

Review

Hydrogen Peroxide as a Green Oxidant for the Selective Catalytic Oxidation of Benzylic and Heterocyclic Alcohols in Different Media: An Overview

Majid M. Heravi^{1,*}, Nastaran Ghalavand¹ and Elaheh Hashemi²

- ¹ Department of Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran; ghalavand.nastaran@yahoo.com
- ² Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran; e.hashemi@sru.ac.ir
- * Correspondence: mmheravi@alzahra.ac.ir or mmh1331@yahoo.com; Tel.: +98-218-804-1344

Received: 3 January 2020; Accepted: 22 February 2020; Published: 5 March 2020

Abstract: Among a plethora of known and established oxidant in organic chemistry, hydrogen peroxide stands in a special position. It is commercially and inexpensively available, highly effective, selective, and more importantly it is compatible with current environmental concerns, dictated by principles of green chemistry. Several chemicals or their intermediates that are important in our daily life such as pharmaceuticals, flavors, fragrances, etc. are products of oxidation of alcohols. In this review, we introduce hydrogen peroxide as an effective, selective, green and privileged oxidant for the catalyzed oxidation of primary and secondary benzylic and heterocyclic alcohols to corresponding carbonyl compounds in different media such as aqueous media, under solvent-free conditions, various organic solvent, and dual-phase system.

Keywords: selective catalytic oxidation; benzylic alcohols; heterocyclic alcohols; hydrogen peroxide; green oxidant; aqueous media; solvent-free conditions; organic solvents; dual-phase system

1. Introduction

Nowadays, energy and environmental crises have resulted in the discovery of green technologies for progressive use in the chemical industry. Exploration of green chemical reaction approaches have especially shaped our daily lives. The use of alternative non-toxic and green solvents, benign reagents and substrates, and the application of new catalytic systems with the same efficiency or even superior efficiency have also reduced the risk of chemical reactions and resulted in safety [1,2].

Oxidation of primary and secondary alcohols to their corresponding aldehydes and ketones, respectively, are considered as a pivotal reaction in organic transformations due to the wide applications of these products as precursors or intermediates for construction of several drugs, fragrances, and vitamins. Because of the low selectivity of some reactions such as oxidation, the resulting byproducts generate waste and pollution. Therefore, selective oxidation of organic compounds as a critical chemical transformation has wide-ranging applications in the chemical, industrial, and biological processes which needs more attention. Traditionally, selective oxidation of alcohols has needed toxic, corrosive, and expensive stoichiometric inorganic oxidants such as Cr(VI), Mn(VII), heptavalent iodine, and DMSO-coupled reagents which create both environmental and economic concerns [3,4]. Due to an urgent and important demand for greener approaches, the use of toxic solvents and reagents such as organic peroxides must be avoided. Thus, green solvents such as water or solvent-free systems, clean oxidants such as O_2 or H_2O_2 , and also recyclable catalysts should be considered in order to comply

with the principles of green chemistry proposed by Anastas and Warner [2]. According to the atom economy principle, established by Trost in 1991, in oxidation reactions, with respect to the total mass of the oxidant, the mass amount of oxygen transferred to the substrate should be optimal [5]. Although molecular oxygen is considered to be an ideal oxidant, its use sometimes is problematic since it needs harsh reaction conditions such as high temperature or pressure and it also shows poor selectivity.

Nowadays, among the common oxidants, hydrogen peroxide (H_2O_2) with 47% oxygen content has been found to be a more suitable and practical oxidant. Moreover, with the transfer of one oxygen atom to the substrate in the oxidation reaction, one equivalent of H_2O is practically formed as an ideal and green expected byproduct [6–10]. In addition, due to its good solubility in water and many organic solvents, H_2O_2 is a very operative oxidant in liquid phase reactions [9,10]. Furthermore, its safe storage, operation, and transportation of aqueous hydrogen peroxide, along with its commercially availability, justify its wide applications [11,12].

Selective oxidation of aliphatic or aromatic alcohols to the corresponding carbonyl compounds using hydrogen peroxide either in the absence or presence of catalysts in different solvents under neutral, alkaline, or acid conditions have been extensively studied [13–18]. Our research group was also interested in oxidation [19–22], using hydrogen peroxide as an oxidant of choice [23,24] and especially, selective oxidation of alcohols to the corresponding carbonyl compounds [25–27]. We recently reviewed the applications of pyridinium chlorochromate (PCC) as an important selective oxidant for oxidation of primarily and secondary alcohols to their corresponding carbonyl compounds [28]. As a continuation of these interests, herein, we try to highlight the importance and efficacy of hydrogen peroxide as an effective and green oxidant in the catalyzed selective oxidation of primary and secondary benzylic alcohols to their corresponding carbonyl compounds. This review is also intended to cover recent literature, focusing on new methods of selective catalytic oxidation of benzylic and heterocyclic alcohols using hydrogen peroxide in aqueous phase, a solvent-free system, in various solvents, and dual-phase systems. In addition, we present an overview on the reasonable reaction mechanism and promising catalytic effects of the selective oxidation of alcohols which actually can be considered as dehydrogenation of alcohols.

2. Selective Catalytic Oxidation of Benzylic and Heterocyclic Alcohols

2.1. Oxidation of Benzylic and Heterocyclic Alcohols in Aqueous Media

Epichlorohydrin (ECH)-modified Fe_3O_4 microspheres (1) for the selective oxidation of benzyl alcohol to benzaldehyde with H_2O_2 has been reported [29,30]. The ECH-derived hydroxyl groups have been shown to be milder and beneficial for the structural stability of Fe₃O₄ as compare with corrosive organic acid and iron-chelating additives. With ECH modification, a few surface active sites have been occupied, so the activation energy for H_2O_2 on Fe_3O_4 microspheres decomposition increased from 50.1 to 116.3 kJ mol⁻¹. Therefore, the promotional effect of short-chain saturated alcohols as additives for Fe_3O_4 -catalyzed decomposition in H_2O_2 was established for the first time, and exploited to improve the catalytic performance of Fe₃O₄ microspheres for the selective oxidation of benzyl alcohol to corresponding benzaldehyde with H_2O_2 in water (Table 1) [31]. The results showed that applications of only Fe₃O₄ microspheres converted only 5.7% of PhCH₂OH (Table 1, Entry 1). Although, the catalytic activity of Fe_3O_4 microspheres were suggestively improved by the addition of small amounts of short-chain saturated alcohols (0.4 mol% with regards to H_2O_2) (Table 1, Entries 2–7), the selectivity for benzaldehyde reduced to 83 to 87%, due to over-oxidation to benzoic acid as a byproduct. The better promotional effect (same dosage, 0.4 mol%) of secondary and tertiary alcohols (41.8% to 48.9% in Table 1, Entries 2–4) on the conversion of benzyl alcohol (13.5% to 22.8% in Table 1, Entries 5–7) are observed as compared with primary alcohols. As shown in Table 1, for each alcohol, the optimal dosage could be different additives to accomplish the highest conversion of benzyl alcohol. Although the dosage of all alcohol additives was fixed (0.4 mol% with regard to hydrogen peroxide), the conversion of PhCH₂OH may not be the optimal value for each alcohol additive.

	short-ch OH (0.4 mol?	ain saturated al % with regard to	cohols o H_2O_2			
	$Fe_{3}O_{4} I H_{2}O_{2} (30)$	Fe ₃ O ₄ microspheres 1 (0.2 g) H ₂ O ₂ (30 wt%,8 mL), H ₂ O (8 mL)				
	reflu	ux at 100 °C, 1.	.5 h			
Entry	Additive	Conv. (%)	Yield (%)	Sel. (%)		
1	No additive	5.7	5.6	98.8		
2	Glycerol	48.9	42.6	87.2		
3	Tert-butanol	45.3	38.9	86		
4	Iso-propanol	41.8	34.9	83.5		
5	Methanol	22.8	19.5	85.5		
6	Ethanol	13.5	11.5	85.4		
7	MEG	17.4	14.5	83.2		

Table 1. Catalytic oxidation of benzyl alcohol to benzaldehyde with H_2O_2 in water on Fe₃O₄ microspheres **1** with 0.4 mol% of alcohol additives ^a.

^a Reaction conditions: Substrate (40 mmol and 4.1 mL), short-chain saturated alcohols (0.4 mol% with regards to H_2O_2), Fe_3O_4 microspheres **1** (0.2 g), H_2O_2 (30 wt%, 8 mL), H_2O (8 mL), reflux at 100 °C, 1.5 h.

Recyclable and reusable nanocatalyst (MgAl₂O₄@SiO₂–PTA) (**2**) was applied for the selective oxidation of primary and secondary alcohols (Table 2) to the corresponding aldehydes (for example, benzyl alcohol Entry 1) and ketones (for example, 1-phenyl ethanol Entry 7) with hydrogen peroxide as oxidant and water [32]. The oxidation reaction of 1-phenyl ethanol to acetophenone was more efficient than other reactions (98%). The catalyst was successfully used five times without any loss of its high catalytic activity. In benzylic alcohol oxidation, since the replacement was different from electron donating to electron withdrawing (Table 2, Entries 2–8), the yield of products decreased from 94% to 81% [33].

Table 2. Synthesis of diversified benzylic alcohol in the presence of MgAl₂O₄@ SiO₂-PTA 2^a.

	$\begin{array}{c} OH \\ OH \\ OH \\ R' \end{array} \xrightarrow{MgAl_2O_4@Si}_{H_2O_2(30\%, 1)} \\ 90^{\circ}_{10} \end{array}$	$\begin{array}{c} O_2 \text{-PTA } 2 (0.05 \text{ g}) \\ \hline \\ n \text{mol}), \text{H}_2 O (3 \text{ mL}) \\ C, 1.5 \text{ h} \\ R \end{array}$	
Entry	Substrate	Product	Yield (%) ^b
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	96
2	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	91
3	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	85
4	3-NO ₂ C ₆ H ₄ CH ₂ OH	3-NO ₂ C ₆ H ₄ CHO	81
5	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	93
6	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	94
7	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	98
8	4-MeC ₆ H ₄ CH(OH)CH ₃	4-MeC ₆ H ₄ COCH ₃	97
9	4-ClC ₆ H ₄ CH(OH)CH ₃	4-ClC ₆ H ₄ COCH ₃	95
10	3-BrC ₆ H ₄ CH(OH)CH ₃	3-BrC ₆ H ₄ COCH ₃	92
11 ^c	C ₆ H ₅ CH ₂ OH	-	-

^a Reaction condition: Substrate (2 mmol), MgAl₂O₄@ SiO₂–PTA **2** (0.05 g), H₂O₂ (30%, 1 mmol), H₂O (3 mL), 90 °C, 1.5 h. ^b Isolated yields. ^c Substrate (2 mmol), without MgAl₂O₄@ SiO₂–PTA **2**, H₂O₂ (1 mmol), H₂O (3 mL), 90 °C, 4 h.

A heterogeneous organocatalyst "glycoluril" (3) was applied for the oxidation of alcohols to the corresponding carbonyls with excellent conversion and selectivity (more than 90%) in an aqueous medium using hydrogen peroxide (Table 3) [34]. The catalyst was successfully recycled for >10 times. Depending on the functional groups substituted on the aromatic rings of benzylic alcohols (Table 3, Entries 1–5), good conversions and selectivities were obtained with different reaction times. In addition, heteroaromatic substrates were successfully converted into the corresponding aldehydes in a short reaction time.

		glycoluril 3 (5 mol%) H ₂ O ₂ (50%, 1.2 equiv.) H ₂ O (2 mL), 60 °C, 2.5-6.5 h		O R'	
Entry	Substrate	Product	t (h)	Conv. (%)	Sel. (%)
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	3	99	98
2	4-OHC ₆ H ₄ CH ₂ OH	4-OHC ₆ H ₄ CHO	5	93	97
3	4-FC ₆ H ₄ CH ₂ OH	4-FC ₆ H ₄ CHO	4	95	98
4	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	4.5	92	98
5	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	4.5	93	96
6	3-Pyridinemethanol	3-Pyridinecarboxaldehyde	2.5	100	59
7	2-Pyridinemethanol	Picolinaldehyde	2.5	99	52
8	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	3.5	99	98
9	4-MeC ₆ H ₄ CH(OH)CH ₃	4-MeC ₆ H ₄ COCH ₃	4	94	97
10	4-NO ₂ C ₆ H ₄ CH(OH)CH ₃	4-NO ₂ C ₆ H ₄ COCH ₃	6.5	72	98
11	(C ₆ H ₅) ₂ CHOH	$(C_{6}H_{5})_{2}CO$	3	99	99
12	C ₆ H ₅ CH(OH)(CH) ₂ C ₆ H ₅	C ₆ H ₅ CO(CH) ₂ C ₆ H ₅	3	99	91

Table 3. Substrate scope for the oxidation reaction ^a.

^a Reaction conditions: Substrate (1 mmol), glycoluril **3** (5 mol%), H₂O₂ (50%, 1.2 equiv.), H₂O (2 mL), 60 °C.

Green, chemoselective, facile, and efficient oxidation of primary and secondary benzylic alcohols to corresponding aldehydes or ketones in aqueous H_2O_2 was reported by Kamal Amani and co-workers [35] in the presence of GO/Fe₃O₄/HPW (4) nanocomposite catalyst with approximately 75% to 99% conversions, without any overoxidation to acid (100% selectivity), as shown in Table 4.

In water, exchanging the protons of HPW with PEG-bridged di-imidazolium cations produced double catalytic sites in a single molecule of Keggin-type phosphotungstic acid ($H_3PW_{12}O_{40}$, HPW)-based di-imidazolium ionic liquid (IL) hybrid (5) catalyst which enhanced the reaction rate and resulted in higher selectivity of benzyl alcohol oxidation with H_2O_2 (30 wt%) in water with excellent catalytic efficiency, convenient recovery, and steady reusability. Higher conversions (71%) and selectivity (82%) were obtained by the di-cation IL-based PIPA-0 due to the di-cationic structure of imidazolium IL (Table 5, Entry 4). In addition, the built-in phase transfer capability of PIPA-n that arose from PEG modifier provided the higher activity of PIPA-n (n = 4, 8, and 13) [36].

Incipient wetness impregnation method was applied for the preparation of ceria (CeO₂) supported tungstophosphoric acid (H₃PW₁₂O₄₀; HPW) catalysts. As illustrated in Table 6, H₃PW₁₂O₄₀/CeO₂ (6) catalyst among the various catalysts showed the best results for selective oxidation of benzyl alcohol (BzOH) with hydrogen peroxide (20 wt% H₂O₂) [37]. In addition, response surface methodology (RSM) based on the Box–Behnken design model showed 95.2% conversion of benzyl alcohol and a 94.2% yield of benzaldehyde with 98.9% selectivity which was in good agreement with the experimental results [37]. Reusability of the catalyst were further successfully tested for six consecutive runs.

		GO/Fe ₃ O ₄ /HPW 4 (20 mg H ₂ O ₂ (10%, 5 mmol) 70 °C, 1.5-9 h	$rac{g}{rac{1}{2}} R \frac{f}{l}$		
Entry	Substrate	Product	t/h	Yield (%) ^b	Sel. (%) ^c
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	3	99	100
2	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	1.5	100	100
3	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	2	99	100
4	2,4-ClC ₆ H ₃ CH ₂ OH	2,4-ClC ₆ H ₃ CHO	4	94	100
5	2-NO ₂ C ₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	9	70	100
6	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	7	90	100
7	2-OHC ₆ H ₄ CH ₂ OH	2-OHC ₆ H ₄ CHO	6	85	100
8	4-CH ₂ OHC ₆ H ₅ CH ₂ OH	4-CHOC ₆ H ₅ CHO	7	70	100

Table 4. Catalytic performance of the GO/Fe₃O₄/HPW 4 nanocatalyst for the selective oxidation of alcohols with H_2O_2 under optimal reaction conditions ^a.

^a Reaction conditions: Substrate (1 mmol), GO/Fe₃O₄/HPW 4 (20 mg), H₂O₂ (10%, 5 mmol), 70 °C, 1.5-9 h. ^b Yields are referring to isolated yields. ^c Selectivity was based on the corresponding aldehydes or ketones. ^d Byproduct is phenylacetic acid. ^e Byproduct is 3-phenylpropanoic acid.

Table 5. Results of the selective oxidation of alcohols to aldehydes with H_2O_2 in water over various PW-based catalysts ^a.

		PIPA-13 5 (1 H ₂ O ₂ (30%, 1 H ₂ O (1.5 95 °C,	.3 mol%) 5 mmol), 5 mL) 6 h		0 R'
Entry	Substrate	Product	Catalyst	Conv. (%) ^b	Sel. (%) ^c
1	_		HPW	48	67
2			[BMIm]Cl	Trace	-
3	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	IL-PW	59	80
4	_		PIPA-0	71	82
5			PIPA-4	88	79
6	_		PIPA-8	91	84
7	_		PIPA-13	96	86
8			HPW	48	>99
9	$- C_6H_5CH(OH)CH_3$	C ₆ H ₅ COCH ₃	IL-PW	70	>99
10	_		PIPA-13	95	>99
11			HPW	37	>99
12	- (C ₆ H ₅) ₂ CHOH	$(C_6H_5)_2CO$	IL-PW	56	>99
13	_		PIPA-13	74	>99

^a Reaction conditions: Substrates (10 mmol), PIPA-13 **5** (1.3 mol% substrate, based on PW loading,), H_2O_2 (30 wt%, 15 mmol), H_2O (1.5 mL), 95 °C, 6 h. ^b Conversion as based on alcohols. ^c Selectivity was based on the corresponding aldehydes or ketones.

