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Abstract: Using cobalt(II) as a metal centre with different solvent systems afforded
the crystallization of isomorphous metal-organic frameworks {[Co(34pba)(44pba)]·DMF}n

(1) and {[Co(34pba)(44pba)]·(C3H6O)}n (2) from mixed 4-(4-pyridyl)benzoate (44pba) and
3-(4-pyridyl)benzoate (34pba) ligands. Zinc(II) under the same reaction conditions that led to the
formation of 1 formed an isostructural {[Zn(34pba)(44pba)]·DMF}n framework (3). Crystal structures
of all three MOFs were elucidated and their thermal stabilities were determined. The frameworks of
1, 2, and 3 were activated under vacuum to form the desolvated forms 1d, 2d, and 3d, respectively.
PXRD results showed that 1d and 2d were identical, consequently, 1d and 3d were then investigated
for sorption of volatile organic compounds (VOCs) containing either chloro or amine moieties.
Thermogravimetric analysis (TGA) and nuclear magnetic resonance (NMR) were used to determine
the sorption capacity and selectivity for the VOCs. Some sorption products of 1d with amines
became amorphous, but the crystalline framework could be recovered on desorption of the amines.
Investigation of the sorption of water (H2O) and ammonia (NH3) in 1d gave rise to new phases
identifiable by means of a colour change (solvatochromism). The kinetics of desorption of DMF,
water and ammonia from frameworks 1d and 3d were studied using non-isothermal TGA. Activation
energies for both cobalt(II) and zinc(II) frameworks are in the order NH3 < H2O < DMF, with values
for the 1d analogue always higher than those for 3d.
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1. Introduction

Volatile organic compounds (VOCs) are organic compounds with an appreciable vapour pressure
at ambient temperature. They include naturally occurring and synthetic compounds and range in
effect from harmless to toxic. Some VOCs have been shown to have malodorous, mutagenic or
carcinogenic properties [1–3] and some have been implicated in causing air pollution, particularly in
developing countries [4], and are partly responsible for the generation of photochemical ozone and
smog precursors. They are thus considered as harmful pollutants [2,3]. Some industrial manufacturing
processes, as well as the use of manufactured materials, can increase the emission of VOCs into the local
environment [5,6]. As a consequence, the development of effective technologies to mitigate the emission
of VOCs has received increasing attention [1]. Some reports have shown promising removal and
recovery methods of VOCs from air and water through adsorption processes [7–9]. Solid adsorbents
have been shown to be superior compared to other techniques of decontamination of air or water,
owing to their relative low cost, wide range of applications, simplicity of design, easy operation, low
harmful secondary products and the feasible regeneration of these solid adsorbents [10]. Traditional
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solids adsorbents such as zeolites and activated carbon (AC) can be used for sorption purposes but
they have shortcomings such as low surface area and the requirement of high temperature for their
synthesis and regeneration [11,12]. Recent reports have shown that metal-organic frameworks (MOFs)
have higher adsorption capacities and lower energy costs for regeneration [4,10,12].

