthols showed more than 98% and 99% conversions, respectively, to their
corresponding esters after 20 h (Table 1, entries 15 and 16). In general, the observed data under
the present experimental conditions show that phenols reacted comparatively slower than alcohols,
and this may be due to the reduced nucleophilic character of phenols. Similarly, the feasibility of
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this methodology was further expanded to aromatic and alicyclic amines. Interestingly, aniline and
its derivatives were converted to their respective acetylated products in higher yields within 30 min
(Table 1, entries 17–21). Finally, this method was also extended to study the reactivity of thiols, and the
observed results are given in Table 1. These data indicate that thiophenol and its substituted analogues
provided higher yields under identical reaction conditions (Table 1, entries 22–24).

Table 1. Acetylation of alcohols, phenols, amines, and thiols under catalyst- and solvent-free conditions a.

Entry Substrate Product Time (h) Conv. b (%) Sel. b (%) Isolated Yield (%)

1
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a Reaction conditions: Substrate (1 mmol), acetic anhydride (1.5 mmol), 60 ◦C; b Conversion and selectivity were
determined by GC; c At room temperature; d Performed with stirring; e At 70 ◦C; f Reaction conditions: Substrate
(10 mmol), acetic anhydride (15 mmol), 60 ◦C.

3. Discussion

In order to illustrate some benefits of this method, the observed results were compared with
previous reports using homogeneous and heterogeneous catalysts, and they are shown in Table 2.
These comparisons reveal that the present work offers many advantages, such as short reaction time,
minimal use of acetic anhydride, and the achievement of higher yields in the absence of catalyst
and solvent. Furthermore, it is interesting to note that the present experimental conditions could
provide catalytic results comparable to those data either with homogeneous or heterogeneous catalysts.
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Therefore, the method in this work can be considered as an alternative method for acetylation reaction
from a green chemistry perspective.

Table 2. Comparison of the present catalytic data with literature reports for the acetylation reaction.

Entry Substrate (mmol) (CH3CO)2O (mmol) Catalyst Solvent T (◦C) Time (h) Ref.

1 1 2 Cu(OTf)2 DCM RT 2 [11]

2 1 1.2 RuCl3 CH3CN RT 10 min–72 h [18]

3 1 1.5–2 Ph3P+CH2COMeBr− - RT 0.5–3.5 [28]

4 55.5 83 Gd(OTf)3 CH3CN 25 5 min–14 h [59]

5 1 5 Co(II)salen-complex - 50 0.5–2 [24]

6 5 6 CoCl2 - RT 10–50 min [26]

7 1 1.1 NaOAc·3H2O - RT 10 min [38]

8 10 11 DMAP·HCl Toluene RT-110 4–28 [34]

9 0.1 0.15 DMAP-MONN a CH2Cl2 RT 0.5–5 [52]

10 6.9 7.6 Maghemite-ZnO - RT 3 [53]

11 1 1.5 G-NMPA a - 35 2–10 [54]

12 0.5 0.55 CBr4 - 60 3–6 [60]

13 2.5 2.5 InCl3 - RT 30 min [61]

14 2 4 Cu(BDC) - RT 24 [62]

15 1 1.5 H14[NaP5W30O110] - RT 0.5–3 [63]

16 2 4–20 LiClO4 - 25–40 4–48 [64]

17 1 1.5 - - 60–70 7–20 Present work
a Additionally 1.5 equivalent triethylamine was used.

Based on the observed results in Table 1, a suitable mechanism is proposed for the acetylation
of alcohols, phenols, and amines (Scheme 2). The lone pair of electrons on oxygen and nitrogen
attack the carbonyl group in acetic anhydride to give an adduct which later eliminates acetic acid
to give the corresponding ester (Path I). Furthermore, the liberated acetic acid can also participate
in this mechanism. Initially, acetic acid protonates the carbonyl group of acetic anhydride to give a
cationic intermediate which is further attacked by the nucleophile to give an alcohol-type intermediate.
Later, this intermediate undergoes a series of steps including electron migration to eliminate acetic
acid followed by the removal of a proton to give the final desired product (Path II).

In order to demonstrate the feasibility of this method in a gram-scale synthesis, a series of
experiments were performed at a gram scale under identical conditions, and the observed data are
shown in Table 1 and Figure 1. It is clearly evident that the present method afforded quantitative yields
of 4-nitrobenzylacetate, 4-bromoacetanilide, and 4-nitrophenylacetate from 4-nitrobenzyl alcohol,
4-bromoaniline, and 4-nitrophenol, respectively, under the optimized conditions as shown in Table 1.
One of the main advantages of this method is the isolation of the desired products without column
chromatography purification, and it can be readily scaled up without any difficulty. Figure 1 shows
the isolated products of 4-nitrobenzylacetate, 4-bromoacetanilide, and 4-nitrophenylacetate in a
gram-scale synthesis.
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4. Materials and Methods

4.1. Materials

Alcohols, amines, phenols, and thiols were purchased from Sigma-Aldrich and used as received
without further purification. Solvents were purchased from Merck and Sigma-Aldrich and used as
received without any further purification processes.

4.2. General Procedure for the Acetylation of Alcohols, Phenols, Thiols, and Amines under Solvent-Free Conditions

In a typical reaction, a 25 mL round-bottom flask was charged with 1 mmol of substrate (amine,
alcohol, phenol, or thiol) followed by the addition of 1.5 mmol acetic anhydride. This mixture was
homogeneously mixed with the help of a glass rod and later placed in a preheated oil bath maintained
at 60 ◦C for the required time. A known amount of sample was taken periodically from the reaction
mixture at different time intervals and diluted with diethyl ether to monitor the completion of the
reaction by gas chromatography. Furthermore, the conversion and selectivity were also determined by
gas chromatography at a given time. After completion of the reaction, the mixture was diluted with
diethyl ether and washed two times with sodium bicarbonate, and then the ether layer was dried with
sodium sulfate. Conversion and selectivity were determined by Agilent gas chromatography using
an internal standard method. The products were characterized by 1H-NMR and GC-MS (Supporting
Information; Figures S1–S23).

5. Conclusions

In summary, we have developed a convenient and general method for the acetylation of alcohols,
amines, phenols, and thiols in the absence of solvent and catalyst. The experimental conditions were
milder, and the reactions were completed in shorter reaction times. Interestingly, most of the substrates
were transformed to their respective acetylated products in higher yields under the optimized reaction
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conditions. The synthesized products were characterized by GC-MS and their purity were confirmed
by 1H-NMR spectra.

Supplementary Materials: The following are available online at http://www.mdpi.com/2624-8549/1/1/6/s1.
GC-MS spectra for all the acetylated compounds are given in the supporting information file.
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