Unver [38] reported the synthesis of a water-soluble dinuclear Cu(II) complex, $[Cu_2(OOCC_6H_4Br) (OCH_3)(C_{10}H_8N_2)_2(ClO_4)_2]$ (7) (4-bromobenzoic acid = HOOCC_6H_4Br; 2-2'-bipyridyl = $C_{10}H_8N_2$) which was successfully used without any additives under mild conditions in the oxidation of primary and secondary alcohols in water (Table 7). The catalyst showed high TON values (up to 100), good to moderate yields, and high selectivity with no traces of carboxylic acid producing during or after the reactions. In addition, the competition between the pure substrates as compared with the mixtures of alcohols, under the same conditions, resulted in higher product yields (Table 8) [38].

	ОН	$H_3PW_{12}O_{40}/CeO_2 6$	(0.8 g)	\nearrow_0
	В	zOH/H_2O_2 (1:2 mol	mol ⁻¹)	
		H ₂ O (20 mL), 110 °C	C, 4 h	
Entry	Catalyst	BzOH Conv. (%)	BzH Sel. (%)	BzH yield (%)
1	CeO ₂	Nil	Nil	Nil
2	15HPW/CeO ₂	77.9	97.6	76
3	20HPW/CeO ₂	94	98.2	92.3
4	25HPW/CeO ₂	93.2	94.7	88.4
5	20HPW/TiO ₂	84	96.6	81.2
6	20HPW/ZrO ₂	90.8	91.7	83.3
7	20HPW/CeTiO ^b	89.3	93.2	83.2

Table 6. Comparison of catalytic performances over various catalyst during oxidation of benzyl alcohol ^a.

^a Reaction conditions: BzOH/H₂O₂ (1:2 (mol mol⁻¹)), catalyst (0.8 g), H₂O (20 mL), 110 °C, 4 h. ^b CeTiO was prepared by sol-gel method.

Table 7. Oxidation of various alcohols with copper (II) complex 7 in water ^a.

^a Reaction conditions: Substrate (0.57 mmol), [Cu₂(OOCC₆H₄Br)(OCH₃)(C₁₀H₈N₂)₂(ClO₄)₂] 7 (5.7 × 10⁻³ mmol), H₂O₂ (19.5 mmol), H₂O (10 mL), 70 °C, 6 h. Blank experiment was conducted without catalyst for each substrate and negligible conversion was obtained (<3%). ^b Determined with GC.

Fable 8. Selecti	ve oxidation o	f selected	alcohols	with cop	per (II) com	plex 7 ir	1 water
Fable 8. Selecti	ve oxidation o	f selected	alcohols	with cop	per (II) com	plex 7 ir	ı water

Entry	Substrate	Product(s)	Conv. (%) ^b
1	$C_6H_5CH_2OH + C_6H_5CH(OH)CH_3$	$C_6H_5CHO + C_6H_5COCH_3$	16.4 + 62.4

^a Reaction conditions: Substrate (5.7 \times 10⁻⁴ mmol), [Cu₂(OOCC₆H₄Br)(OCH₃)(C₁₀H₈N₂)₂(ClO₄)₂] 7 (5.7 \times 10⁻⁶ mmol), H₂O₂ (19.5 mmol), H₂O (10 mL), 70 °C, 6 h. 1 mmol each of alcohols was tested with mmol complex 7, mmol H₂O₂ in H₂O at 70 °C. ^b Determined with GC.

Cobalt zeolitic imidazolate framework (ZIF-9@Zeolite) (8) was prepared and under a simple and clean protocol, aldehydes, as oxidative products of alcohols, were efficiently obtained in high yields (Table 9), generating water as the only byproduct and with no decrease in catalyst activity even after four catalytic cycles. Benzyl alcohols with electron-withdrawing substituent also yielded the corresponding aldehydes high percent (Table 9, Entries 4, 7, 11, and 12) [39].

	л ОН	ZIF-9@Zeolite 8(0.	5 mmol)		<u>∕≈0</u>	
	R	H ₂ O ₂ (30%, 2 m H ₂ O (5 mL), 80 °C, 2	nmol) 26-33 min		J	
Entry	Substrato	Product	t/min	Vield (%)	B.P/M	.P (°C)
2	Substrate	Tioduct	<i>q</i> mm	11c1u (70)	Found	Lit ^b
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	28	98	177	178
2	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	27	99	246	248
3	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	28	93	47	48
4	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	29	84	104–106	106
5	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	26	98	206	204-205
6	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	30	85	58	55–58
7	4-FC ₆ H ₄ CH ₂ OH	4-FC ₆ H ₄ CHO	31	76	179–180	180
8	4-PhC ₆ H ₄ CH ₂ OH	4-PhC ₆ H ₄ CHO	28	86	58–59	57–59
9	3-ClC ₆ H ₄ CH ₂ OH	3-ClC ₆ H ₄ CHO	33	88	213–214	213–314
10	4-CO ₂ MeC ₆ H ₄ CH ₂ OH	4-CO2MeC6H4CHO	30	83	60–62	59–63
11	3-NO ₂ C ₆ H ₄ CH ₂ OH	3-NO ₂ C ₆ H ₄ CHO	31	93	58–60	58.5
12	2-NO ₂ C ₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	29	95	42-44	43
13	3-MeC ₆ H ₄ CH ₂ OH	3-MeC ₆ H ₄ CHO	33	98	199	198–200
14	3-OMeC ₆ H ₄ CH ₂ OH	3-OMeC ₆ H ₄ CHO	27	99	142–144	143
15	3,4,5-OMeC ₆ H ₂ CH ₂ OH	3,4,5-OMeC ₆ H ₂ CHO	26	99	72–74	73

 Table 9. Oxidation of alcohols to aldehydes using ZIF-9@Zeolite 8^a.

^a Reaction conditions: Substrate (1 mmol), ZIF-9@Zeolite **8** (0.5 mmol), H₂O₂ (30%, 2 mmol), H₂O (5 mL), 80 °C, 26 to 33 min. ^b Sigma-Aldrich.

The influence of polyetheramine (Jeffamine[®]) as a di-block copolymer with ethylene oxide and propylene oxide moieties along with terminal amine on phosphotungstic acid (PTA) (9) which is a polyoxometalate catalyst was determined, in detail, in H_2O_2 -mediated oxidation of BzOH in water. Recyclable PTA-Jffamine[®] catalyst not only enhanced the conversion of BzOH as compared with pristine PTA, but also facilitated the easy separation of catalyst and benzaldehyde (BzH) from the reaction mixture. In addition, with and without pure-PTA as the catalyst, the BzOH oxidation reaction was investigated (Table 10). Very low conversions of BzOH were obtained for reactions with and without pure-PTA (Entries 1 and 2). In pH = 3.5, the conversion was only 25% after 1.5 h at low Jeffamine[®] concentration, but dramatically increased to 100% at higher Jeffamine[®] contents at (pH = 4.5, 6.5, 7.5, and 8.5) which had not been reported earlier (Table 10) [40].

Table 10. Summary of GC-MS results obtained from reactions performed at various conditions ^a.

	OH PTA 9 (0.5 g)						
Medium-water, 90 °C, 1.5 h pH=2.5-8.5							
Entry	Catalyst	pН	Conv. (%)	Sel. (%)			
1	No catalyst	-	2.9	5			
2	PTA (0.5 g)	2.5	9	100			
3	Potassium salt of PTA (0.5 g)	7.5	5	100			
4	PTA-Jffamine [®] (0.5 g)	7.5	100	74			
5	PTA-Jffamine [®] (0.5 g)	3.5	25	73			
6	PTA-Jffamine [®] (0.5 g)	4.5	100	63			

Entry	Catalyst	pН	Conv. (%)	Sel. (%)
7	PTA-Jffamine [®] (0.5 g)	6.5	100	59
8	PTA-Jffamine [®] (0.5 g)	8.5	100	73

Table 10. Cont.

^a Amount of catalyst (PTA) **9** taken is mentioned in brackets, Medium-water, pH = 2.5-8.5, 90 °C, 1.5 h.

Water-soluble heteropolyacid-based ionic liquids were prepared by modifying tungstophosphoric acid ($H_3PW_{12}O_{40}$) and propyl sulfonic acid-functionalized ionic complex. Among various organic TPA salts, the [DMBPSH] $H_2PW_{12}O_{40}$ (**10**) catalyst, due to strong acidity and excellent surface activity played as an effective and reusable catalyst, exhibited the best oxidative activity with a desirable BzH selectivity of 97.0% and an excellent BzOH conversion of 98.5% under optimum conditions (Table 11) [41]. Additionally, after six consecutive experimental cycles, the catalyst showed no decreasing in conversion and selectivity.

Table 11. Catalytic performance of various catalysts during oxidation of benzyl alcohol with H₂O₂ ^a.

	OH cataly BzOH/H ₂ O H ₂ O (20 m	st (5 wt%) D ₂ (1:2 mol/mol) L), 120 °C, 3 h.		≈₀
Entry	Catalyst	Conv. (%) ^b	Yield (%)	Sel. (%) ^b
1	$H_3PW_{12}O_{40}$	62.3	60.4	93.5
2	DMBPS	5.4	5.3	99.7
3	[TEAPSH]H ₂ PW ₁₂ O ₄₀ ^c	68.1	65.1	95.6
4	[DMPPSH]H2PW12O40 d	89.5	85.3	95.3
5	[DMBPSH]H ₂ PW ₁₂ O ₄₀	94.4	91.6	96.4
6	[DMBPSH] ₂ HPW ₁₂ O ₄₀	92.5	88.4	95.6
7	[DMBPSH] ₃ PW ₁₂ O ₄₀	90.6	86.7	95.7

^a Reaction conditions: BzOH/H₂O₂ molar ratio (1:2 (mol/mol)), catalyst (5 wt%), H₂O (20 mL), 120 °C, 3 h. ^b Analyzed by GC. ^c TEAPS, triethylammonium propyl sulfobetaine. ^d DMPPS, *N*,*N*-dimethyl(phenyl)ammonium propyl sulfobetaine.

A series of diverse amino acids such as phenylalanine, alanine, and glycine functionalized tungstophosphoric acid (TPA;H₃PW₁₂O₄₀) composite and were efficiently applied as recyclable thermally stable, eco-friendly, and cost-effective heterogeneous catalysts in the selective oxidation of benzyl alcohol (Table 12) [42]. Although [GlyH]H₂PW₁₂O₄₀ (**11**) had more Brønsted acidity than [PheH]H₂PW₁₂O₄₀ (**12**), [PheH]H₂PW₁₂O₄₀ (**12**) exhibited the best catalytic activity including conversion 97.9%, selectivity 97.4%, and yield of 95.4% [42,43]. This phenomenon indicated that catalytic oxidation required only a modest acidity.

Table 12. Catalytic performances of various catalysts during oxidation of benzyl alcohol with hydrogen peroxide ^a.

	OH cat	talyst (6 wt%)		$\swarrow 0$
	BzOH// H ₂ O (3	H ₂ O ₂ (1:2 mol/r 0 mL), 110 °C,	nol) 4 h.	J
Entry	Catalyst	Conv. (%) ^b	Yield (%) ^b	Sel. (%) ^b
1	Phe	Nil	Nil	Nil
2	$H_{3}PW_{12}O_{40}$	96.7	87	90
3	[PheH]H ₂ PW ₁₂ O ₄₀	97.9	95.4	97.4
4	[PheH] ₂ HPW ₁₂ O ₄₀	97.5	89.7	92
5	[PheH] ₃ PW ₁₂ O ₄₀	96.3	88.4	91.8
6	[AlaH]H ₂ PW ₁₂ O ₄₀	97.8	92.7	94.7
7	[GlyH]H ₂ PW ₁₂ O ₄₀	97.7	90.8	92.9

^a Reaction conditions: BzOH/H₂O₂ (1:2 (mol/mol)), catalyst (6 wt%), H₂O (30 mL), 110 °C, 4 h. ^b Analyzed by GC.

Oxidation of primary alcohols to aldehydes catalyzed by H_2O_2 as an oxidant and a reusable and water-soluble iron (III) catalyst in water (Table 13) [44]. This novel and reusable FeCl₃ complex (13) in situ formed with quaternary ammonium salt-functionalized 8-aminoquinoline. The reaction showed not only unique chemoselectivity similar to the oxidation a benzylic primary alcohol even in the presence of an aliphatic one, but also exhibited broad functional-group tolerance.

	$R \xrightarrow{[1]}{U} OH$ OH $R \xrightarrow{[1]}{R'} R'$ $FeCl_3/I 13 (2 mol%)$ $H_2O_2 (30 wt%), 2$ $rt.,$	$\begin{array}{c} \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \end{array} \end{array} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \end{array} \end{array} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \end{array} \end{array} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \end{array} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \end{array} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \stackrel{+}{\operatorname{ND}} \\ \end{array} \\$,	
Entry	Substrate	Product	t/h	Yield (%) ^b
1	2-OMeC ₆ H ₄ CH ₂ OH	2-OMeC ₆ H ₄ CHO	2	87
2	4-PhC ₆ H ₄ CH ₂ OH	4-PhC ₆ H ₄ CHO	2	91
3	3-ClC ₆ H ₄ CH ₂ OH	3-CIC ₆ H ₄ CHO	3	89
4	3,4-OCH ₂ OC ₆ H ₃ CH ₂ OH	3,4-OCH ₂ OC ₆ H ₃ CHO	3	94
5	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	3	82
6	2-FC ₆ H ₄ CH ₂ OH	2-FC ₆ H ₄ CHO	3	73
7	4-N(CH ₃) ₂ C ₆ H ₄ CH ₂ OH	4-N(CH ₃) ₂ C ₆ H ₄ CHO	3	85
8	4-COOCH ₃ C ₆ H ₄ CH ₂ OH	4-COOCH ₃ C ₆ H ₅ CHO	3	86
9	1-Naphthylmethanol	1-Naphthaldehyde	3	83
10	Indole-3-carbinol	Indole-3-carboxaldehyde	3	80
11	4-Pyridinemethanol	Isonicotinaldehyde	2	79
12	(5-Bromothiophen-2-yl)methanol	5-Bromothiophene-2-carbaldehyde	3	77
13	[5-(4-Bromophenyl)-2-furyl]methanol	5-(4-Bromophenyl)furan-2-carbaldehyde	3	88
14	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	5	Trace ^c 91 recovery
15	$4\text{-}OMeC_6H_4CH_2OH \text{ (a)} + C_6H_5CH(OH)Et \text{ (b)}$	4-OMeC ₆ H ₄ CHO	2	85 ^d

Table 13. The oxidation of benzylic primary alcohols to aldehydes ^a.

^a Reaction conditions: Substrate (1 mmol), the in situ formed FeCl₃/I complex **13** (2 mol%), H₂O₂ (30 wt%, 2 mmol), H₂O (1 mL), room temperature, 2 to 5 h. ^b Isolated yield. ^c Apart from at room temperature, heating at 80 °C was also performed. ^d A mixture of **a** and **b** in a molar ratio of 1:1 was used.

Various alcohols were oxidized with hydrogen peroxide over ammonium tungstate promoted by GO (14) as heterogeneous acid catalyst (Table 14) [45]. The aromatic primary alcohols and secondary alcohols were converted to the corresponding aldehydes and ketones in excellent to satisfactory yields. In addition, the catalytic system could be efficiently reused in at least seven cycles.

	OH GO 14 (NH ₄) ₅ H ₅ [H ₂ (W	(0.01 g) (O ₄) ₆] (0.03 mmol)	
	R' H_2O_2 (30%, 8 m 70 °	nmol), H ₂ O (3 mL) C, 11 h	R II R'
Entry	Substrate	Product	Yield (%) ^b
1	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	96
2	3-MeC ₆ H ₄ CH(OH)CH ₃	3-MeC ₆ H ₄ COCH ₃	94
3	3-ClC ₆ H ₄ CH(OH)CH ₃	3-ClC ₆ H ₄ COCH ₃	93
4	(C ₆ H ₅) ₂ CHOH	$(C_6H_5)_2CO$	98
5	C ₆ H ₅ CH(OH)CH ₂ C ₆ H ₅	C ₆ H ₅ COCH ₂ C ₆ H ₅	96
6	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	91

Table 14. Substrate scope of the alcohol oxidation reaction ^a.

^a Reaction conditions: Substrate (2 mmol), GO **14** (0.01 g), (NH₄)₃H₅[H₂(WO₄)₆] (0.03 mmol, 0.05 g), H₂O₂ (30%, 8 mmol, 0.92 g), H₂O (3 mL), 70 °C, 11 h. ^b Isolated yield.

Cu(II) nanoparticles immobilized on nanocage-like mesoporous KIT-5 as a support and a 3-aminopropyltriethoxysilane (APTES) group as a coordinating agent for Cu(II) provided an active catalyst in the selective oxidation of primary and secondary alcohols in water. The computational investigation also confirmed the catalytic role of APTES-KIT-5 silica-supported copper(II) nanocatalyst (**15**). The results in Table 15 showed that the oxidation of various benzylic alcohols were considerably dependent on substituents (–Cl, –OCH₃, –OH, –NO₂, and –NH₂) and on their positions [46]. In addition, aldehydes obtained with excellent selectivity without overoxidation into carboxylic acids from the oxidation of primary alcohols and secondary benzylic alcohols oxidation provided the corresponding ketone in satisfactory yield (Entry 12). The mentioned heterogeneous nanocatalyst could be recovered and reused six times.

Table 15. Cu(OAc)₂ supported on AK **15** as catalyst in oxidation of alcohols to corresponding aldehydes ^a.