Porous MOFs are crystalline frameworks with a wide range of possible configurations arising
from the coordination of metal centres or clusters and organic linkers. MOFs can be designed to
have high surface areas [10,13–15], easy functionalization, and tunable porosities, making them
preferable to zeolites and activated carbon for many applications. Additionally, the coexistence of
inorganic (hydrophilic) and organic (hydrophobic) moieties in MOFs structure may offer control of their
interaction with guest molecules [4]. Thus, MOFs are of interest for a wide range of applications such as
gas sorption [4,7,16], storage [17], separation [18–21], and sensing [22–25]. The choice of organic linker
is key to MOF properties. The most commonly used linkers are those that can coordinate to metal ions
via oxygen or nitrogen donors. Prior studies in our laboratories [19] and elsewhere [26] have shown
that combining carboxylate and pyridyl or triazole aromatic rings allows dynamic rotation between the
aromatic rings which in turn generates flexible MOFs. This is a key feature for their selective sorption
capacity [19,26]. The recognition of chemical information by an adsorbent MOF may be characterised by
colour change known as chromism [27,28], or reversible change in structure size known as a breathing
phenomenon [19,23]. The latter has been observed in both single ligand MOFs such as [Zn(34pba)2]n as
well as in a mixed ligand MOF [Cd(34pba)(44pba)]n; where the channels react to stimuli caused by the
temperature and size of the entering molecules such as alkyl alcohols, N,N-dimethylformamide (DMF)
and N,N-dimethylacetamide (DMA) [19,26]. However, it can be difficult to characterise the sorbed
product due to a loss of crystallinity after removal or inclusion of guests [27,29–31]. Furthermore,
the selective sorption capacity for VOCs such as chlorinated solvents and amines are rarely investigated.
In this paper we report the synthesis of three-dimensional isomorphous and isostructural MOFs from
cobalt(II) and zinc(II) with two related ligands, 3-(4-pyridylbenzoate) (34pba) and 4-(4-pyridylbenzoate)
(44pba). These non-interpenetrated frameworks retain the framework structure and crystallinity on
activation under vacuum. Their sorption capacity for amines and chlorinated solvents was investigated,
as was their relative selectivity for sorption of chlorinated VOCs.

2. Materials and Methods

All chemicals were obtained from commercial sources and were used without further purification.
{[Co(34pba)(44pba)]·DMF}n (1), {[Co(34pba)(44pba)]·(C3H6O)}n (2), and {[Zn(34pba)(44pba)]·DMF}n (3)
(44pba = 4-(4-pyridyl)benzoate and 34pba = 3-(4-pyridyl)benzoate) were solvothermally synthesized as
detailed in Table 1. Compounds 1, 2, and 3 were activated at 210 ◦C under vacuum for 6 h which resulted
in 1d, 2d, and 3d, respectively. The activated samples were placed in narrow vials which were placed
into larger vials containing VOCs and sealed to allow vapour sorption at room temperature (r.t., ca.
25 ◦C) for between one day and two weeks. The VOCs selected for study were dichloromethane (DCM),
chloroform (CHCl3), chlorobenzene (ClBenz), water, ammonia, methylamine (MeNH2), 1-propylamine
(PropNH2), 1-butylamine (ButNH2), benzylamine (BzNH2), and 1-phenylethylamine(PhEtNH2).
The regeneration of the activated sorbents was carried out using the same conditions as for activation.

Table 1. Experimental conditions for the synthesis of 1, 2, and 3.

Metal Salt Ligands Solvent System Conditions

1 CoCl2·6H2O
(6 mg, 0.03 mmol)

34pba/44pba
(10 mg, 0.050 mmol each)

DMF(6
mL)/Ethanol (2 mL) 120 ◦C for 3 days

2 CoCl2·6H2O
(6 mg, 0.03 mmol)

34pba/44pba
(10 mg, 0.050 mmol each)

Acetonitrile(6
mL)/water (2 mL) 120 ◦C for 3 days

3 Zn(NO3)·6H2O
(30 mg, 0.13 mmol)

34pba/44pba
(40 mg, 0.20 mmol each)

DMF(6
mL)/Ethanol (2 mL) 120 ◦C for 3 days
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Competitive sorption for chlorinated solvents was performed by placing equivalent volumes of
two different solvents into a large vial and the relevant activated MOF into a small vial. The latter was
then placed into the large vial and sealed for two days for the sorption of the vapours.

2.1. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)

Thermogravimetric analysis (TGA) was performed using a TA Instrument TA-Q500 on 1–2 mg
samples in open platinum pans under nitrogen gas flow (50 mL min−1) at a heating rate of 10 ◦C min−1

within the temperature range 25–500 ◦C. The onset temperature for guest loss was determined using
Differential scanning calorimetry (DSC). Samples of mass 1–2 mg were placed in aluminium pans with
ventilated lids and heated at 10 ◦C min−1 using a TA Instrument DSC-Q200 under nitrogen gas flow
(50 mL min−1).

2.2. Infrared Spectroscopy

IR spectra were measured on a PerkinElmer Spectrum Two FTIR spectrometer equipped with an
ATR Diamond accessory for powder samples. Samples were scanned over a range of 400–4000 cm−1.

2.3. Nuclear Magnetic Resonance (NMR)

Solids containing the guest species were soaked into DMSO-d6 and heated in order to release the
guests into the solution for the NMR analysis. 1H NMR spectra were recorded in DMSO-d6 solution
using a BRUKER 300 MHz spectrometer at 303 K. Appropriate signals were integrated to determine
the ratio of the respective guests in the MOFs.

2.4. Powder X-ray Diffraction (PXRD)

Powder X-ray diffraction (PXRD) patterns were measured on a Bruker D8 Advance X-ray
diffractometer operating in a DaVinci geometry equipped with a Lynxeye detector using CuKα-radiation
(λ = 1.5406 Å). X-rays were generated at 30 kV and 40 mA. Samples were placed on a zero-background
sample holder and scanned over a range of 4–40◦ in 2θ.

2.5. Crystal Structure Determination

Single crystals of good quality were selected using optical microscopy under plane-polarized
light. Intensity data were recorded on a Bruker KAPPA APEX II DUO diffractometer using
graphite monochromated Mo-Kα radiation (λ = 0.71073 Å) at 100 or 173 K. Data were corrected
for Lorentz-polarization effects and for absorption (SADABS) [32]. The structures were solved by
direct methods in SHELXS and refined by full-matrix least-squares on F2 using SHELXL [33] within the
XSEED [34] interface. The non-hydrogen atoms were located in difference electron density maps and
were refined anisotropically while hydrogen atoms were placed in calculated positions and refined
with isotropic temperature factors. Details of crystal structure refinements are given in Table 2 and
Table S2.
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Table 2. Crystallographic information for compounds 1, 2, and 3.

Compound 1 2 3

Formula C27H23CoN3O5 C27H22CoN2O5 C27H23N3O5Zn
Mass (g·mol−1) 528.41 513.39 534.85
Crystal size (mm3) 0.080 × 0.10 × 0.11 0.030 × 0.060 × 0.090 0.030 × 0.030 × 0.090
Crystal system Monoclinic Monoclinic Monoclinic
Space group P21/c P21/c P21/c
a (Å) 9.203(2) 10.068(4) 9.339(1)
b (Å) 17.823(4) 15.632(5) 17.678(3)
c (Å) 14.718(3) 15.399(5) 14.735(2)
β (◦) 92.75(3) 98.588(7) 93.189(5)
V (Å3) 2411.3(8) 2396.4(1) 2428.84(7)
T (K) 100(2) 100(2) 173(2)
Z 4 4 4
Dc (g·cm−3) 1.456 1.423 1.463
µ(Mo−Kα) (mm−1) 0.756 0.757 1.055
F(000) 1092 1060 1104
Range scanned, θ (◦) 1.80–28.34 1.87–25.09 1.80–27.58
No. reflections collected 22,928 18,219 22,013
No. unique reflection 5981 4250 5584
No. reflections with I ≥ 2σ(I) 4089 2860 3713
Parameters/restraints 327/0 318/0 327/0
Goodness of fit, S 1.034 1.024 1.006
Final R indices (I ≥ 2σ(I)) 0.0859 0.0899 0.0867
Final wR2 (all data) 0.1198 0.1248 0.1107
Min, max e− density (e Å−3) 0.414, −0.417 0.653, −0.455 0.421, −0.443