	$\begin{array}{c} OH \\ OH \\ R' \end{array} \begin{array}{c} Cu(OAc)_2/2 \\ H_2O_2 (C) \\ R' \end{array}$	APTES-KIT-5 15 (0.0 3 mmol), H ₂ O (2 mL) eflux, 5-60 min	$ \begin{array}{c} 5 \text{ g} \\ \end{array} \begin{array}{c} R \stackrel{\text{II}}{\underline{}} \\ \end{array} \end{array} $	O R'
		D 1 <i>i</i>		
Entry	Substrate	Product	t/min c	Yield (%) ^{u,e}
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	21	90
2	2-ClC ₆ H ₄ CH ₂ OH	2-ClC ₆ H ₄ CHO	23	75
3 ^b	3-OHC ₆ H ₄ CH ₂ OH	3-OHC ₆ H ₄ CHO	50	85
4	2-OHC ₆ H ₄ CH ₂ OH	2-OHC ₆ H ₄ CHO	5	97
5	4-OHC ₆ H ₄ CH ₂ OH	4-OHC ₆ H ₄ CHO	5	98
6	2-NH ₂ C ₆ H ₅ CH ₂ OH	2-NH ₂ C ₆ H ₅ CHO	7	97
7	3-OMeC ₆ H ₅ CH ₂ OH	3-OMeC ₆ H ₅ CHO	22	83
8	2-NO ₂ C ₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	23	48
9	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	35	61
10	3-NO ₂ C ₆ H ₄ CH ₂ OH	3-NO ₂ C ₆ H ₄ CHO	22	56
11	Hydroquinone	Benzoquinone	5	96
12	(C ₆ H ₅) ₂ CHOH	$(C_6H_5)_2CO$	60	70

^a Reaction conditions: Substrate (1 mmol), Cu(OAc)₂/APTES-KIT-5 **15** (0.05 g), H₂O₂ (3 mmol), H₂O (2 mL), reflux, all reactions carried out in reflux condition, except Entries 5, 9,11, which were performed at room temperature, 5 to 60 min. ^b Acetone was used as a solvent. ^c Time of maximum conversion (determined by TLC/or GC). ^d Isolated yield. ^e All reactions give corresponding aldehyde in 100% selectivity.

Tungstate salt with imidazolium (((1,3,5-triazine-2,4,6-triyl)tris(1-octyl-1H-imidazol-3-ium))₂(WO₄⁼)₃ (**16**) framework provided a catalytic system, under neutral aqueous reaction conditions, for the highly selective oxidation of primary benzylic alcohols (bearing both electron-releasing and electron-withdrawing groups) using H₂O₂ as a green oxidant (Table 16) [47]. The catalyst could be reused for at least seven subsequent reaction cycles.

Table 16. Oxidation of substituted benzylic alcohols to aldehydes using imidazolium $WO_4^=$ salt **16** as catalyst ^a.

	р ОН	$WO_4^{=}$ salt 16 (0.21 mm	nol)		\triangleleft_0	
	ĸ	H ₂ O ₂ (30% aq, 1 mmol), H ₂ O (2 mL) rt, 5-16 min		ĸ		
Entry	Carlo dana ta	Product t/m	t/min	Yield (%)	B.P/M.P (°C)	
	Substrate		ymm		Found	Lit.
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	5	99	177–178	178

Fntry	Substrate	Product	t/min	Viald (%)	B.P/M.P (°C)	
Littiy	Substrate	rioduct	ymm	11eiu (78)	Found	Lit.
2	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	7	93	246-248	248
3	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	7	95	47–48	48
4	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	10	94	104–105	106
5	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	11	95	204-206	205
6	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	13	93	56–58	55–58
7	4-PhC ₆ H ₄ CH ₂ OH	4-PhC ₆ H ₄ CHO	8	97	57–59	56–58
8	4-CO ₂ MeC ₆ H ₄ CH ₂ OH	4-CO ₂ MeC ₆ H ₄ CHO	3	87	59–61	61–62
9	4-FC ₆ H ₄ CH ₂ OH	4-FC ₆ H ₄ CHO	13	86	178–180	180
10	3-ClC ₆ H ₄ CH ₂ OH	3-ClC ₆ H ₄ CHO	16	90	213–215	211–213
11	4-(<i>tert</i> -Butyl)-C ₆ H ₄ CH ₂ OH	4-(<i>tert</i> -Butyl)-C ₆ H ₄ CHO	11	94	128–130	130
12	4-N(CH ₃) ₂ C ₆ H ₄ CH ₂ OH	4-N(CH ₃) ₂ C ₆ H ₄ CHO	5	96	73–75	74
13	3-NO ₂ C ₆ H ₄ CH ₂ OH	3-NO ₂ C ₆ H ₄ CHO	14	87	58-60	57–59
14	3-OPhC ₆ H ₄ CH ₂ OH	3-OPhC ₆ H ₄ CHO	14	92	168–169	169
15	2-NO ₂ C ₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	12	92	43–45	43
16	2-ClC ₆ H ₄ CH ₂ OH	2-ClC ₆ H ₄ CHO	14	95	210–215	212–213
17	2-OHC ₆ H ₄ CH2OH	2-OHC ₆ H ₄ CHO	15	85	196–198	197
18	3,4-ClC ₆ H ₃ CH ₂ OH	3,4-ClC ₆ H ₃ CHO	10	96	40-42	43
19	2,4-ClC ₆ H ₃ CH ₂ OH	2,4-ClC ₆ H ₃ CHO	15	86	71–73	69–70
20	3,4-OMeC ₆ H ₃ CH ₂ OH	3,4-OMeC ₆ H ₃ CHO	10	88	42–44	42–43

Table 16. Cont.

^a Reaction conditions: Substrate (0.5 mmol), ((1,3,5-triazine-2,4,6-triyl)tris(1-octyl-1*H*-imidazol-3-ium))₂(WO₄⁼)₃ **16** (0.21 mmol), H_2O_2 (30%, 1 mmol), H_2O (2 mL), room temperature, 3 to 16 min.

Via simple method, Na₇PW₁₁O₃₉ (PW₁₁) was immobilized on quanternary ammonium functionalized chloromethylated polystyrene (DMA16/CMPS) (PW₁₁-DMA16/CMPS (**17**)) and used as high active, stable, recoverable, and recyclable catalyst in the oxidation of aliphatic and aromatic alcohol with H_2O_2 (Table 17) [48]. Although, benzhydrol oxidation is difficult because of the deficiency of interaction between the alcohol moiety and the catalyst [49], in this catalytic system, benzhydrol attained 100% conversion and 97.5% selectivity (Entry 1).

T-1-1-17	0	- f	leabels sets		DMATCHCMDC 17.	11 200/ II O a
Table 17.	Oxidation	of various a	iconois cata	yzeu D	$y r w_{11}$ -DwiA10/Cwir517	with 50% H_2O_2 ".

R	ОН		PS 17 (0.3 m)	R	\approx_0
I	$\begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	3zOH/H ₂ O ₂ (1:2 n I ₂ O (10 mL), 80-9	nol/mol) 0 °C, 6 h.		O ↓
Entry	Substrate	Product	T (°C)	X_{ANOL} (%)	S_{ANOL} (%)
1	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	80	100	97.5
2	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	90	92	98.7
3	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	80	91.7	84

^a Reaction conditions: PW_{11} -DMA16/CMPS 17 (0.3 g), H_2O_2 : alcohols (2:1 mol/mol), H_2O (10 mL), 80 to 90 °C, 6 h.

As reported in Table 18, Ramazani et al. [50] introduced nanomagnetic MgFe₂O₄ (18) as an active, and reusable (seven runs) catalyst for the oxidation of various primary and secondary alcohols in good yields in water as a solvent, and either oxone (at room temperature) or H₂O₂ (at 60 °C) as an oxidant. Overoxidation of aldehydes to the corresponding carboxylic acids was not observed which emphasized that the aldehyde selectivity, in most cases, was quite high (>99%).

R	OH MgFe ₂ O ₄ M	MNPs 18 (5 mol%)	R	
R	$\begin{array}{c} H_{2}O \\ R' \\ H_{2}O (2 \text{ mL}) \end{array}$	2 (1.3 mmol) , 60 °C, 55-120 min	R II	R'
Entry	Substrate	Product	t/min	Yield (%) ^b
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	55	88
2	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	60	86
3	3-ClC ₆ H ₄ CH ₂ OH	3-ClC ₆ H ₄ CHO	65	87
4	2-ClC ₆ H ₄ CH ₂ OH	2-ClC ₆ H ₄ CHO	60	85
5	2,5-ClC ₆ H ₃ CH ₂ OH	2,5-ClC ₆ H ₃ CHO	80	85
6	2-BrC ₆ H ₄ CH ₂ OH	2-BrC ₆ H ₄ CHO	65	87
7	3-BrC ₆ H ₄ CH ₂ OH	3-BrC ₆ H ₄ CHO	65	86
8	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	60	84
9	4-FC ₆ H ₄ CH ₂ OH	4-FC ₆ H ₄ CHO	70	88
10	3-FC ₆ H ₄ CH ₂ OH	3-FC ₆ H ₄ CHO	70	88
11	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	120	81
12	3-NO ₂ C ₆ H ₄ CH ₂ OH	3-NO ₂ C ₆ H ₄ CHO	120	85
13	2-NO ₂ C ₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	120	86
14	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	50	92
15	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	70	87
16	C ₆ H ₅ CH(OH)COC ₆ H ₅	$(C_6H_5)_2(CO)_2$	100	72

Table 18. Oxidation of various alcohols using $MgFe_2O_4$ MNPs 18 as catalyst in the present of H_2O_2 in water ^a.

 a Reaction conditions: Substrate (1 mmol), MgFe_2O_4 MNPs 18 (5 mol%, 10 mg), H_2O_2 (1.3 mmol), H_2O (2 mL), 60 °C, 50 to 120 h. b Isolated.

A solution based chemical reduction method was applied for the production of gold nanoparticles supported on magnesium oxide nanorods (Au-MgO) (**19**) which were found to be an efficient heterogeneous catalyst with hydrogen peroxide for the base free oxidation of alcohols in aqueous medium at room temperature, Table 19 [51]. It is worthwhile to mention that the catalyst was reused for five cycles.

	$\begin{array}{c c} R \xrightarrow{ }{ } & OH \\ OH \\ R \xrightarrow{ }{ } & R' \\ H_2 \end{array}$	-MgO nanorodes 19 (30 mg H ₂ O ₂ (15 equiv.) O (20 mL), 27 °C, 4-24 h) R-	O O R'	
Entry	Substrate	Product	t/h	Yield (%) ^b	Sel. (%) ^d
1	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	5	68	100
2	4-ClC ₆ H ₄ CH(OH)CH ₃	4-ClC ₆ H ₄ COCH ₃	24	21	100
3	4-BrC ₆ H ₄ CH(OH)CH ₃	4-BrC ₆ H ₄ COCH ₃	24	4	100
4	1-(naphthalene-2-yl)ethanol	2-Acetonaphthanone	5	98	100
5	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	5	41 ^c	100
6	1-Indanol	1-Indanone	6	90	100
7	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	4	50	99
8	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	24	15 ^c	100
9	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	3	99	99

Entry	Substrate	Product	t/h	Yield (%) ^b	Sel. (%) ^d
10	4-CH ₂ ClC ₆ H ₄ CH ₂ OH	4-CH ₂ ClC ₆ H ₄ CHO	4	50	67

^a Reaction conditions: Substrate (1 mM), Au-MgO nanorodes **19** (30 mg), H₂O₂ (15 equiv.), H₂O (20 mL), 27 °C, 3 to 24 h. ^b Determined from GC. ^c Determined from GC-MS. ^d Selectivity = [(peak area of substrate + peak area of product/total peak area)] × 100.

Perez [52] reported the application of copper(II) complexes, copper, and copper oxide nanoparticles supported on SBA-15 applied in the benzyl alcohol oxidation in aqueous phase as catalyst and in the presence of H₂O₂ (Table 20). Immobilization of ionic liquid containing copper followed by chemical reduction method provided the catalyst which showed the highest benzyl alcohol oxidation activity with a 73% conversion and 54% selectivity with 30 min reaction time. Different copper species of the catalyst explored different conversion and selectivity. The highest activity, with 73% conversion and 54% selectivity for benzaldehyde, was obtained in metallic copper nanoparticle catalyst such as Cu/IMILeSBA-15-G1 (20) (Entry 9), in 30 min. The 20 had also the higher activity as compare with similar previously reported catalyst such as copper nanoparticle-polyacrylamide/SBA-15 and polymer-supported copper(II)-*L*-valine complexes [53,54].

Table 20. Benzyl alcohol oxidation catalyzed by the different copper supported catalysts ^a.

	OH catalyst	(0.1g)		0
	H_2O_2 (5 H ₂ O (5 mL),	9 mmol) 80 °C, 30 min		
Entry	Catalyst	Conv. (%)	Sel. (%) ^b	TOF (h ⁻¹) ^c
1	SBA-15	0.9	100	-
2	Cu(II)-PADO-HMDS-SBA-15	16	78	23
3	Cu(II)-IMIL-SBA-15-G1	32	69	39
4	Cu(II)-IMIL-SBA-15-G2	65	51	32
5	Cu(II)-IMIL-SBA-15-G2-R ^d	14	71	7
6	CuO/SBA-15-C1	19	83	63
7	3.7%CuO/SBA-15-C2	11	82	11
8	5%CuO/SBA-15-C2	20	73	15
9	Cu/IMIL-SBA-15-G1	73	54	66
10	Cu/IMIL-SBA-15-G2	66	33	27
11	Cu/IMIL-SB-15-G2-R ^d	16	66	7
12	2%Cu/PEG/SBA-15	27	68	52
13	2%Cu/PEG/SBA-15-R ^d	25	67	48

^a Reaction conditions: Benzyl alcohol (3 mmol), catalyst (0.1 g), H_2O_2 (9 mmol), H_2O (5 mL), 80 °C, 30 min. ^b Selectivity towards benzaldehyde determined by GC. ^c TOF = moles of benzyl alcohol converted per mol of copper per hour. ^d Reused material.

The efficient and selective oxidation of primary and secondary alcohols were reported by Shi [55] who immobilized ionic liquids/peroxotungstates/SiO₂ (**21**) catalyzed reactions in the presence of H_2O_2 as an oxidant in neat water (Table 21). Hydrophilic imidazoliums and hydrophobic hydrocarbon chains in the ILs caused to diffusion of both hydrophobic alcohols and hydrophilic H_2O_2 oxidant into the micro reactor and provided carbonyls catalyzed by the peroxotungstates. Substituted-benzylic alcohols were oxidized to selective carbonyl products in satisfied yields but electronic effect of substituted groups on the activity was significantly observed. In addition, aromatic secondary alcohols were also selectively oxidized to ketones in good yields. Moreover, the catalyst was easily recovered by filtration and reused at least for six times.

	$R \xrightarrow{[1]{I}} OH \\ OH \\ R \xrightarrow{[1]{I}} R' H_2O$	-BisILs[W ₂ O ₃ (O ₂) ₄] 21 (2 (30%, 1.4 mmol), H ₂ O 90 °C, 18-30 h	1 mol%) (2 mL)		Õ `R'
Entry	Substrate	Product	t/h	Yield (%) ^b	Sel. (%) ^c
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	18	96	98
2	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	18	94	95
3	2-MeC ₆ H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	18	88	96
4	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	22	81	87
5	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	22	80	85
6	2-BrC ₆ H ₄ CH ₂ OH	2-BrC ₆ H ₄ CHO	22	73	88
7	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	30	75	82
8	3,4-OMeC ₆ H ₃ CH ₂ OH	3,4-OMe C ₆ H ₃ CHO	26	67	97
9	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	24	58	100
10	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	18	88	99
11	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	18	89	99

Table 21. The selective oxidation of different alcohols catalyzed by SiO₂-BisILs[$W_2O_3(O_2)_4$] 21 with $H_2O_2^{\ a}$.

^a Reaction conditions: Substrate (1 mmol), SiO₂-BisILs[W₂O₃(O₂)₄] **21** (1 mol%) based on content of tungstate, H₂O₂ (30%, 1.4 mmol), H₂O (2 mL), 90 °C, 18 to 30 h. ^b GC yields. ^c The selectivity of product was calculated based on GC.

Bis-imidazolium tungstate ionic liquid produced magnetically recoverable catalyst, at least 5 times, which were extremely dispersible in water and could selectively oxidized a wide variety of alcohols and sulfides using H_2O_2 oxidant. The results in Table 22 demonstrated the key role of MNP@IL/W (**22**) as both oxidant and phase transfer catalyst in various alcohol oxidations [56]. Good to excellent conversion and selectivity was also obtained in oxidation of secondary alcohols.

Table 22. Oxidation of alcohols to aldehydes catalyzed by MNP@IL/W 22^a.

	$\begin{array}{c} R \xrightarrow{[1]{ }} & OH \\ OH \\ OH \\ R \xrightarrow{[1]{ }} & R' \end{array}$	NP@IL/W 22 (3 mol% 30%, 3 mmol), H ₂ O (90 °C, 3-10 h	%) 2 mL)		≥0 R'
Entry	Substrate	Product	t/h	Conv. (%) ^b	Yield (%) ^c
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	3	99	95
2	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	4	89	85
3	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	5	96	95
4	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	3	99	94
5	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	3	99	97
6	2-ClC ₆ H ₄ CH ₂ OH	2-ClC ₆ H ₄ CHO	8	85	85 ^d
7	2-NO ₂ C ₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	10	68	65 ^d
8	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	4	99	99 ^d

^a Reaction conditions: Substrate (1 mmol), MNP@IL/W **22** (3 mol%), H₂O₂ (30%, 3 mmol), H₂O (2 mL), 90 °C, 3 to 10 h. ^b Conversion calculated based on initial mmol of substrates. ^c Yields of aldehydes were determined by GC. ^d Solvent, 1CH₃CN:2H₂O (2 mL).