3. Results and Discussion

The frameworks in 1, 2, and 3 are identical in terms of connectivity and geometry, with the
asymmetric unit consisting of a metal ion (Co2+ in 1 and 2, Zn2+ in 3) bound to one 34pba and one
44pba linker. A centre of inversion generates a dinuclear secondary building unit (SBU) in which
the two metal ions are connected by two bridging 34pba linkers through carboxylate groups while
each metal ion is also coordinated to one 34pba and one 44pba through the pyridyl-N and to a 44pba
through a bidentate carboxylate. The extension of this SBU through space gives rise to a double-walled
network of bcu topology where each side of the square channels consists of a 34pba and a 44pba linker
(Figure 1 and Table 2) [26]. Hour-glass shaped channels running parallel to [100] contain DMF (1 and 3)
or acetone (2) guest molecules. The presence of acetone in 2 was unexpected as a mixture of acetonitrile
and water had been used to prepare this compound. Conversion of acetonitrile to acetone is likely to
proceed via hydrolysis to acetic acid [35] followed by ketonization to form acetone [36,37]. There are
weak hydrogen bonds between the guest oxygens and the aromatic walls of the MOF. While 1 and 3
are isostructural, the structure of 2 is subtly different. Torsion angles indicate that the rings of both
linkers are twisted slightly more away from coplanar in 2 than in 1 or 3, while the orientation of the
carboxylate groups is closer to coplanar with the aromatic ring in 2 than in the other compounds (see
Figure S1 and Table S1 in ESI). The effect of these small changes is a lengthening of unit cell axes a and
c while axis b shortens, but without changing the symmetry or space group. It is likely that the guest
influences this change through the flexibility of the bent 34pba and linear 44pba linkers which allow a
hinge-like expansion or contraction of the guest-accessible void [26].
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Figure 1. (Top) Coordination geometry and SBU in 1. (Bottom) Packing diagrams of 1 (left) and 2
(right) showing the interactions between guest molecules and walls of the metal-organic frameworks
(MOF).

The measured PXRD patterns in Figure 2 show the similarity of 1, 2, and 3 frameworks which
matched well to the patterns calculated from single crystal structures. However, compound 2 had a
small peak at 8.9◦ instead of 9.4◦ as for 1. There are subtle differences in the pattern for 2 compared
to those for 1 and 3, for example, the shift in peaks at positions 12◦ and 21◦. This dissimilarity could
reflect the difference in the crystallographic data explained above. However, the activated forms of
both 1d and 2d were the same after the removal of guest solvents. All activated forms 1d, 2d, and 3d
(d: Activated) retained their crystallinities with a slight shift of peaks (except 3d) to higher 2θ values
which corresponds to a small decrease in interplanar spacing in the frameworks after guest removal.
Hence, these compounds were stable after removal of guest molecules which is not observed in all
MOFs [27,29,30].
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Figure 3. Infrared spectra of 1, 2, 3, 1d, and 3d showing functional groups of guest molecules and 

coordination modes. 

Figure 2. PXRD patterns for 1, 2, 3, 1d, 2d and 3d and their corresponding dry forms compared to their
calculated patterns.

Carbonyl stretches in the FTIR spectra (Figure 3) confirm the presence of DMF (in 1 and 3) at
1678 cm−1 and acetone (in 2) at 1713 cm−1. The removal of these guest solvents was confirmed by the
absence of these bands in the spectra of 1d and 3d. The spectra of the activated forms were similar to
one another as expected from the PXRD analysis.
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Figure 3. Infrared spectra of 1, 2, 3, 1d, and 3d showing functional groups of guest molecules and
coordination modes.

Thermogravimetric analysis (TGA) and DSC are shown in Figure 4. The weight loss of 14.1%
between 120 and 216 ◦C in 1 was assigned to the removal of one DMF molecule (calculated 13.8%).
This was characterised by a broad endothermic peak from 115–280 ◦C in the DSC. MOF 2 shows a total
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complex weight loss of 24.5%. The corresponding DSC trace shows an endothermic peak between 110
and 150 ◦C, followed by a small exotherm and a broad endothermic peak between 160 and 250 ◦C.
It is possible that the removal of the acetone guest overlaps with the decomposition of the framework.
This is contradictory to the PXRD evidence that the framework is robust. It is more likely therefore that
the bulk sample selected for thermal analysis may contain a mixture of crystalline forms, only some
of which correspond to the MOF characterised by crystal structure elucidation. An observed weight
loss of 12.7% for 3 in the range of 120 and 216 ◦C was attributed to the removal of one DMF molecule
(calculated 13.7%). The corresponding DSC curve shows a broad endothermic process between 130
and 260 ◦C. The TGA traces for 1d, 2d, and 3d show no mass loss before 300 ◦C, indicating the solvent
has been removed from the framework.
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3.1. Sorption of VOCs by Activated MOFs

To test the potential of these MOFs to serve as sorbents for pollutants, we carried out vapour
sorption experiments using a series of chlorinated volatile organic compounds (VOCs) and another
series of volatile amines. Sorption of water and of ammonia were also studied. Sorption experiments
were carried out using activated samples of the Co-MOF (1d) and Zn-MOF (3d).

Sorption of chlorinated VOCs dichloromethane (DCM), chloroform (CHCl3) and chlorobenzene
(ClBenz) were achieved in a single crystal to single crystal manner, which allowed the elucidation of
these crystal structures (Table S2 and Figure 5). The guests are stabilized in place by a number of weak
interactions, including Cl···π, and C−H···π interactions and, in the case of chlorobenzene, through
π···π interactions with the walls of the MOF. Comparable interactions have been observed in similar
systems [38,39]. PXRD patterns (Figure S2a,b) of the phases obtained by vapour sorption of all tested
chlorinated VOCs into 1d or 3d are unchanged from the starting activated phases, thus confirming the
robustness of the retained framework structure [40].

Chemistry 2019, 1, x 8 

 

3.1. Sorption of VOCs by Activated MOFs 

To test the potential of these MOFs to serve as sorbents for pollutants, we carried out vapour 

sorption experiments using a series of chlorinated volatile organic compounds (VOCs) and another 

series of volatile amines. Sorption of water and of ammonia were also studied. Sorption experiments 

were carried out using activated samples of the Co-MOF (1d) and Zn-MOF (3d). 

Sorption of chlorinated VOCs dichloromethane (DCM), chloroform (CHCl3) and chlorobenzene 

(ClBenz) were achieved in a single crystal to single crystal manner, which allowed the elucidation of 

these crystal structures (Table S2 and Figure 5). The guests are stabilized in place by a number of 

weak interactions, including Cl···π, and C−H···π interactions and, in the case of chlorobenzene, 

through π···π interactions with the walls of the MOF. Comparable interactions have been observed 

in similar systems [38,39]. PXRD patterns (Figure S2(a) and (b)) of the phases obtained by vapour 

sorption of all tested chlorinated VOCs into 1d or 3d are unchanged from the starting activated 

phases, thus confirming the robustness of the retained framework structure [40]. 

   
1dDCM 1dCHCl3 1dClBenz 

Figure 5. Inclusion of dichloromethane, chloroform and chlorobenzene into MOF 1d. 

The extent of selectivity in 1d and 3d was investigated from binary mixtures of the same 

chlorinated VOCs. Table 3 presents the solvent ratios obtained from the integration of relevant NMR 

peaks (Figure S5) from the competition studies. For 1d, a mixture of DCM and chloroform were taken 

up without selectivity, while 3d exposed to the same mixture selectivity absorbed DCM. Both MOFs 

selected DCM and chloroform over chlorobenzene from these respective binary mixtures. On the 

other hand, DCM was selectively sorbed 8.3 times over chlorobenzene. It should be noted that no 

attempt was made to compensate for differences in vapour pressure, and that the more volatile 

solvent was absorbed in each case, in contrast to a previous study carried out in our laboratory [19]. 

1d and 3d show similar sorption trends for chlorinated VOCs as well as a series of volatile 

amines (Figure S3). Table 4 lists the VOC sorption results for 1d and 3d. PXRD traces for sorbed 

complexes are shown in Figure S2. The loading values were calculated from TGA analysis (Figure 

S4) and compared to theoretical maximum loading capacities. The loading capacity (Lc) is calculated 

from the crystallographically derived void volume and the liquid density of the respective solvents. 