Using the anion-exchange method produced some hybrid materials ($[C4mim]_{3+x}PMo_{12-x}V_xO_{40}$, x = 0, 1, 2) based on V-substituted phosphomolybdic acid $H_{3+x}PMo_{12-x}V_xO_{40}$ (x = 0, 1, 2) and ionic liquid 1-butyl-3-methyl imidazolium bromide ([C4mim]Br) and applied in the benzyl alcohol oxidation reaction Table 23 [57]. The hybrids $[C4mim]_{3+x}PMo_{12-x}V_xO_{40}$ demonstrated much higher catalytic

activities than both corresponding moieties. Particularly, $[C4mim]_4PMo_{11}VO_{40}$ (23) provided 34% benzyl alcohol conversion and 99% selectivity for benzaldehyde under the optimized conditions (Entry 7) and was reused for five runs without much decrease in selectivity and conversion. In this case, the reaction mixture turned out to be *L-L-S* triphase system because of the insolubility of the solid hybrid and immiscibility between water and benzyl alcohol [57]. Although high selectivities for benzaldehyde were obtained, in all cases, conversions of the benzyl alcohol were below 50% which justified more efforts to improve the catalytic performances by modifying morphologies and hydropholic properties of the hybrid catalysts in upcoming work.

	OH [C ₄ m	im] _{3+x} PMo _{12-x} V _x O ₄₀ (X=0, 1, 2)(10	00 mg)			
	$H_{2}O_{2} (30\%, 36 \text{ mmol }), H_{2}O (6 \text{ mL})$ 80 °C, 6 h						
Entry	Catalyst	Reaction System ^b	Conv. (%)	Sel. (%) ^c	H ₂ O ₂ -Efficiency (%)		
1	None	L-L	3	99	10		
2	[C ₄ mim] Br	L-L	3	99	10		
3	H ₃ PMo ₁₂ O ₄₀	L-L	22	99	48		
4	H ₄ PMo ₁₁ VO ₄₀	L-L	20	99	45		
5	$H_5PMo_{10}V_2O_{40}$	L-L	12	99	33		
6	[C ₄ mim] ₃ PMo ₁₂ O ₄₀	L-L	47	88	66		
7	[C ₄ mim] ₄ PMo ₁₁ VO ₄₀	L-L-S	34	99	59		
8	[C ₄ mim] ₅ PMo ₁₀ V ₂ O ₄₀	L-L	16	99	40		

Table 23. Catalytic performances of various POM catalyst for oxidation of benzyl alcohol with H_2O_2 ^a.

^a Reaction conditions: Benzyl alcohol (30 mmol), catalyst (100 mg), H₂O₂ (30 wt%, 36 mmol), H₂O (6 mL), 80 °C, 6 h. ^b L (liquid, water phase), L (liquid, organic phase), and S (solid, catalyst). ^c Selectivity for benzaldehyde.

Catalytic activities of Fe₃O₄@C materials in neat water were examined in the selective oxidation of alcohols using H₂O₂ under base-free conditions. Both aryl and alkyl alcohols as a comprehensive substrate scope were oxidized with high activity and selectivity over the B-600 materials (24) (Table 24) [58]. In addition, the magnetic catalyst could be easily removed using an external magnetic field and reused at least four times. Different primary and secondary benzylic alcohols with electron-donating or -withdrawing functional groups converted their corresponding substituted aldehyde or ketones into good to excellent yields (Entries 1–14) but difference in activities were seen which were attributed to their compositions and structures. Secondary benzylic alcohols such as 1-phenylethanol and derivatives were converted to the corresponding ketones in relatively lower yields as compared with primary benzylic alcohols due to the steric effect of the α -CH position in secondary alcohols (Entries 11–15).

Table 24.	Oxidation o	of various	alcohols	by i	B-600	24 in	water	a
				~				

R-t	$\begin{array}{c} \begin{array}{c} \\ 1 \\ \end{array} \\ OH \\ OH \\ R' \end{array} \\ \begin{array}{c} B-6 \\ H_2O_2 (30wt) \end{array}$	500 24 (10 mol% Fe) %, 1.5 mmol), H ₂ O (3 mL) 110 °C, 48 h	R = R = R	O O R' R'
Entry	Substrate	Product	Conv. (%) ^b	Sel. (%) ^b
1	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	86	99
2	2-MeC ₆ H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	93	99
3	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	91	99
4	2-NH ₂ C ₆ H ₄ CH ₂ OH	2-NH ₂ C ₆ H ₄ CHO	>99	99
5	4-COOMeC ₆ H ₄ CH ₂ OH	4-COOMeC ₆ H ₄ CHO	88	99
6	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	84	99
7	4-FC ₆ H ₄ CH ₂ OH	4-FC ₆ H ₄ CHO	96	99

Entry	Substrate	Product	Conv. (%) ^b	Sel. (%) ^b
8	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	94	99
9	3-ClC ₆ H ₄ CH ₂ OH	3-ClC ₆ H ₄ CHO	83	99
10	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	>99	99
11	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	81	99
12	4-MeC ₆ H ₄ CH(OH)CH ₃	4-MeC ₆ H ₄ COCH ₃	82	99
13	4-ClC ₆ H ₄ CH(OH)CH ₃	4-ClC ₆ H ₄ COCH ₃	89	99
14	4-BrC ₆ H ₄ CH(OH)CH ₃	4-BrC ₆ H ₄ COCH ₃	91	99
15	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	81	99
16	4,4-(CH ₂ OH) ₂ C ₆ H ₄	4,4-(CHO) ₂ C ₆ H ₄	91	90
17 ^c	2-Pyridinemethanol	Picolinaldehyde	98	96
18 ^c	Furfuryl alcohol	Furfural	90	99

Table 24. Cont.

^a Reaction conditions: Substrate (0.5 mmol), B-600 **24** (10 mol% Fe), H_2O_2 (30 wt%, 1.5 mmol), H_2O (3 mL), 110 °C, 48 h. ^b Conversion and selectivity were determined by GC-MS with an external standard. ^c 60 h.

Recyclable heterogeneous catalyst β -CD grafted on lignin cross linked by epichlorohydrin (EPI) as crosslinking agent (L- β -CD) (25) were prepared and under mild reaction were used in the oxidation of BzOH to BzH conditions. The catalyst provided the solution selective oxidation of BzOH in high selectivity (>99%) and catalytic activity was not significantly decreased after five cycles. As illustrated in Table 25, (25) was applied for different benzyl alcohol oxidations to the corresponding BzHs. The results not only emphasized the catalytic power of the 25/H₂O₂/NaHCO₃ system for the oxidation of various substituted benzyl alcohols in good yields (79% to 99%) and high selectivity (>99%), but also obviously showed the electronic and steric hindrance effect of substituent groups on the catalytic oxidation of substrates [59].

Table 25. Scope oxidation of alcohols catalyzed by L-β-CD **25** in water ^a.

	$\begin{array}{c} & & & \\ & & & \\ OH \\ & & & \\ OH \\ & & \\ R' \end{array} \begin{array}{c} & & & \\ & & \\ H_2O_2 (30\%, 2.5 \text{ f} \\ & & 60 \text{ °C}, \end{array}$	25 (0.8 g) 1.5 mmol) nL), H ₂ O (25 mL) 240 min	
Entry	Substrate	Product	Yield (%) ^b
1	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	99
2	3-OMeC ₆ H ₄ CH ₂ OH	3-OMeC ₆ H ₄ CHO	98
3	2-OMeC ₆ H ₄ CH ₂ OH	2-OMeC ₆ H ₄ CHO	97
4	2-MeC ₆ H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	99
5	3-MeC ₆ H ₄ CH ₂ OH	3-MeC ₆ H ₄ CHO	97
6	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	96
7	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	83
8	3-NO ₂ C ₆ H ₄ CH ₂ OH	3-NO ₂ C ₆ H ₄ CHO	81
9	2-NO ₂ C ₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	79
10	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	Trace

^a Reaction condition: Substrate (1 mmol), L-β-CD **25** (0.8 g), NaHCO₃ (1.5 mmol), H₂O₂ (30%, 2.5 mL), H₂O (25 mL), 60 °C, 240 min. ^b GC yield.

Yadollahi [60] reported the application of sodium and potassium salts of a sandwich-type tetracobalt tungstophosphate, $[Co_4(H_2O)_2(PW_9O_{34})_2]^{10-}$ catalysts for the selective oxidation of alcohols with H_2O_2 in water. In general, the $Na_{10}[Co_4(H_2O)_2(PW_9O_{34})_2]\cdot 27H_2O$ complex (26) presented better activity and was recycled for five times. Results in Table 26 showed that alcohols with electron-donating substituent converted to their corresponding aldehydes even faster than benzyl alcohol [60].

Table 26. Selecti	ve oxidation of o	different alcohol	s to the corres	sponding aldeb	yde using Na-	Co-POM
26 ^a .						

	OH OH └	Na-Co- H ₂ O ₂ (30%, re	POM 26 (1 μmol) 9.8 mmol), H ₂ O (3 mL) flux, 2-6.15 h	R- →	
				К	<u> </u>
Entry	Su	bstrate	Product	t/h	Yield (%) ^b
1	C ₆ H	5CH2OH	C ₆ H ₅ CHO	3	97
2	4-NO ₂ C	₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	4	95
3	3-NO ₂ C	₆ H ₄ CH ₂ OH	3-NO ₂ C ₆ H ₄ CHO	4.15	95
4	2-NO ₂ C	₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	4.30	95
5	4-FC ₆ I	H ₄ CH ₂ OH	4-FC ₆ H ₄ CHO	6	98
6	4-C1C6	H4CH ₂ OH	4-ClC ₆ H ₄ CHO	6.15	97
7	4-BrC6	H4CH2OH	4-BrC6H4CHO	6.45	98
8	2-ClC ₆	H ₄ CH2OH	2-ClC ₆ H ₄ CHO	6.15	92
9	4-MeC ₆	H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	2	97
10	2-MeC ₆	H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	2.10	97
11	4-OMeC	₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	2	99
12	2-OMeC	6H4CH2OH	2-OMeC ₆ H ₄ CHO	2.05	99
13	3-OMeC	₆ H ₄ CH ₂ OH	3-OMeC ₆ H ₄ CHO	2.30	99
14	C_6H_5	CH(OH)Et	C ₆ H ₅ COEt	3	96

^a Reaction conditions: Substrate (1 mmol), Na-Co-POM **26** (1 µmol), H₂O₂ (30%, 9.8 mmol), H₂O (3 mL), reflux, 2 to 6.15 h. ^b Yield refers to GC yield.

Direct solvothermal synthesis or post-synthetic modification were applied for the preparation of ECH-modified Fe_3O_4 microspheres in ethylene glycol (MEG). As summarized in Table 27, the catalyst was successfully performed for the selective oxidation of BzOH to BzH in water with H_2O_2 [29]. The reaction was sensitive to both reaction temperature and the molar ratio of H_2O_2 to BzOH. Magnetic Fe_3O_4 microspheres (27) were recoverable and reusable at least five times without loss of catalytic selectivity and activity after NaBH₄ reduction and ECH modification. In light of the above, surface modification with organic groups increased the catalytic performance of Fe_3O_4 and exhibited suitable interactions with H_2O_2 .

	ОН	catalyst (0.2 g)		\sim_0				
$H_{2}O_{2} (6wt\%, 80 \text{ mmol }), H_{2}O (8 \text{ mL})$ $100 \text{ °C}, 1.5 \text{ h}$								
Entry	Catalyst	BzOH Conv. (%)	BzH yield (%)	Sel. (%) ^b				
1	None	0	0	0				
2	ECH (1 g)	2	2	100				
3	Fe ₃ O ₄ -blank	8.3	7.9	94.8				
4	Fe ₃ O ₄ -ECH-P-1g	25.5	25.2	98.9				
5	Fe ₃ O ₄ -ECH-P-3g	39.2	33.2	84.8				
6	Fe ₃ O ₄ -ECH-P-4g	34.7	32.6	93.9				
7	Fe ₃ O ₄ -ECH-P-5g	37.7	32.5	86.3				
8	Fe ₃ O ₄ -ECH-D	36.6	34.2	93.5				
9 c	Fe ₃ O ₄ -ECH-D	23.1	22.4	96.9				
10 ^d	Fe ₃ O ₄ -ECH-D	1.7	1.7	100				
11 ^e	Fe ₃ O ₄ -ECH-D	23.4	21.7	92.9				

Table 27. Catalytic oxidation of benzyl alcohol to benzaldehyde with $H_2O_2^{a}$.

^a Reaction conditions: Benzyl alcohol (40 mmol), catalyst (0.2 g), H₂O₂ (80 mmol), H₂O (8 mL), 100 °C, 1.5 h. ^b Selectivity based on the conversion of BzOH. ^c Reaction temperature, 90 °C. ^d Reaction temperature, 80 °C. ^e H₂O₂, 40 mmol added.

Benzyl alcohol oxidation catalyzed by gold nanoparticles supported on gamma alumina (γ -Al₂O₃) were prepared using a deposition-precipitation method. The Nano Au/c-Al₂O₃ (**28**) selectivity provided benzaldehyde (over 98%) under environment-friendly conditions and could be recovered after three times. More investigation showed that changes in support material, even the same type of alumina (γ -Al₂O₃), had a significant effect on both catalytic activity and physical–chemical of the catalysts. Gold particles were responsible for catalytic efficiency since in the tests conducted in like conditions using no catalyst or γ -alumina catalyst caused a very low conversion of benzyl alcohol and yield of benzaldehyde (<1%) ()(Table 28) [61]. For all the supports, both the conversion of benzyl alcohol and the selectivity of benzaldehyde also increased. As a result, for the 2% Au/ γ -Al₂O₃ catalysts, higher yields of benzaldehyde were achieved8)(Table 29) [61]. While the benzaldehyde selectivities were high in the S723-supported catalysts, the conversion of the benzyl alcohol was comparatively low.

$\bigcirc OH \underbrace{ \text{catalyst } (0.3 \text{ g}) }_{\text{BzOH/H}_2O_2 (1:1.3)} \qquad \bigcirc O$						
Entry	Catalyst	Conv. (%)	Yield (%)	Sel. (%)		
1	No catalyst	1.8	-	-		
2	S823	3.4	0.8	25		
3	1%Au/S823	24.7	12.4	50.2		
4	2%Au/S823	29.6	18.4	61.9		
5	4%Au/S823	33.3	21.3	63.9		

Table 20. Effect of Au catalyst concentration on the oxidation of benzyl alconor	Table 28	. Effect of	Au catalyst	concentration	on the oxida	tion of benzy	l alcohol ^a
---	----------	-------------	-------------	---------------	--------------	---------------	------------------------

^a Reaction conditions: Benzyl alcohol (5.3 g), catalyst (0.3 g), molar ratio BzOH/H₂O₂ (1:1.3), 80 °C, 2 h.

	ОН	cataly BzOH/I 80	/st (0.3 g) H ₂ O ₂ (1:1.3 °C, 2 h	3)	0			
Entry Type of Al ₂ 0	Type of Al-O- Support	Conv	Conv. (%)		Yield (%)		Sel. (%)	
	Type of Ai2O3 Support	1%Au	2%Au	1%Au	2%Au	1%Au	2%Au	
1	М	37.1	338	11.5	16.7	31	49.4	
2	S823	24.7	29.6	12.4	18.4	50.2	61.9	
3	S723	20.4	18.1	10.9	15.6	53.7	86.3	

Table 29. Effect of nanogold on the oxidation of benzyl alcohol over various support materials ^a.

^a Reaction conditions: Benzyl alcohol (5.3 g), catalyst (0.3 g), molar ratio BzOH/H₂O₂ (1:1.3), 80 °C, 2 h.

Platinum nanoparticles supported on Ca(Mg)-ZSM-5 (**29**) were a highly stable and selective catalyst for the room-temperature oxidation of alcohols in water. In situ EPR measurement and the radical trapping technique demonstrated that •OH radicals generated by O–O cleavage bond of H₂O₂ intermediate as the rate determining step, contributed to the H abstraction of the α -C–H bond of alcohols to provide aldehydes/ketones. PtNPs on different supports applied for the oxidation reactions of alcohols in aqueous solution at room temperature and the results are summarized in Table 30 [62]. From the results, the basic zeolites, such as Mg-ZSM-5 and Ca-ZSM-5, exhibited the optimal performance during benzyl alcohol oxidation, with 95% conversion and 99% of selectivity at a carbon balance of 98%, (Entries 1 and 2). The PtNPs catalytic power extremely depended on the size of Pt which was sized similar to the PtNPs/Ca-ZSM-5 catalyst with a Pt mean size of ~5.8 nm, and when prepared by the impregnation method, could only convert 89% of the benzyl alcohol in 20 h of reaction (Entry 2). In contrast, high basicity supports, such as CaO and MgO, significantly suppressed the oxidation process (Entries 6 and 7). The PtNPs on inert supports, such as silica gel, exhibited some activity but did not exceed the conversion upper of 70%, even with a prolonged reaction time (Entry 5). Moreover, the application of AuNPs or PdNPs, instead of PtNPs, yielded no benzaldehyde product

under identical experimental conditions which could be attributed to the unique catalytic property of PtNPs (Entries 8 and 9). In addition, by replacing water with other solvents, only a slight conversion of benzyl alcohol was observed (Entries 13–15) which indicated the important role of water in the PtNP catalyzed alcohol oxidation procedure. The catalyst could be steady and reused even after four reaction cycles with no Pt leaching and less than 1% Ca leaching.