The maximum loading capacity (MLc) for the empty networks was estimated from 

MLc = (solvent accessible void volume)/(Z × molecular volume). (1) 

The solvent-accessible void volume of 1d and 3d were estimated using Mercury with a probe 

radius of 1.2 Å  and a grid step of 0.2 Å  and were found to be 549.0 and 571.4 Å 3 per unit cell 

respectively [41]. 

  

Figure 5. Inclusion of dichloromethane, chloroform and chlorobenzene into MOF 1d.

The extent of selectivity in 1d and 3d was investigated from binary mixtures of the same
chlorinated VOCs. Table 3 presents the solvent ratios obtained from the integration of relevant NMR
peaks (Figure S5) from the competition studies. For 1d, a mixture of DCM and chloroform were taken
up without selectivity, while 3d exposed to the same mixture selectivity absorbed DCM. Both MOFs
selected DCM and chloroform over chlorobenzene from these respective binary mixtures. On the other
hand, DCM was selectively sorbed 8.3 times over chlorobenzene. It should be noted that no attempt
was made to compensate for differences in vapour pressure, and that the more volatile solvent was
absorbed in each case, in contrast to a previous study carried out in our laboratory [19].

Table 3. Selectivity of 1d and 3d for chlorinated volatile organic compounds (VOCs).

1d Mole Ratio of VOCs in 1d a Selectivity (Major Component)

DCM/Chloroform 1:1 none
DCM/Chlorobenzene 8.3:1 DCM
Chloroform/Chlorobenzene 10:1 Chloroform

3d Mole Ratio of VOCs in 3d Selectivity (Major Component)

DCM/Chloroform 1.3:1 DCM
DCM/Chlorobenzene 1:0 DCM
Chloroform/Chlorobenzene 3:1 Chloroform

a Determined by NMR (Figure S5).

1d and 3d show similar sorption trends for chlorinated VOCs as well as a series of volatile amines
(Figure S3). Table 4 lists the VOC sorption results for 1d and 3d. PXRD traces for sorbed complexes
are shown in Figure S2. The loading values were calculated from TGA analysis (Figure S4) and
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compared to theoretical maximum loading capacities. The loading capacity (Lc) is calculated from
the crystallographically derived void volume and the liquid density of the respective solvents. The
maximum loading capacity (MLc) for the empty networks was estimated from

MLc = (solvent accessible void volume)/(Z ×molecular volume). (1)

Table 4. Uptake of selected solvents by the activated phases 1d and 3d.

VOC
Experimental

Mass Loss,
TGA (%)

Temperature
Range of Mass

Loss (◦C)

Loading Capacity, Lc (x in Proposed
Formula: {[M(34pba)(44pba)]·x

Solvent}n)
MLc

% Loading
Capacity

1d
DCM 14.0 60–154 0.9 1.3 69
CHCl3 17.1 118–285 0.8 1.0 80
ClBenz 13.0 87–264 0.6 0.8 75
H2O 15.4 60–134 4.6 4.6 100
NH3 12.9 60–150 4.0 3.5 114
MeNH2 26.1 30–220 5.2 1.9 273
PropNH2 33.4 30–220 3.9 1.0 390
ButNH2 31.0 30–220 2.8 0.8 350
BzNH2 52.0 65–260 4.6 0.8 575
PhEtNH2 9.7 170–310 0.4 0.7 57

3d
DCM 11.0 88–220 0.7 1.4 50
CHCl3 13.3 110–232 0.6 1.1 55
ClBenz 11.0 61–252 0.5 0.8 63
H2O 12.9 73–155 3.8 4.8 79
NH3 12.5 59–127 3.9 3.6 108
MeNH2 18.2 30–280 3.3 1.9 174
PropNH2 18.4 30–263 1.8 1.0 180
ButNH2 29.2 50–290 2.6 0.9 289
BzNH2 36.0 88–290 2.4 0.8 300
PhEtNH2 8.4 77–290 0.3 0.7 43

The solvent-accessible void volume of 1d and 3d were estimated using Mercury with a probe
radius of 1.2 Å and a grid step of 0.2 Å and were found to be 549.0 and 571.4 Å3 per unit cell
respectively [41].

For the chlorinated solvents, the loading capacity (Lc) in the proposed formula {[M(34pba)(44pba)]·x
solvent}n for both systems is lower than the maximum loading capacity. For each individual solvent,
the sorption is higher for 1d than for 3d.

Water is taken up to near full capacity by both 1d and 3d, with little disruption of the framework.
To test the potential of these compounds as sorbents for amines, the activated MOFs 1d and

3d were exposed to the vapours of a series of amines, viz. ammonia (NH3), methylamine (MeNH2),
propylamine (PropNH2), 1-butylamine (ButNH2), benzylamine (BzNH2) and phenylethylamine
(PhEtNH2), Table 4, Figures S2 and S3. The crystal quality of the resultant compounds was too poor to
allow full structural characterisation.

For all amines except phenylamine, the loading capacity of 1d exceeds the maximum calculated
from simple molecular volumes. Complexes also become amorphous. To further understand this, we
exposed 1d to benzylamine (BzNH2) and found that the material remained crystalline until a mass loss
of 40% was recorded. Subsequent desorption of the BzNH2 from amorphous 1dBzNH2 under vacuum
recovered crystalline 1d (Figure S9). In 3d on the other hand, while the loading values obtained were
again higher than the calculated maximum, the compounds retained their crystallinity but show some
differences in phase in their PXRD traces. As with the chlorinated solvents, the amount sorbed by 1d is
greater than that for 3d.
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Amines are capable of hydrogen bonding, hence stronger intermolecular interactions, than
chlorinated VOCs, which may allow them to pack more compactly into the channels, and to interact
strongly with the internal surfaces of the MOFs, leading to higher loading values [39,42] and phase
changes [43–45]. For benzylamine in particular, the MOFs took up a large amount, which could
be attributed to aromatic stacking between BzNH2 and the aromatic rings in the MOF walls [46].
The lower sorption capacity for PhEtNH2 is the result of steric effects and lower polarity. No tests for
selectivity among amine VOCs were performed.

3.2. Solvatochromism

Their PXRD patterns (Figure 6) show that the sorption of H2O and NH3 by 1d formed new
phases (1dw and 1dNH3, respectively) with noticeable colour changes from red to khaki (Figure 7).
Upon desorption, both 1dw and 1dNH3 resulted in purple powder phases, which are amorphous
(1dwTG and 1dNH3TG). However, the crystallinity, as well as their khaki colours, were restored after
reabsorption (1dwTGw and 1dNH3TGNH3). Solvatochromism in MOFs has been reported to be the
result of the supramolecular interactions such as hydrogen bonding and/or the coordination of the
solvent molecules to the metal centres in the frameworks [27,44,47]. These interactions affect the energy
associated with d-d transitions resulting in visible colour changes [27,39].
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3.3. Kinetics of Desorption from 1 and 3

TGA may be used to determine the activation energy (Ea) of the guest desorption process. We used
the Ozawa model-free method [48] to study the removal of guests DMF, NH3, and H2O for both
systems reported here. Samples of mass 1–2 mg were heated at different heating rates (5, 10, 20,
and 30 ◦C min−1) in order to determine the activation energy associated with the removal of guest
molecules from 1, 3, 1dw, 3dw, 1dNH3, and 3dNH3 (Figure S7). Percentage mass losses along with
the corresponding temperature at each heating rate were used to determine the activation energy (Ea)
according to the equation:

logβα = log(Aα Eaα/g(α)R) − 2.315 − 0.457(Eaα/RTα) (2)

where βα is the heating rate, Aα is the frequency factor, Eaα is the activation energy, Tα is the
temperature at each conversion level, and g(α) refers to the kinetic model. Figure S8 presents the plots
of logβα versus reciprocal absolute temperature (in the form of 1000/T K−1). Equating the slope to
−0.457(Ea/RT) allows one to calculate the activation energies, which are given in Table 5.

Table 5. Activation energy associated with removal of guest molecules.