	ОН	catalyst (50 m	g, 1 wt% Pt)		[≈] 0
		rt, 2	0 h		
Entry	Catalyst	Substrate ^b	Solvent	Conv. (%)	Sel. (%)
1	Pt/Ca-ZSM-5	BA	H ₂ O	98.8	99
2	Pt/Mg-ZSM-5	BA	H ₂ O	95.5	98
3	Pt/Ca-ZSM-5 c	BA	H ₂ O	89	96
4	Pt/HZSM-5	BA	H ₂ O	65	87
5	Pt/SiO ₂	BA	H ₂ O	64	87
6	Pt/CaO	BA	H ₂ O	0	-
7	Pt/MgO	BA	H ₂ O	0	-
8	Au/Ca-ZSM-5	BA	H ₂ O	0	-
9	Pd/Ca-ZSM-5	BA	H ₂ O	0	-
10	Pt/Mg-ZSM-5	CHA	H ₂ O	20.7	85.5
11	Pt/Ca-ZSM-5	CHA	H ₂ O	21.8	82
12	Pt/SiO ₂	CHA	H ₂ O	5.1	90
13	Pt/Ca-ZSM-5	BA	CH ₃ CN	<1	-
14	Pt/Ca-ZSM-5	BA	EtOH	<1	-
15	Pt/Ca-ZSM-5	BA	CCl ₄	<1	-

Table 30. The catalytic property of PtNPs on different supports ^a.

^a Reaction conditions: A mixture of 50 mg catalyst with a unified 1 wt% Pt and 20 mM alcohol in various solvents was stirred at room temperature (25 $^{\circ}$ C) in open air for 20 h. ^b BA, benzyl alcohol; CHA, cyclohexanol. ^c Impregnation method was used to prepare the catalyst.

An acid-base reaction using a Keggin-type phosphotungstic acid and TEA was applied for the synthesis of several triethylamine (TEA) salts of phosphotungstic acid ((TEAH)nH_{3-n}PW₁₂O₄₀ (n = 1, 2, 3)). These catalysts used for the alcohol oxidation reactions, and their catalytic activity, selectivity, and recovery rate are listed in Table 31 [63]. The (TEAH)H₂PW₁₂O₄₀ (**30**) catalyst showed the best results, with 99.6% conversion of benzyl alcohol and 100% of selectivity to benzaldehyde under optimized reaction conditions. The activity and selectivity were also essentially unchanged even in the third and the fifth cycles.

	ОН	catalyst (0.04	mmol)	0	
	$\frac{1}{H_2O_2(3)}$	0%, 11.8 mmol 100 °C, 3), H ₂ O (10 mL) h		
Entry	Catalyst	Conv. of BA (%) ^c	Sel. for BzH (%) ^c	Yield of Benzoic Acid	Recovery Rate of Catalyst (%)
1	Blank	17.9	100	0	-
2	$H_3PW_{12}O_{40}$	100	92.4	7.6	0
3	[TEAH] ₃ PW ₁₂ O ₄₀	95	100	0	77
4	[TEAH]3P W ₁₂ O ₄₀ +H ₂ SO ₄ ^b	84.4	100	0	62
5	[TEAH] ₂ HPW ₁₂ O ₄₀	97.5	100	0	58
6	[TEAH]H ₂ PW ₁₂ O ₄₀	99.6	100	0	53
7	$[TEAH]H_2PW_{12}O_{40} + H_2SO_4$ ^b	86.7	100	0	42
8	[TEAH]H ₂ PW ₁₂ O ₄₀ (cycle 3)	99.8	100	0	-

Table 31. Activity and selectivity in the oxidation of benzyl alcohol with the catalysts ^a.

Entry	Catalyst	Conv. of BA (%) ^c	Sel. for BzH (%) ^c	Yield of Benzoic Acid	Recovery Rate of Catalyst (%)
9	[TEAH]H ₂ PW ₁₂ O ₄₀ (cycle 5)	99.5	100	0	-

Table 31. Cont.

^a Reaction conditions: Benzyl alcohol (1 mL, 9.6 mmol), catalyst (0.04 mmol), H₂O₂ (30%, 1.2 mL, 11.8 mmol), H₂O (10 mL), 100 °C, 3 h. ^b H₂SO₄ (1 mol/L) was added to adjust the acidity from pH \approx 5 to pH = 1 before heating the system. ^c BA, benzyl alcohol; BzH, benzlaldehyde.

An iron(III) complex formulated as L(14,28-[1,3-diiminoisoindolinato]phthalocyaninato)Fe(III) (**31)** in which L was a labile axial ligand was synthesized. The efficiency of the prepared catalyst was investigated by the oxidations of primary and secondary benzylic alcohols with both hydrogen peroxide and *tert*-butyl hydroperoxide (TBHP). Benzyl alcohol, 4-chlorobenzyl alcohol, 1-phenylethanol, and diphenylmethanol (benzhydrol), as illustrated in Table 32, were effectively oxidized without needing highly problematic oxidants or adding organic solvent. In primary alcohol oxidation (benzyl alcohol and 4-chlorobenzyl alcohol) no significant carboxylic acid as overoxidation products were observed. Moreover, secondary alcohols produced ketones with excellent selectivity [64].

Table 32. Summary of results from catalysis and control experiments ^a.

1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	15 15 ^b	1.6 0.03	84 -	340
2	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	15 ^c 15 ^b	40 0.41	940 -	3800
3	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	6 6 ^b	4.9 0.085	230	2300
4	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	10 ^d 10 ^b	3.7 0.77	210	1200

^a All reactions were run in magnetically stirred round-bottomed flasks open to the air at room temperature. Catalyst **31** (1.0 to 2.8 mg, 1.2 to 3.5 μmol) was dissolved in the alcohol substrate before adding the oxidant as an aqueous solution. Caution: solutions containing significant concentrations of hydrogen peroxide and metal-containing compounds are potentially dangerous, and reactions should be carried out behind adequate protection. Optimal reaction times for hydrogen peroxide oxidations were determined by quenching the reaction at various points with sodium thiosulfate. ^b No catalyst. ^c 72 °C. ^d 70 °C. ^e Oxidized product yields on the basis of total oxidant added. ^f TON, moles product/moles catalyst. Products were identified and quantified by HPLC vs. external standard. The catalyst **31** used in this study is prepared in crystalline form, where the composition of the crystals can vary slightly. In the crystallographically determined structure, ligand L is observed to be a mixture of methanol and water, with

two co-crystallized methanol molecules, also present for every complex bearing a methanol ligand, whereas three co-crystallized methanol molecules are present for every complex bearing a water ligand. In a desire to report catalyst performance conservatively, in light of this issue, we calculated TON values based on an assumption that the catalyst had 100% methanol as the L ligand, which along with the two co-crystallized methanol molecules gave a formula weight of 806.65, less than that for the case where L = water and three co-crystallized methanol molecules were present, in which case the formula weight was 824.66. This results in slightly under-reported turnover numbers (TON), assuming a mixture of the two species is actually present, because the number of moles of catalyst actually present in the reaction mixtures is slightly less than the number used in TON calculations. ^g TOF, turnovers per hour, average over entire reaction period.

A straightforward method was suggested for the oxidation of alcohols to their corresponding carbonyl compounds using nanomagnetic Fe_3O_4 (**32**) catalyst in water by H_2O_2 and the results are summarized in Table 33 [65]. High yields and the best selectivity (>99%) were obtained by producing aldehyde without observing overoxidation of aldehydes to parallel carboxylic acids [66].

Table 33. Oxidation of various alcohols by using H_2O_2 in the presence of nanomagnetic Fe₃O₄ **32** catalyst in water at 50 °C ^a.

	$\begin{array}{c} & & \\ & & \\ OH \\ & \\ H_2O_2 (1.2 \text{ m}) \\ R' \\ & & 50 \text{ of } \end{array}$	2 Fe ₃ O ₄ 32 (10 mol%) nmol), H ₂ O (1 mL) C, 15-120 min	R- → R·	
Entry	Substrate	Product	t/min	Yield (%) ^b
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	20	91
2	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	30	89
3	3-ClC ₆ H ₄ CH ₂ OH	3-ClC ₆ H ₄ CHO	35	87
4	2-ClC ₆ H ₄ CH ₂ OH	2-ClC ₆ H ₄ CHO	40	90
5	2,5-ClC ₆ H ₃ CH ₂ OH	2,5-ClC ₆ H ₃ CHO	45	87
6	2-BrC ₆ H ₄ CH ₂ OH	2-BrC ₆ H ₄ CHO	30	85
7	3-BrC ₆ H ₄ CH ₂ OH	3-BrC ₆ H ₄ CHO	35	88
8	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	35	85
9	4-FC ₆ H ₄ CH ₂ OH	4-FC ₆ H ₄ CHO	40	88
10	3-FC ₆ H ₄ CH ₂ OH	3-FC ₆ H ₄ CHO	40	85
11	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	120	85
12	3-NO ₂ C ₆ H ₄ CH ₂ OH	3-NO ₂ C ₆ H ₄ CHO	120	81
13	2-NO ₂ C ₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	120	82
14	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	15	90
15	(C ₆ H ₅) ₂ CHOH	$(C_6H_5)_2CO$	30	88
16	C ₆ H ₅ CH(OH)COC ₆ H ₅	$(C_6H_5)_2(CO)_2$	120	85

^a Reaction conditions: Substrate (1 mmol), nanomagnetic Fe₃O₄ **32** (10 mol%, 23 mg), H₂O₂ (1.2 mmol), H₂O (1 mL), 50 °C, 15 to 120 min. ^b Yield refers to isolated products. The products were characterized from their spectra data (IR) and compared with authentic samples.

Grafting the Cu(II) Schiff base complex onto the channels of mesoporous silica material SBA-15 (Cu(II)-Shiff base-SBA-15 (**33**)) was conducted by Ma et al. [67], and provided an effective catalyst for the selective oxidation of alcohols in water phase with hydrogen peroxide. Benzyl alcohol converted 98.5% with 100% of the selectivity to benzyl aldehyde. Other substituted benzyl alcohol was also successfully oxidized under the optimal conditions in which the substituted groups impacted the catalytic activity (Table 34).

$R^{\frac{1}{1}}$	H OH Cu(II)-S	chiff base-SBA-15 33	(0.02 g)	$R = \frac{1}{11}$	\approx_0
· · · · ·	H_2O_2 (30%, 2 mL), H ₂ O (7.5- reflux, 2-3 h	-15 mL)		
Entry	Substrate	Product	t/h	Conv. (%)	Sel. (%)
1	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	3	43.9	>99
2	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	3	30.5	>99
3	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	2	72.7	>99
4	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	2	48.6	>99

Table 34. Selective oxidation of other primary alcohols ^a.

^a Reaction conditions: Substrate (2 mmol, 0.2 mL), Cu(II)-Schiff base-SBA-15 **33** (0.02 g), H_2O_2 (30%, 2 mL), H_2O (7.5 to 15 mL), reflux, 2 to 3 h.

Malakooti et al. [68] reported the catalytic activity of the Fe₂O₃/SBA-15 (34) catalyst in oxidation of alcohols. As compared with different heterogeneously catalyzed procedures [7,69] the catalyst showed good activity, and therefore the catalyst was successfully examined for the oxidation of a variety of primary and secondary alcohols using H_2O_2 (Table 35). Benzyl alcohols were converted to their corresponding aldehydes with excellent yields and also alcohols containing heteroatom such as furfuryl alcohol, hindered substituted alcohols, and secondary benzylic alcohols were oxidized. No further oxidation of aldehyde products to carboxylic acid were seen and the selectivity of the catalyst was also confirmed. The recovered catalyst was reused for at least six successive runs with only a few decreasing in conversion.

Table 35. Oxidation of alcohols to aldehyde using Fe₂O₃/SBA-15 34 catalyst in water in the presence of H_2O_2 ^a.

	$\begin{array}{c} & & \\ & & \\ OH \\ & & \\ OH \\ & \\ R' \end{array} \begin{array}{c} Fe_2O_3/SBA-15 \\ & \\ H_2O_2 (2 \text{ m} \\ 80 \end{array} \end{array}$	34 (0.02 g, 1.64 mol ⁹ mol), H₂O (2 mL)) °C, 2-6 h	%Fe) R → F	
Entry	Substrate	Product	t/h	Conv. (%)
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	3.5	95
2	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	4	80
3	Furfuryl alcohol	Furfural	2	100
4	2-OHC ₆ H ₄ CH ₂ OH	2-OHC ₆ H ₄ CHO	2.5	100
5	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	2	100
6	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	3	100
7	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	4.5	90
8	2-ClC ₆ H ₄ CH ₂ OH	2-ClC ₆ H ₄ CHO	4.5	80
9	2,4-ClC ₆ H ₃ CH ₂ OH	2,4-ClC ₆ H ₃ CHO	2	95
10	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	4	40
11	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	6	45
12	C ₆ H ₅ CH(OH)COC ₆ H ₅	$(C_6H_5)_2(CO)_2$	6	85

^a Reaction conditions: Substrate (1 mmol), Fe₂O₃/SBA-15 **34** (0.02 g, 1.64 mol% Fe), H₂O₂ (2 mmol, 0.2 mL), H₂O (2 mL), 80 $^{\circ}$ C, 2 to 6 h.

Simple and inexpensive iron(III)-benzenetricarboxylate (Fe-BTC) (**35**) metal-organic gel catalyst, which was previously synthesized [70], was applied in a catalytic system for the oxidation of alcohols with H_2O_2 oxidant in water with no proof of other side products (Table **36**) [71].

Table 36. Fe-BTC gel 35 catalyzed oxidation of various alcohols ^a.

^a Reaction conditions: Substrate (9.26 mmol), dried Fe-BTC gel **35** (0.01 g, 2 mg Fe, 36 µmol Fe, 18 µmol $[Fe_2(C_9H_3O_6)(NO_3)_3(H_2O)_3 \text{ catalyst})$, molar ratio alcohol/Fe = 9.26/0.036 = 257, H₂O₂ (20 mL of 10% H₂O₂ (c = 3.07 mmol/mL) at an addition rate of 0.12 mL min⁻¹, H₂O (5 mL), molar ratio H₂O₂/alcohol (6.6), 30 to 180 min. ^b TON = [mol product/mol catalyst], the turnover frequency TOF [mol product/(mol catalyst x time)] is obtained by dividing TON through time.

Two cobalt (II) and cobalt (III) complexes of a terpyridine based ligand, (40-(2-thienyl)-2,2',6',2''-terpyridine (L)), were prepared in which each complex had two units of the tridentate ligand. The cobaltous complex and the cobaltic complex showed the formula $[Co(L)_2](NO_3)_2.2CH_3OHH_2O$ (**36**) and $[Co(L)_2](NO_3)_3.2CH_3OH$ (**37**), respectively. The aromatic alcohol oxidation reactions in the presence of catalysts was performed and the results are summarized in Table 37 [72]. As it was clear, in oxidation by hydrogen peroxide, the alcohols with more solubility in an aqueous media provided more reactivity towards and needed less reaction times. It is worthwhile mentioning that the cobaltous species was more effective than the cobalt (III) catalyst for alcohol oxidation reactions.

Table 37. Oxidation of a wide range of alcohols using the Co(II) and Co(III) complexes (**36**, **37**) as catalyst in water at room temperature ^{a,b}.

$\frac{R \stackrel{\text{II}}{\text{U}} \qquad OH}{OH} \xrightarrow{\text{substrate:catalyst:oxidant (20:1:60)}}_{\text{H}_2O(2 \text{ mL}), \text{ rt, 8 h}} \xrightarrow{R \stackrel{\text{II}}{\text{U}} \qquad O}_{R \stackrel{\text{II}}{\text{U}} \qquad R'}$						
Entry	Substrate	Product		Co(II) catalyst		Co(III) catalyst
5			Conv. (%)	Carbonyl Compound: Carboxylic Acid/Hydroperoxide	Conv. (%)	Carbonyl Compound: Carboxylic Acid/Hydroperoxide
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	94	13:1	34	6:1
2	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	95	15:1	37	12:1
3	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	73	9:1	24	8:1
4	1-Indanol	1-Indanone	91	31:1	30	22:1
5	Furfuryl alcohol	Furfural	89 ^c	5:1	42	4:1
6	2-Thiophenemethanol	2-Thiophenecarboxaldehyde	87 ^c	8:1	49	5:1
7	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	93 d	19:1	36	17:1
8	4,4-(OMe) ₂ (C ₆ H ₄) ₂ CHOH	4,4-(OMe) ₂ (C ₆ H ₄) ₂ CO	96 ^d	22:1	39	19:1
9	2-FC ₆ H ₄ CH(OH)C ₆ H ₅	2-FC ₆ H ₄ COC ₆ H ₅	94 ^e	19:1	37	18:1

^a Reaction conditions: Substrate/catalyst/oxidant (20:1:60), H_2O (2 mL), room temperature, 8 h. ^b The conversion was calculated based on the starting substrate, by using GC and with a comparison of authentic samples. ^c The reaction time was 2 h. ^d The reaction time was 12 h. ^e The reaction was 6 h.

Efficient usage of Lacunary Keggin-tungstoborate of $K_8[BW_{11}O_{39}H]\cdot 13H_2O$ (**38**) catalyst was reported for the first time in an aqueous/oil system for the oxidation of alcohols [73]. Benzyl alcohol oxidation provided benzaldehyde in high conversion and selectivity and secondary alcohols delivered high yields of ketones. The molar ratio of H₂O₂/benzyl alcohol was optimized (1:1) because a greater

content of oxidant decreased the activity and selectivity of the oxidation product which benzoic acid produced (Tables 38 and 39). The catalyst could be reused after four consecutive cycles of the reaction.

	\sim_{OH} K ₈ [BW ₁₁ O ₃₉ H]	.13H ₂ O 38 (0.0015 mmc	ol)
	H ₂ O ₂ (30%	‰ aq), H ₂ O (3 mL) 90 °C, 6 h	
Entry	H ₂ O ₂ /BzOH (mol/mol)	Sel. of BzH (mol%)	BzH Yield (mol%)
1 ^b	1/2	98	98
2	1/1	90	86
3	2/1	83	81
4	3/1	80	79
5	4/1	78	77
6	5/1	61	61

Table 38. Oxidation of benzyl alcohol catalyzed by $K_8[BW_{11}O_{39}H]$.13 H_2O 38 with H_2O_2 ^a.