Mass Loss
(%)

Ea (kJ mol−1)

DMF from
1d

DMF from
3d

H2O from
1dW

H2O from
3dW

NH3 from
1dNH3

NH3 from
3dNH3

20 74.77 68.77 77.3 64.78 65. 10 58.46
40 75.31 66.50 72.59 57.35 67.8 59.39
60 72.77 70.57 75.24 65.23 68.61 62.01
80 77.30 64.08 74.75 68.38 68.77 62.01

Mean 75.04 ± 1.68 67.48 ± 2.81 74.97 ± 1.93 63.94 ± 4.67 67.57 ± 1.70 60.47 ± 1.82

The activation energies determined for desorption from 1d are higher than the corresponding
desorption from 3d. This may be attributed to the difference in the metal centre as well as the
solvent-accessible volume of the channels, viz. 549.0 Å3 in 1d and 571.4 Å3 in 3d, as the size of the
cavities influences the supramolecular interactions possible between host and guest [47,49]. Activation
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energies associated with the desorption of DMF and H2O are similar to one another but are higher than
that of NH3. Higher activation energies are generally associated with stronger host-guest interactions.
The activation energies for desorption of DMF from 1d and 3d are comparable to those reported for
the related MOF {[Co(34pba)2]·DMF}n [47], while the average activation energies for the desorption of
H2O for 1d and 3d are also comparable to those reported for [Co(34pba)2] isomers and chromium(III)
terephthalate (MIL-101) [27,50]. There are no previous reports of desorption of ammonia from MOFs,
so we compared our values to those reported for the desorption of NH3 from Brønsted acid sites
in zeolite ZSM-5 derivatives [51], which were found to have activation energies between 50 and
60 kJ mol−1. Activation energies determined in this study are of the same order of magnitude,
suggesting that intermolecular interactions such as hydrogen bonding with the channel walls are of
approximately the same strength as those in the zeolite.

4. Conclusions

The coordination of two pyridylbenzoate ligands to cobalt(II) and zinc(II) metal centres formed
isostructural {[Co(34pba)(44pba)]·DMF}n (1) and {[Zn(34pba)(44pba)]·DMF}n (3) compounds. Using an
acetonitrile/water mixture instead of a DMF/ethanol solvent system led to a framework isomorphous
to 1, {[Co(34pba)(44pba)]·(C3H6O)}n (2) where acetonitrile had undergone hydrolysis and ketonization
to produce the guest acetone (C3H6O). These MOFs retain their phase and crystallinity (1d and
3d) after the removal of guest molecules under vacuum. Both 1d and 3d took up chlorinated and
amine VOCs and showed potential selectivity in the sorption of binary chlorinated solvent mixtures,
with preference for dichloromethane and chloroform. The activated MOFs had a higher sorption
capacity for amine VOCs, which was attributed to their stronger intermolecular interactions with
the framework. The sorption of chlorinated VOCs did not affect the crystallinity of the frameworks
while some amine VOCs led to new phases in 3d and amorphous phases in 1d. The crystalline phase
1d could be recovered from these amorphous phases on desolvation under vacuum. Characteristic
solvatochromism was observed in 1d on sorption of water or ammonia. The desorption of these two
guests led to a new phase, which was reversible for both colour and crystallinity. The activation energy
associated with the removal of DMF, H2O, and NH3 from MOFs 1d and 3d was determined and found
to be comparable with previous systems studied. This study shows the potential of the synthesised
MOFs having selectivity to take up guest molecules and undergo colour changes depending on the
chemical and physical properties of the guest molecules. Therefore, studies on these MOFs for sensing
and separation applications are ongoing.

Supplementary Materials: Supplementary data (crystal structure data, PXRD, thermal analysis, NMR) are
available online at http://www.mdpi.com/2624-8549/1/1/9/s1. Crystallographic data for this paper have been
deposited with the CCDC, accession numbers 1935229-1935234. These data can be obtained free of charge via
www.ccdc.cam.ac.uk/data_request/cif or by emailing data_request@ccdc.cam.ac.uk.
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