^a Reaction conditions: Benzyl alcohol (1 mmol), $K_8[BW_{11}O_{39}H]$ ·13H₂O **38** (0.015 mmol), H₂O₂ (30%), H₂O (3 mL), 90 °C, 6 h, the conversion was based on benzyl alcohol. ^b H₂O₂ (1 mmol), benzyl alcohol (2 mmol), the conversion was based on H₂O₂.

Table 39. Oxidation of various alcohols cata	lyzed by $K_8[BW_{11}C$	39H].13H2O 38	3 with $H_2O_2^{a}$
--	-------------------------	---------------	---------------------

^a Reaction conditions: Substrate (1 mmol), $K_8[BW_{11}O_{39}H]$.13H₂O **38** (0.015 mmol), H_2O_2 (30% aq), H_2O (3 mL), 90 °C, 3 to 6 h, the conversion was based on alcohols, the selectivity was based on ketone, aldehyde, or acid. H_2O_2 efficiency (%) = products (mol)/consumed H_2O_2 (mol) × 100.

Using easily prepared water-soluble POMs, $K_8[\gamma-SiW_{10}O_{36}]\cdot13H_2O$ (**39**) precatalyst for the selective oxidation of alcohols were reported for the first time. Benzyl alcohol, 1-phenylethanol, and benzhydrol, etc. [74] as activated benzylic alcohols with 30% H_2O_2 at 90 °C were selectively oxidized to the corresponding ketone in high yields (Table 40) and the catalyst was recycled five times. With the molar ratio of H_2O_2 to benzyl alcohol 5:1, benzyl alcohol was absolutely converted to benzoic acid after 7 h at 90 °C (Entry 1). By decreasing the temperature of the reaction from 90 to 70 °C and the molar ratio of H_2O_2 to benzyl alcohol 1:1, benzaldehyde was obtained as the only oxidation product (Entry 2).

To gain more understanding of the catalytic system, the reactions were performed at 20 °C and the results are shown in Table 41. Dropping the reaction temperature from 90 to 20 °C was needed to achieve good yield, longer time (even some days), and more amount of catalyst (Entries 1 and 2). These data indicated that the high reaction temperature and the good water-solubility of alcohols provided high yields of products.

Keggin-type heteropolyacids (**40**) and hydrogen peroxide as a multiphase system were applied for the selective oxidation of alcohols to ketones or aldehydes (Table 42) with no appreciable detection of higher oxidation state by-product in most cases (Table 42). In the case of benzyl alcohols and 4-chloro

benzyl alcohol, the formation of small amounts of benzoic and 4-chlorobenzoic acid due to the addition of hydrogen peroxide twice was decomposed rapidly under homogeneous conditions (Table 42, Entries 6 to 10) [75].

$R \xrightarrow{\text{II}} OH \qquad K_{8}[\gamma-\text{SiW}_{10}O_{36}].13\text{H}_{2}O 39 (6.7 \mu\text{mol}) \qquad R \xrightarrow{\text{II}} O \qquad R \xrightarrow{\text{II}} O \qquad OH \qquad H_{2}O_{2} (30\%, 5 \text{mmol}), H_{2}O (2 \text{mL}) \qquad R \xrightarrow{\text{II}} R' \qquad O \qquad R \xrightarrow{\text{II}} R'$					
Entry	Substrate	Product	t/h	Conv. (mol%)	Yield (mol%)
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CO ₂ H	8	100	100
2 ^b	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	7	84	84
3	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	7	100	100
4	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	7	100	100

Table 40. Selective oxidation of alcohol catalyzed by $K_8[\gamma-SiW_{10}O_{36}]\cdot 13H_2O$ **39** with H_2O_2 at 90 °C ^a.

^a Reaction conditions: Substrate (1 mmol), $K_8[\gamma-SiW_{10}O_{36}]$.13H₂O **39** (6.7 µmol), H₂O₂ (30%, 5 mmol), H₂O (2 mL), 90 °C (oil bath temperature), 7 to 8 h. Conversion% = consumed alcohol (mol)/alcohol added (mol) × 100. ^b Substrate (1 mmol), $K_8[\gamma-SiW_{10}O_{36}]$.13H₂O (6.7 µmol), H_2O_2 (1 mmol), 70 °C (oil bath temperature).

	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	1 ₁₀ O ₃₆].13H ₂ O 39 (30%, 5 mmol), H ₂ 20 °C, 72 h	$\frac{167 \ \mu mol)}{O(2 \ mL)} \xrightarrow{R}$	
Entry	Substrate	Product	Conv. (mol%)	Yield (mol%)
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	64	64
2	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	78	78

Table 41. Selective oxidation of alcohol catalyzed by $K_8[\gamma-SiW_{10}O_{36}]$.13H₂O **39** with H₂O₂ at 20 °C ^a.

^a Reaction conditions: Substrate (1 mmol), $K_8[\gamma-SiW_{10}O_{36}]\cdot 13H_2O$ **39** (67 µmol), H_2O_2 (30%, 5 mmol), H_2O (2 mL), 20 °C, 72 h. Conversion (%) = consumed alcohol (mol)/alcohol added (mol) × 100.

Table 42. Oxidation of alcohols with hydrogen peroxide catalyzed by different heteropolyacids at 70 °C in multiphase conditions ^a.

	R	Aliquat 336 (tricap	HPA 40 (3% in mm prylmethylammonium	iol) i chloride	e) (0.59 mmol)	
	$R \xrightarrow{II} R'$	H ₂	O ₂ (35%, 1 mL), H ₂ (70 °C, 2-9 h			
Entry	Substrate	Product	Catalyst	t/h	C ₆ H ₅ COCH ₃ (%)	Other Products (%)
1	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	H ₃ PMo ₁₂ O ₄₀	9	95 (5) ^b	None
2	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	Py ₃ PMo ₁₂ O ₄₀	5	100 (6) ^b	None
3	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	H ₆ PMo ₁₁ AlO ₄₀	7	99	None
4	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	H ₃ PMo ₁₂ O ₄₀	5	99 (8) ^b	None
5	(C ₆ H ₅) ₂ CHOH	$(C_6H_5)_2CO$	Py3PMo12O40	4	99	None
6	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	H ₃ PMo ₁₂ O ₄₀	5	84 (12) ^b	(Benzoic acid) (4)
7	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	Py ₃ PMo ₁₂ O ₄₀	3	89 (5) ^b	(Benzoic acid) (2)
8	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	H ₆ PMo ₁₁ AlO ₄₀	4	85	(Benzoic acid) (2)

Entry	Substrate	Product	Catalyst	t/h	C ₆ H ₅ COCH ₃ (%)	Other Products (%)
9	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	H ₃ PMo ₁₂ O ₄₀	53	93 (10) ^b	(4-Chlorobenzoic acid) (1)
10	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	H ₆ PMo ₁₁ AlO ₄₀		95	(4-Chlorobenzoic acid) (2)
11	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	H ₃ PMo ₁₂ O ₄₀	43	96 (7) ^b	(4-Methylbenzoic acid) (3)
12	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	Py ₃ PMo ₁₂ O ₄₀		96	(4-Methylbenzoic acid) (3)
13	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	H ₃ PMo ₁₂ O ₄₀	3	90	(4-Methoxybenzoic acid) (6)
14	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	Py ₃ PMo ₁₂ O ₄₀	2	91	(4-Methoxybenzoic acid) (5)

Table 42. Cont.

^a Reaction conditions: Substrate (0.7 mmol), HPA **40** (3% in mmol), H_2O_2 (35 w/v%, 1 mL), Aliquat 336 (tricaprylmethylammonium chloride, 0.232 g, 0.59 mmol), H_2O (4 mL), *n*-decane as internal standard (0.056 g, 0.39 mmol), 70 °C, 2 to 9 h, 700 rpm. ^b In homogeneous system corresponding to the numbers in the parentheses, substrate (0.7 mmol), HPA (3% in mmol), H_2O_2 (35 w/v%, 1 mL), CH3CN (5 mL), *n*-decane as internal standard (0.056 g, 0.39 mmol), 700 rpm.

Easy product isolation, good turnovers, and high selectivities were achieved using the Zn substituted polyoxoanion $(NH_4)_7 Zn_{0.5}[\alpha - ZnO_4W_{11}O_{30}ZnO_5(OH_2)] \cdot nH_2O$ (41) as the catalyst for the oxidation of organic functionalities. As illustrated in Table 43, only minor (\leq 5%) amounts of benzoic acids as overoxidation byproduct was provided and the catalyst could be reused three times with little loss in its efficacy [76]. In addition, in contrast to a previously reported system [77,78] using Na₂WO₄, a phase transfer catalyst and H₂O₂ in water, in this system, no phase transfer co-catalyst was required.

Table 43. Oxidation of benzyl alcohol by $(NH_4)_7 Zn_{0.5}[\alpha - ZnO_4W_{11}O_{30}ZnO_5(OH_2)] \cdot nH_2O$ **41** in water with aqueous hydrogen peroxide as an oxidant ^a.

R	$OH \xrightarrow{(NH_4)_7 Zn_{0.5}[a-ZnO_4W]} (4)$	/ ₁₁ O ₃₀ ZnO ₅ (OH ₂)].nH ₂ 4 μmol)	$\xrightarrow{O 41} R \xrightarrow{II} O$
	H ₂ O ₂ (30%, 4 1 80	nmol), H ₂ O (5 mL) °C, 10 h	~
Entry	Substrate	Product	Conv. (%) ^b
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	80
2	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	82

^a Reaction conditions: Substrate (1 mmol), (NH₄)₇Zn_{0.5}[α -ZnO₄W₁₁O₃₀ZnO₅(OH₂)]-nH₂O **41** (n \approx 18, 4 µmol), H₂O₂ (30 *w*/*v*%, 4 mmol), H₂O (5 mL), 80 °C, 10 h, with vigorous stirring. ^b Conversion was determined by GC or proton NMR.

Alkali-treated ZSM-5 zeolite (42) was obtained by the alkali-treatment modification of the commercially available ZSM-5 zeolite with high concentration NaOH solution at low temperature. The oxidation reaction in the presence of the catalyst (Table 44) showed 53% conversion of BzOH and 86% selectivity to benzaldehyde (BzH). Additionally, the catalyst could be reused for more than six times and was very stable [79]. The results also showed that with an increase of the SiO₂/Al₂O₃ ratio in as-received zeolites, the conversion of BzOH decreased seriously which could be attributed to decreasing the concentration of Lewis acids on the surface of treated zeolite.

Among different W- and Mo-based heteropolyoxometalate catalysts which were used in the oxidation of aromatic alcohols in the presence of hydrogen peroxide in water, dodecatungstophosphoric acid, $H_3PW_{12}O_{40}$ (43), had the most efficiency. This catalytic system provided a highly selective, efficient, fast, environmentally friendly, and inexpensive approach for the conversion of alcoholic functions to carbonyl groups with H_2O_2 in water, and even after fifteen runs, the efficiency of the oxygenation system was ~10% decreased (Table 45) [80].

Table 46 [81] summarizes the application of cheap, effective, organic-solvent-free and phase-transfer WO_4^{2-} catalyst (Na₂WO₄·2H₂O (44)) and aqueous hydrogen peroxide for six primary or secondary alcohol oxidations which are liquids or melt below 90 °C [77,82]. Primary alcohols, such as benzyl alcohol, were easily oxidized to aldehydes with no overoxidation.

		OH cata	llyst (0.1-2 g)			≥0
	~	112	reflux, 4 h	,,	\checkmark	
Entry	Catalyst	Amount of	C_{onv} (%)		S	Sel. (%)
Littiy	Catalyst	Catalyst (g)	COIIV. (70)	BzH	BzA	Benzyl Benzoate (%)
1	None	-	2	73	27	0
2	25ZSM(AT-0)	1	44	80	19	1
3	25HZSM(AT-0.5) ^b	1	52	85	14	1
4	25ZSM(AT-0.5)	0.1	37	61	31	8
5	25ZSM(AT-0.5)	0.2	45	68	27	5
6	25ZSM(AT-0.5)	0.5	52	80	18	2
7	25ZSM(AT-0.5)	1	53	86	13	1
8	25ZSM(AT-0.5)	1.5	49	87	13	0
9	25ZSM(AT-0.5)	2	47	88	11	1
10	25ZSM(AT-1.0)	1	50	85	14	1
11	25ZSM(AT-1.5)	1	48	86	13	1
12	25ZSM(AT-3.0)	1	37	89	10	1
13	38ZSM(AT-0.5)	1	41	86	14	0
14	50ZSM(AT-0.5)	1	33	84	15	1

Table 44. Selective oxidation of benzyl alcohol to benzaldehyde by hydrogen peroxide over different catalyst ^a.

^a Reaction condition: Catalyst (0.1 to 2 g), $H_2O_2/BzOH$ (1:3), reaction at reflux temperature, 4 h. ^b Acid exchange with HCl after alkali-treatment for 0.5 h.

Table 45. Oxidation of some aromatic alcohols with 34% H₂O₂ in water catalyzed by H₂PW₁₂O₄₀ 43 ^a.

$\begin{array}{c c} R \xrightarrow{[1]}{U} & OH \\ OH \\ R \xrightarrow{[1]}{U} & R' \\ R \xrightarrow{[1]}{V} & R' \\ \end{array} \xrightarrow{H_2 P W_{12} O_{40} \textbf{43} (0.018 \text{ mmol})}_{H_2 O_2 (34\%, 5 \text{ mmol}), H_2 O (5 \text{ mL})} \\ R \xrightarrow{[1]}{U} & R' \\ R \xrightarrow{[1]}{V} & R' \\ R \xrightarrow{[1]}{V} & R' \\ \end{array} \xrightarrow{R \xrightarrow{[1]}{U}} R' \\ R \xrightarrow{[1]}{V} & $					
Entry	Substrate	Product	t/min	Conv. (%)	Sel. (%)
1	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	120	73	100
2	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	150	78	100
3	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	150	85	100
4	3-NO ₂ C ₆ H ₄ CH ₂ OH	3-NO ₂ C ₆ H ₄ CHO	150	90	100

^a Reaction conditions: Substrate (0.94 mmol), $H_2PW_{12}O_{40}$ **43** (0.018 mmol), H_2O_2 (34%, 5 mmol), H_2O (5 mL), room temperature, 120 to 150 min. Progress of the reactions was followed by aliquots withdrawn directly and periodically from the reaction mixture and analyzed by gas chromatography. Products were isolated as described in the experimental section.

2.2. Oxidation of Benzylic and Heterocyclic Alcohols in a Solvent-Free System

Green oxidation of primary and secondary alcohols in the presence of nano- MoO_3 /copper Schiff base complex (45), using H_2O_2 , was investigated under solvent-free conditions with high conversion and excellent selectivity. The benefits of the reaction also included the ease of isolating products from green media, and the reusability of the catalyst for six times without loss of activity and selectivity (Table 47) [83]. Further oxidation such as the preparation of acid or ester were not investigating (Table 47, Entries 1–4 and 6–12) and, additionally, benzyl phenyl sulfide oxidation provided no sulfoxide or sulfone byproducts (Entry 5).

		Na ₂ WO ₄ .2H ₂ O 44 (1 m H ₃ (C ₈ H ₁₇) ₃ N]HSO ₄ (1 H ₂ O ₂ (30%, 1.1 mol eq H ₂ O, 90 °C, 1-3 h	$\frac{(100)}{(100)} R \frac{(100)}{(100)} R \frac{(100)}{($		
Entry	Substrate	Product	Work-Up	Yield (%)	Purity (%) ^b
1	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	Extractive	88 91 94	>98 96 ^c 94
2	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	Extractive	85 94	>98 >98
3	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	Extractive	93 98	>98 >98
4	4-MeC ₆ H ₄ CH(OH)C ₆ H ₅	4-MeC ₆ H ₄ COC ₆ H ₅	Vacuum filtration	99 65 ^d	>98 >98
5	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	Extractive	91 81 88 ^e	98 94 97

Table 46. Phase-transfer catalyzed oxidation of alcohols ^a.

^a Reaction conditions: Substrate (1 mol equiv.), Na₂WO₄·2H₂O **44** (1 mol%), [CH₃(C₈H₁₇)₃N]HSO₄ (1 mol%), H₂O₂ (30%, 1.1 mol equiv.), H₂O, 90 °C, 1 to 3 h. ^b Determined by GC analysis. The remainder was the starting alcohol. ^c Determined by ¹H NMR spectroscopy by integration of product and substrate methyl resonances. ^d Yield after recrystallization from methanol. ^e [CH₃(C₈H₁₇)₃N]HSO₄ prepared in situ from [CH₃(C₈H₁₇)₃N]Cl and NaHSO₄·H₂O.

Table 47. The oxidation of different alcohols catalyzed by NMCS bio-nanocomposite **45** using H_2O_2 within 3 h at 80 °C under ultrasonic irradiation ^a.

Entry	Substrate	Product	Yield (%)
1	4-(<i>tert</i> -Butyl)C ₆ H ₄ CH(OH)CH ₃	4-(<i>tert</i> -Butyl)C ₆ H ₄ COCH ₃	100
2	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	90
3	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	60
4	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	100
5	2-SHC ₆ H ₄ CH ₂ OH	2-SHC ₆ H ₄ CHO	100
6	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	100
7	Furfuryl alcohol	Furfural	100
8	2-OHC ₆ H ₄ CH ₂ OH	2-OHC ₆ H ₄ CHO	90
9	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	100
10	2,4-ClC ₆ H ₃ CH ₂ OH	2,4-ClC ₆ H ₃ CHO	90
11	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	85
12	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	80

 a Reaction conditions: Substrate (0.1 mmol), NMCS bio-nanocomposite 45 (0.007 g), H₂O₂ (30%, 0.2 mmol, 20 μ L), 80 °C, solvent free, air, 3 h.

Dioxo-molybdenum(VI) complex supported functionalized Merrifield resin (MR-SB-Mo) (46). The catalyst efficiently and selectively oxidized a wide variety of alcohols to aldehydes or ketones using H_2O_2 as an oxidant with reasonably good TOF (660 h⁻¹ in case of benzyl alcohol) under solvent-free reaction conditions and did not lead to overoxidized products under optimized conditions (Table 48) [84]. The catalyst afforded regeneration and could be reused for at least five reaction cycles without loss of efficiency and product selectivity. In the case of substituted benzyl alcohols, different types of substituents such as -F, -Cl, -Br, -OMe, -OH, and $-NO_2$ were well-tolerated during the oxidation process (Table 48, Entries 2–7), some of which could be utilized for further derivation. One of the notable aspects of the developed catalytic system was its ability to oxidize benzyl alcohol to benzaldehyde at a relatively higher scale (10 g scale) without losing the catalytic efficiency and product selectivity (Table 48, Entry 1^d), which provides its potential application in commercial processes.

Table 48. Oxidation of alcohols to aldehydes or ketones catalyzed by MR-SB-Mo 46 using 30% ac	lueous
H ₂ O ₂ as oxidant ^a .	

		MR-SB-Mo 46 (5.6 H ₂ O ₂ (30%, 2.75 m solventless, 65 °C, 90-	mg) mol) 120 min) {'
Entry	Substrate	Product	t (min)	Yield (%) ^b	TOF (h ⁻¹) ^c
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	90 90 90	99 98 ^d 97 ^e	660 653 646
2 ^f	4-FC ₆ H ₄ CH ₂ OH	4-FC ₆ H ₄ CHO	100	97	582
3 ^f	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	100	96	576
$4^{ m f}$	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	100	97	582
5 ^f	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	105	97	554
6 ^f	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	100	99	594
7	4-OHC ₆ H ₄ CH ₂ OH	4-OHC ₆ H ₄ CHO	100	98	588
8	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	120	98	490
9	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	105	97	554

^a Reaction conditions: Unless otherwise stated, all reactions were performed, substrate (2.5 mmol), MR-SB-Mo **46** (5.6 mg, contain 0.0025 mmol of Mo), H_2O_2 (30%, 2.75 mmol), solvent free, 65 °C, 90 to 120 min. ^b Isolated yield. ^c TOF = (mmol of product)/[(mmol of catalyst) × (time)]. ^d Yield at 5th reaction cycle. ^e Yield at 10 g scale reaction.

^f Reaction conducted with 2 mL acetonitrile.

Active Au-Pd catalysts on carbon and titanium oxide (Au-Pd/C (47) and Au-Pd/TiO₂ (48)) were applied for the benzyl alcohol oxidation without adding solvents. The results showed that carbon-supported bimetallic catalysts provided a higher conversion as compared with Au-Pd/TiO₂ 48 catalyst, due to the vast superficial area of carbon supported catalyst as compared with the titanium supported catalyst (Figure 1) [85,86]. These results demonstrated the critical importance of correct selection of support for the metal nanoparticles immobilization in the catalyst preparation approaches. Additionally, some dissimilarities in the selectivity and catalytic activities of catalysts could be the result of both the interaction of catalyst support and the influence of the shape of metal particles.

Fe₃O₄/GrOSi(CH₂)₃–NH₂/HPMo nanocomposite (**49**) as a magnetically recyclable (at least four times) heterogeneous separable oxidation catalyst was applied for selective oxidation of alcohols to corresponding aldehydes (Table 49, Entries 1–10) and ketones (Table 49, Entries 11–13) with very high selectivity (\geq 99%) in moderate to excellent yields (60% to 96%) with H₂O₂ under solvent-free conditions (Table 49) [87].

Figure 1. Curves conversion versus time for carbon-supported catalysts and titanium supported catalysts.

Table 49. Results of various alcohol oxidations with H_2O_2 catalyzed by the $Fe_3O_4/GrOSi(CH_2)_3$ -NH₂/HPMo **49** catalyst ^a.

	Fe ₃ O ₄ /GO-NH ₂ /H ₃ PM H ₂ O ₂ (30%, 15 mm 100 °C	$Mo_{12}O_{40} 49 (0.2 g)$ nol), solvent free 2, 4 h	
Entry	Substrate	Product	Yield (%) ^b
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	90
2	4-iPrC ₆ H ₄ CH ₂ OH	4-iPrC ₆ H ₄ CHO	96
3	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	94
4	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	86
5	2-NO ₂ C ₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	60
6	3-NO ₂ C ₆ H ₄ CH ₂ OH	3-NO ₂ C ₆ H ₄ CHO	82
7	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	92
8	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	94
9	2-ClC ₆ H ₄ CH ₂ OH	2-ClC ₆ H ₄ CHO	82
10	2,4-ClC ₆ H ₃ CH ₂ OH	2,4-ClC ₆ H ₃ CHO	90
11	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	90
12	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	90
13	C ₆ H ₅ CH(OH)COC ₆ H ₅	(C ₆ H ₅) ₂ (CO) ₂	90

^a Reaction conditions: Substrate (10 mmol), Fe₃O₄/GrOSi(CH₂)₃-NH₂/HPMo **49** (0.2 g), H₂O₂ (30 wt%, 15 mmol), solvent free, 100 °C, 4 h. ^b Yields were determined by GC analysis with *n*-decane as internal standard.

Homotrinuclear copper catalyst $[Cu_3(slmh)(\mu-Cl)_2(CH_3OH)_3]\cdot 0.5CH_3OH$ (50), where H₄slmh stands for disalicylaldehyde malonoyldihydrazone was prepared by Lal et al., in 2017 [88]. This heterogeneous catalyst oxidized several aromatic ring substituted benzylic alcohols by aqueous hydrogen peroxide and the results are summarized in Table 50 [88]. No benzoic acid production was observed in benzylic alcohol oxidations. Moreover, recyclability of the catalyst showed the five consecutive runs ability with no loss of activity.

R (I	$- OH = [Cu_3(slmh)(\mu-Cl)_2(CH_3OH) + (0.04 mm)]$	H) ₃].0.5CH ₃ OH 50 R II	
R-	H_2O_2 (15%, 8.46 mmc) 10^{-1} R' H_2O_2 (15%, 8.46 mmc) $70 ^{\circ}$ C, 15	b), solvent free $R \stackrel{[i]}{\downarrow}$	R'
Entry	Substrate	Product	Yield (%) ^b
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	78
2	2-MeC ₆ H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	80
3	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	88
4	3-ClC ₆ H ₄ CH ₂ OH	3-ClC ₆ H ₄ CHO	94
5	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	81
6	2-pyridinemethanol	picolinaldehyde	93
7	3,4,5-OMeC ₆ H ₂ CH ₂ OH	3,4,5-OMeC ₆ H ₂ CHO	88
8	Furfuryl alcohol	Furfural	92
9	2-Thiophenemethanol	2-Thiophenecarboxaldehyde	90
10	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	97
11	C ₆ H ₅ CH(OH)COC ₆ H ₅	$(C_6H_5)_2(CO)_2$	85
12	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	1
13	4-OMeC ₆ H ₄ CH ₂ OH:C ₆ H ₅ CH(OH)CH ₃	4-OMeC ₆ H ₄ CHO:C ₆ H ₅ COCH ₃	77:1

Table 50. Oxidation of alcohols catalyzed by $[Cu_3(slmh)(\mu-Cl)_2(CH_3OH)_3] \cdot 0.5CH_3OH$ **50** under solvent-free conditions in the absence of base and co-catalyst ^a.

^a Reaction conditions: Substrate (4.62 mmol), [Cu₃(slmh)(μ -Cl)₂(CH₃OH)₃].0.5CH₃OH **50** (0.04 mmol), H₂O₂ (15%, 8.46 mmol), solvent free, 70 °C, 15 h. ^b Isolated yield.

The selective oxidation of alcohols using green oxidants, H_2O_2 , in the presence of $Mo_3O_{10}(C_5H_6N)_2$. H_2O (51) showed the efficiency of the catalyst for the oxidations of alcohols to the corresponding ketones or aldehydes under solvent-free conditions over reaction-controlled phase-transfer catalysis (Table 51) [89]. The method was so selective with no overoxidation product preparation even with longer reaction time. In addition, MoO_x -pyridine could efficiently oxidize secondary benzylic alcohols to their corresponding ketones with excellent conversions and high selectivity (Table 51, Entries 8–11) [89]. It is worthwhile to mention that the catalyst could be reused in H_2O_2 systems for at least four runs.

Table 51. Oxidation of alcohols to corresponding aldehydes or ketones using $Mo_3O_{10}(C_5H_6N)_2 \cdot H_2O$ wires (MoOx-pyridine) **51** catalyst ^a.

	$\begin{array}{c} & & \\ & & \\ OH \\ & \\ & \\ H_2O_2 (R') \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $) ₂ .H ₂ O wires 51 (1.6 m (1 mmol), solvent free 0 °C, 10-120 min	ol%) F	
Entry	Substrate	Product	t/min	Conv. (%) ^b
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	45	>95
2	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	90	95
3	2-ClC ₆ H ₄ CH ₂ OH	2-ClC ₆ H ₄ CHO	60	>95
4	2,4-ClC ₆ H ₃ CH ₂ OH	2,4-ClC ₆ H ₃ CHO	120	90
5	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	10	50
6	2-OHC ₆ H ₄ CH ₂ OH	2-OHC ₆ H ₄ CHO	70	95

	6 1 1 1			6 (0() h
Entry	Substrate	Product	t/min	Conv. (%)
7	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	30	90
8	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	75	95
9	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	90	95
10	(C ₆ H ₅) ₂ CHOH	$(C_{6}H_{5})_{2}CO$	60	95
11	C ₆ H ₅ CH(OH)COC ₆ H ₅	$(C_6H_5)_2(CO)_2$	50	95
12	Furfuryl alcohol	Furfural	40	80

Table 51. Cont.

^a Reaction conditions: Substrate (1 mmol), $Mo_3O_{10}(C_5H_6N)_2 \cdot H_2O$ wires **51** (1.6 mol%), H_2O_2 (1 mmol), solvent free, 80 °C, 10 to 120 min. ^b Conversions were obtained by TLC and GC.

Water-soluble heterobimetallic complex $[CuZn(bz)_3(bpy)_2]BF_4$ (52) was applied for selective oxidations of primary alcohols to the corresponding aldehydes with no base or co-catalyst. In addition, the catalyst could be recyclable and keep its activity intact over five cycles (Table 52) [90].

Table 52. Oxidation of alcohols catalyzed by $[CuZn(bz)_3(bpy)_2]BF_4$ **52** under solvent-free condition in the absent of base ^a.

Entry	Substrate	Product	t/h	Yield (%) ^b Isolated Product (GC) ^c
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	7	84 (86) ^c
2	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	3	98 (100) ^c
3	2-MeC ₆ H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	9	97
4	3-MeC ₆ H ₄ CH ₂ OH	3-MeC ₆ H ₄ CHO	10	93
5	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	4	98
6	3-ClC ₆ H ₄ CH ₂ OH	3-ClC ₆ H ₄ CHO	9	97
7	3-NO ₂ C ₆ H ₄ CH ₂ OH	3-NO ₂ C ₆ H ₄ CHO	3	85 (97) ^c
8	Furfuryl alcohol	Furfural	3	97 (100) ^c
9	2-Pyridinemethanol	Picolinaldehyde	3	96
10	2-Thiophenemethanol	2-Thiophenecarboxaldehyde	3	98
11	C ₆ H ₅ CH(OH)COC ₆ H ₅	$(C_6H_5)_2(CO)_2$	2	98 (100) ^c
12	3,4,5-OMeC ₆ H ₂ CH ₂ OH	3,4,5-OMeC ₆ H ₂ CHO	6	98
13	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	16	1 ^c

^a Reaction conditions: Substrate (4.84 mmol), [CuZn(bz)₃(bpy)₂]BF₄**52** (0.023 mmol), H₂O₂ (30%, 8.83 mmol), solvent free, 70 °C, 2 to 16 h. ^b Isolated yield via column chromatography. ^c GC conversion.

Table 53 presents the application of Cu(II) Schiff base complex $[Cu(HL)(H_2O)NO_3]$ (53) using 2-[(2-hydroxy-1,1-dimethyl-ethylimino)methylphenol (H₂L) in the oxidation of different alcohols [91]. Primary benzylic alcohols either with electron donating or electron withdrawing groups underwent selective and efficient oxidation to the corresponding aldehydes with no overoxidation (Table 53, Entries 1–8). The oxidation of secondary alcohols provided ketones in good to high yield (Table 53, Entries 10–12). The catalyst was also reused five times without losing of its activity.

$R = \frac{n}{u}$	OH $[Cu(HL)(H_2O)NO_3]$ DH $H_2O_2 (30\%, 3 \text{ mmc})$ R' $70 ^\circ\text{C}, 3$	$\begin{array}{c} R \\ \hline 53 (0.02 \text{ mmol}) \\ \hline 53$	
Entry	Substrate	Product ^b	Yield (%) ^c
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	94
2	2-OHC ₆ H ₄ CH ₂ OH	2-OHC ₆ H ₄ CHO	62
3	4-OHC ₆ H ₄ CH ₂ OH	4-OHC ₆ H ₄ CHO	69
4	2-ClC ₆ H ₄ CH ₂ OH	2-ClC ₆ H ₄ CHO	65
5	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	84 ^d
6	2,4-ClC ₆ H ₃ CH ₂ OH	2,4-ClC ₆ H ₃ CHO	90
7	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	81 ^e
8	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	82
9	Furfuryl alcohol	Furfural	68
10	4-OMeC ₆ H ₅ CH(OH)CH ₃	4-OMeC ₆ H ₅ COCH ₃	86
11	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	87
12	1-Tetralol	1-Tetralone	70

Table 53. Oxidation of alcohols using H₂O₂ catalyzed by [Cu(HL)(H₂O)NO₃] 53 ^a.

^a Reaction conditions: Substrate (1 mmol), [Cu(HL)(H₂O)NO₃] **53** (0.02 mmol), H₂O₂ (30%, 3 mmol), solvent free, 70 °C, 3 h. ^b All products are identified by comparison of their physical data with those of authentic samples. ^c Isolated yield. Yields are determined by TLC and GC based on the starting alcohol. ^{d 1}H NMR (500 MHz, CDCl₃) δ : 7.26 to 7.82 (m, 4H, ArH) and 9.96 (s, 1H, aldehyde H). ^{e 1}H NMR (500 MHz, CDCl₃) δ : 2.31 (s, 3H, CH₃), 7.20 (d, *J* = 15 Hz, 2H, ArH), 7.66 (d, *J* = 15 Hz, 2H, ArH), and 9.95 (s, 1H, aldehyde H).

The treatment of mordenite acid using hydrochloric acid (MOR-HC) (54), nitric acid (MOR-HN) (55), and oxalic acid (MOR- O_x) improved its textural properties such as increasing the BET surface area, total pore volume, mesopore volume, and external surface area (Table 54) [92]. These improvements influenced the catalytic activity of the mordenite in oxidation of benzyl alcohol not only in benzyl alcohol conversion both also in benzaldehyde selectivities. In terms of catalytic properties, the highest improvement was observed in the case of the nitric acid treated sample as follows: benzyl alcohol conversion >99% and benzaldehyde selectivities >99%. In addition, the fittingness of the MOR-HN for various acid catalyzed bulky molecular transformations was observed. Decreasing acid site density of mordenite by dealumination and the increasing porosity, resulted in controlling overoxidation of benzaldehyde to undesired benzoic acid in the MOR-HN catalyst [92].

$\begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \xrightarrow[]{} O \\ \hline & \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \\ \hline & \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \\ \hline & \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \\ \hline & \begin{array}{c} & \end{array} \end{array} \\ \hline & \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \\ \hline & \begin{array}{c} & \end{array} \end{array} \\ \hline & \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \\ \hline & \begin{array}{c} & \end{array} \end{array} \\ \hline & \begin{array}{c} & \end{array} \end{array} \\ \hline & \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \\ \hline & \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \\ \hline \\ \hline & \begin{array}{c} & \end{array} \end{array} \\ \hline \\ \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} $ \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\					
Entry	Catalyst	Conv. of BzOH (wt%)	Product Yield (wt%) BzH	Product Yield (wt%) Benzoic Acid	
1	MOR	42.95	41.15	1.80	
2	MOR-HN	99.94	99.84	0.1	
3	MOR-HC	54.49	54.35	0.14	
4	MOR-OX	60.37	60.25	0.12	

Table 54. Performance of various catalysts in benzyl alcohol oxidation ^a.

 a Reaction conditions: Benzyl alcohol (14 mL), catalyst (0.5 g), $\rm H_2O_2$ (30 wt%, 13 mL), deionized H_2O (26 mL), pressure (atmospheric), 90 °C, 4 h.

Tin-containing 1,3-din-butylimidazolium bromide ([BBIM]Br)-SnCl₂ (**56**) was prepared by Xing et al. [93] and successfully applied for the simple and efficient oxidation of benzyl alcohol using hydrogen peroxide as the oxidant (Table 55). In this catalyst, coordination of Sn species with the imidazole ring resulted in the easy recovery and reusability of the catalyst for six reaction runs without loss of catalytic activity.

	$R \xrightarrow{[i]}{} OH$ OH $R \xrightarrow{[i]}{} R'$	$\begin{array}{l} \text{BBIM]Br-SnCl}_2 \ \textbf{56} \ (0.11 \ \text{g}) \\ \text{H}_2\text{O}_2 \ (30\%, 2 \ \text{mmol}) \\ \text{solvent free} \\ 65 \ ^{\circ}\text{C}, \ 15\text{-}160 \ \text{min} \end{array}$	$\begin{array}{c} g) \\ R \stackrel{fi}{\underbrace{\downarrow}} \\ R \stackrel{fi}{\underbrace{\downarrow}} \end{array}$	O O R'	
Entry	Substrate	Product	t/min	Conv. (%) ^b	Sel. (%) ^b
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	15	100	95.1
2	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	60	71	99
3	4-CH ₂ OHC ₆ H ₄ CH ₂ OH	4-CH ₂ OHC ₆ H ₄ CHO	15 ^c	99	90
4	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	160	87	91
5	4-iPrC ₆ H ₄ CH ₂ OH	4-iPrC ₆ H ₄ CHO	15	99	50
6	4-OHC ₆ H ₄ CH ₂ OH	4-OHC ₆ H ₄ CHO	15	99	98
7	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	15	99	>99

Table 55. Catalytic properties of [BBIM]Br-SnCl₂ 56 in the oxidation of various alcohols with H₂O₂^a.

^a Reaction conditions: Substrate (1.5 mmol), [BBIM]Br–SnCl₂ **56** (0.11 g), H₂O₂ (30%, 2 mmol), solvent free, 65 °C, 15 to 160 min. ^b GC analysis. ^c Reaction was carried out using H₂O₂ (30%, 3.5 mmol).

The CoFe₂O₄ nanoparticles (NPs) (57) catalyzed the solvent-free oxidation of benzyl alcohol (BzOH) to benzaldehyde (BzH) with hydrogen peroxide (Table 56) [94]. Excellent results, >99% conversation of BzOH and 100% selectivity, were obtained with no obvious loss of catalyst activity after three consecutive runs.

Table 56. Selective oxidation of benzyl alcohol to benzaldehyde catalyzed by $CoFe_2O_4$ NPs 57^a.

^a Reaction conditions: Substrate (3 mL, 29 mmol), CoFe₂O₄ NPs **57** (40 mg), H₂O₂ (35%, 145 mmol, 12.5 mL), solvent free, 110 °C, 5 h.

The Mn- and Co-substituted polyoxotungstates $[MPW11O39]^{5-}$ (M = Mn or Co) was immobilized on MCM-41 or into the interlayer of Mg₃Al-layered double hydroxide. The catalysts showed catalytic activity in the presence of H₂O₂ for the solvent-free oxidation of benzyl alcohol for at least four times with no loss of activity and selectivity. As illustrated in Table 57 [95], POM loaded-LDH (58) and POM loaded-LDH-adipate (59) catalysts were better catalysts than POM-free catalysts due to easier reduction of metal ion via interaction of POM anion with the clay surface [96]. In addition, the basic sites of LDH-supported catalysts resulted in higher selectivity for benzaldehyde as compared with the unsupported catalysts [97].

	OH cat	alyst (5 v	wt%)	~ 0
	H ₂ C 9	0₂/alcohc 0 °C, 2.5	ol (3:1) -8 h	
Entry	Catalyst	t/h	Conv. (%)	Sel. for BzH (%)
1	-	5	2	70
2	MnPOM/MCM	5 8	67 76	75 69
3	CoPOM/MCM	5 8	70 78	71 67
4	TBA-MnPOM ^b	5	49	75
5	TBA-CoPOM ^b	5	52	70
6	TBA-MnPOM ^c	2.5	35	Not determined
7	TBA-CoPOM ^c	2.5	13	Not determined
8	LDH	5	3	91
9	MnPOM/LDH	5	45	97
10	CoPOM/LDH	5	37	96
11	LDH-adi	5	4	90
12	MnPOM/LDH-adi	5	66	100
13	CoPOM/LDH-adi	5	69	99

Table 57. Oxidation of benzyl alcohol with various catalyst ^a.

^a Reaction conditions: Benzyl alcohol (10 mL), catalyst (5 wt%), H₂O₂/alcohol molar ratio (3:1), 90 °C, 2.5 to 8 h. Oxidation reaction: Substrate (benzyl alcohol), catalyst, and aqueous H₂O₂ (30%) were inserted into a 60 mL parr reactor. The reactor was heated to a desired temperature and the mixture was stirred. The catalyst was separated, and the products were extracted with diethyl ether, dried, and analyzed by GC (chromatograph, Varian CP-3800 GC; column, CP-Sil 30 m × 0.25 mm). ^b H₂O₂/alcohol molar ratio of 2:1. ^c H₂O₂/alcohol molar ratio of 5:1, in H₂O, 100 °C [98].

Two long chain multi-SO₃H functionalized heteropolyanion-based ionic liquids S4SiIL (**60**) and S3PIL (**61**) as homogeneous catalysts provided aldehydes and ketones with 63% to 100% yields through the oxidation of alcohols with no phase transfer catalyst and could be reused five times. The corresponding benzoic acids of benzyl alcohols were obtained with 64% to 94% yields (Table 58) [99]. For **60**, benzaldehyde was obtained in 94% yield, whereas for **61**, the benzoic acid provided 83% yield.

R	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	nd S3PIL 61 (0.05 mm O ₂ (35%, 45 mmol)		
	R'	solvent free	ъſ	R'
R II		70 °C, 4 h	ĸŢ	
	/		~	
Entry	Substrate	Product	Conv. (%)	Yield (%)
		C ₆ H ₅ CHO	100 ^b	94 ^b
1	С6П5СП2ОП	C ₆ H ₅ CO ₂ H	99 ^c	83 ^c
	4 MaC H CH OH	4-MeC ₆ H ₄ CHO	100 ^b	100 ^b
2	4-MeC ₆ n ₄ Cn ₂ On	4-MeC ₆ H ₄ CO ₂ H	99 ^c	87 ^b
2	4 OM+C H CH OH	4-OMeC ₆ H ₄ CHO	100 ^b	100 ^c
	4-0MeC6114C112011	4-OMeC ₆ H ₄ CO ₂ H	99 ^c	94 ^c
4		4-ClC ₆ H ₄ CHO	99 ^b	91 ^c
4	4-CIC6114C112O11	4-ClC ₆ H ₄ CO ₂ H	97 ^c	77 ^c
5	4 NO.C.H.CH.OH	4-NO ₂ C ₆ H ₄ CHO	96 ^b	81 ^c
3	4-1NO2C6H4CH2OH	$4-NO_2C_6H_4CO_2H$	95 °	64 ^c
6 ^d	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	98 ^b /95 ^c	94 ^b /80 ^c
7 ^d	(C ₆ H ₅) ₂ CHOH	$(C_6H_5)_2CO$	95 ^b /89 ^c	83 ^b /76 ^c

Table 58. Results of selective oxidation of alcohols catalyzed by S4SiIL 60 and S3PIL 61^a.

^a Reaction conditions: Substrate (30 mmol), S4SiIL **60** and S3PIL **61** (0.05 mmol), H₂O₂ (35%, 45 mmol), solvent free, 70 °C, 4 h. ^b Results of S4SiIL. ^c Results of S3PIL. ^d Substrate (30 mmol), S4SiIL and S3PIL (0.05 mmol), H₂O₂ (60 mmol), 70 °C, 4 h.

A polyethylene oxide-supported long-chain imidazolium polyoxometalate hybrid catalyst ([PEO-didodecylimidazolium]₃[PW₁₂O₄₀]₂) (62) was employed as the recyclable catalyst (could be reused six times) for the selective oxidation reactions of alcohols using H_2O_2 at room temperature, without significant loss of its activity, as shown in Table 59 [100]. Ketones or aldehydes were the only produced products. Primary benzylic alcohols had the best activities with no significant effects on the electronic properties, electron-withdrawing, or electron-donating substituents, or steric hindrance of the groups on the benzene ring [100].

$R \frac{\Pi}{U}$ $R \frac{\Pi}{U}$	OH [PEO-didode OH H2O2	ecylimidazolium] ₃ [PW (0.05 mol %) (30%, 2 equiv), solven rt, 5-16 h.	₁₂ O ₄₀] ₂ ($\begin{array}{c} 52 \\ R \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	O O R'
Entry	Substrate	Product	t/h	Conv. (%)	Yield (%)
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	6	100	98
2	2-OMeC ₆ H ₄ CH ₂ OH	2-OMeC ₆ H ₄ CHO	6	99	96
3	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	5	>99	98
4	3-OMeC ₆ H ₄ CH ₂ OH	3-OMeC ₆ H ₄ CHO	8	98	94
5	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	5	>99	99
6	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	8	96	95
7	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	8	95	93
8	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	16	81	80
9	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	14	83	81
10	2-Pyridinemethanol	Picolinaldehyde	16	86	84
11	Furfuryl alcohol	Furfural	12	90	82

Table 59. Oxidation of various alcohols ^a.

^a Reaction conditions: Substrate (10 mmol), [PEO-didodecylimidazolium]₃[PW₁₂O₄₀]₂ **62** (0.05 mol % of alcohol), H_2O_2 (30%, 2 equiv.), solvent free, room temperature, 5 to 16 h.

Schiff base complexes of transition metal ions supported on silica coated magnetic metallic cobalt nanoparticles (Co@SiO₂@[M(II)SBC], M = Co, Cu, Ni, Zn) (63, 64, 65, 66) as heterogeneous catalysts were prepared and explored for the oxidations of the alcohols to corresponding aldehydes in high yields. The catalysts could be recyclable five times. The obtained results, as shown in Table 60 [101], indicated that alcohol conversions occurred during approximately half an hour with 100% selectivity. Although all of these catalysts selectively converted different alcohols to corresponding aldehyde, the Ni(II) catalysts were more active than three others and converted alcohols to aldehydes in shorter time.

Table 60. Investigation of catalytic activity of $Co@SiO_2@[Co(II)SBC]$ 63 catalysts on the oxidation reaction ^a.

	P II Co@	SiO ₂ @[Co(II)SBC] 63	(0.04 g)		С
	H	² O ₂ (30%, 60 μL), solv 50 °C, 24-33 min	ent free		
Entry	Substrate	Product	t/min	Yield (%) ^b	Sel. (%)
1	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	27–28	91	100
2	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	24–26	93	100
3	4-FC ₆ H ₄ CH ₂ OH	4-FC ₆ H ₄ CHO	32–33	94	100
4	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	22–25	90	100
Entry	Substrate	Product	t/min	Yield (%) ^b	Sel. (%)
-------	--	---	-------	------------------------	----------
5	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	25–27	91	100
6	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	24–26	92	100

^a Reaction conditions: Substrate (0.5 mmol), Co@SiO₂@[Co(II)SBC] **63** (0.04 g), H₂O₂ (30%, 60 μ L), solvent free, 50 °C, 24 to 33 min. ^b Isolated yield.

Bismuth tribromide (BiBr₃) (67) catalyzed oxidations of both primary and secondary benzylic alcohols with aqueous H_2O_2 to corresponding carbonyl compounds in high yields, as summarized in Table 61 [102]. Without overoxidation, primary benzylic alcohols resulted in exclusive formation of aldehydes. Generally, the oxidation of primary benzylic alcohols proceeded slower than primary secondary alcohols.

R	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	3 67 (10 mol%) 5 mmol), solvent free C, 10-40 min		O R'
		D 1 (>/: 11/0/> h
Entry	Substrate	Product	t/min	Yield (%)
	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	30	90
2	2-MeC ₆ H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	30	93
3	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	30	92
4	2-ClC ₆ H ₄ CH ₂ OH	2-ClC ₆ H ₄ CHO	30	85
5	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	30	89
6	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	30	85
7	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	30	72
8	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	30	80
9	1-Naphthalenmethanol	1-Naphthaldehyde	10	75
10	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	10	80
11	C ₆ H ₅ CH(OH)C ₂ H ₅	C ₆ H ₅ COC ₂ H ₅	10	85
12	4-MeC ₆ H ₅ CH(OH)CH ₃	4-MeC ₆ H ₅ COCH ₃	20	90
13	4-ClC ₆ H ₅ CH(OH)CH ₃	4-ClC ₆ H ₅ COCH ₃	10	95
14	4-BrC ₆ H ₅ CH(OH)CH ₃	4-BrC ₆ H ₅ COCH ₃	10	95
15	4-FC ₆ H ₅ CH(OH)CH ₃	4-FC ₆ H ₅ COCH ₃	10	96
16	1-(Naphthalen-2-yl)ethanol	2-Acetonaphthone	10	80
17	1-Tetralol	1-Tetralone	10	85
18	(C ₆ H ₅) ₂ CHOH	$(C_6H_5)_2CO$	40	85
19	C ₆ H ₅ CH(OH)CO ₂ Et	C ₆ H ₅ COCO ₂ Et	10	88

Table 61. Oxidation of alcohols with H_2O_2 and $BiBr_3$ 67 ^a.

^a Reaction conditions: Substrate (1 mmol), BiBr₃ **67** (10 mol%), H_2O_2 (30%, 5 mmol), solvent free, 70 °C, 10 to 40 min. ^b Isolated yield.

Three amphiphilic sulphonato-salen-chromium(III) complexes immobilized on MCM-41 (Cr(SO₃-salphen)-MCM-41) (**68**) were applied for the selective oxidation of BzOH to BzH with H_2O_2 , and the results are listed in Table 62 [103]. The introduction of hydrophilic sulfonic acid groups to the catalyst structure enhanced accessibility of the catalyst with oxidant which increased the catalytic act in oxidation reactions as compare with their corresponding lipophilic complexes. The best results were also obtained, i.e., 60.3% benzyl alcohol conversion with 100% benzaldehyde selectivity. In addition, Cr(SO₃-salphen)-MCM-41 complex could be reused for five runs.

		heterogeni OH homogeneou	zed catal is catalys	lysts (0.25 g) sts (1.25 mmol)		
	H ₂ O ₂ (30%, 125 mmol), solvent free 50 °C, 4 h					
Entry	Catalyst	Conv. of BzOH		Sel. (%	H ₂ O ₂ Efficiency	
Littiy	Catalyst	(%)	BzH	Benzoic Acid	Benzyl Benzoate	(mol %)
1	Blank	3	100	0	0	5.1
2	Cr(salen)	12.2	65.4	23.5	11.1	15.3
3	Cr(salten)	15	70.2	19.8	10	17.8
4	Cr(salphen)	20.5	75.6	18.2	6.2	23.6
5	Cr(SO ₃ -salen)	25	76.5	17.5	6	28
6	Cr(SO ₃ -salten)	31.4	82	15.3	2.7	35.5
7	Cr(SO ₃ -salphen)	34.7	80.5	15.4	4.1	37.9
8	Cr(salen)-MCM-41	42.5	98.2	1.3	0.4	45.6
9	Cr(salten)-MCM-41	43.2	100	0	0	48.1
10	Cr(salphen)-MCM-41	45.2	100	0	0	52
11	Cr(SO ₃ -salen)-MCM-41	53.1	100	0	0	62.5
12	Cr(SO ₃ -salten)-MCM-41	57	100	0	0	68.3
13	Cr(SO ₃ -salphen)-MCM-41	60.3	100	0	0	72.5

Table 62. Catalytic performance of samples in benzyl alcohol oxidation ^a.

 a Reaction conditions: Benzyl alcohol (50 mmol), H2O2 (30%, 125 mmol), heterogenized catalysts (0.25 g) or homogeneous catalysts (1.25 mmol), 50 $^\circ$ C, 4 h.

Cesium salt of transition metal (M = Co, Mn, Ni) substituted phosphomolybdates $PMo_{11}M$ as catalysts for the oxidation of alcohol were applied and the catalyst showed the activity in the order of activity $PMo_{11}Co$ (69) $\geq PMo_{11}Ni$ (70) $> PMo_{11}Mn$ (71) as illustrated in Table 63 [104]. In addition, the catalysts could be reused up to 2 cycles.

Table 63. Oxidation of various alcohols catalyzed by $PMo_{11}M$ (M = Co, Mn, Ni), under optimized conditions ^a.

	PMo ₁₁ M (M=Co, Ni, Mn) (20 mg)	69, 70, 71	
alcohol/H ₂ O ₂ (1:3) 90 °C, 24 h				
Entry	Substrate	Product	Conv. (%)	Sel. (%)
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	56.5 ^b 37.9 ^c 56.2 ^d	90.9 84.9 81.3

^a Reaction conditions: PMo₁₁M (M = Co, Ni, Mn) **69**, **70**, **71** (20 mg), mole ratio of alcohol to H_2O_2 (1:3), 90 °C, 24 h. ^b [M] = Co. ^c [M] = Mn. ^d [M] = Ni.

Using cationic surfactants with different carbon-chain lengths for the functionalization of the Vcontaining Keggin POM $H_4PMo_{11}VO_{40}$ provided a series of polyoxometalate (POM)-based amphiphilic catalysts. The catalysts were for selective benzyl alcohol oxidation by H_2O_2 (Table 64) [105] and the best catalytic efficiency was obtained by (ODA)₄PMo₁₁VO₄₀ (72) (ODA: octadecylmethylammonium) due to its amphiphilic property (60.6% of benzyl alcohol conversion with 99% of selectivity for benzaldehyde). Furthermore, the catalyst could be recycled over four run reactions without losing activity.

OH catalyst (0.03 mmol)						
H_2O_2 (50 mmol), solvent free 90 °C, 6 h						
Entry	Catalyst	Conv. (%) ^b	Sel. (%) ^c			
1	$H_{3}PMo_{12}O_{40}$	$19.1 \pm 1.9 \ ^{\rm d}$	88.6 ± 1.6 ^d			
2	$H_4PMo_{11}VO_{40}$	28.2 ± 1.8	90 ± 1.4			
3	(ODA) ₄ PMo ₁₁ VO ₄₀	60.6 ± 1.5	99 ± 0.8			
4	ODACl	0	0			
5	(ODA) ₃ PMo ₁₂ VO ₄₀	36.5 ± 1.7	94.5 ± 1.1			
6	(ODA) ₄ PMo ₁₁ VO ₄₀ -P	58.9 ± 1.6	99 ± 0.8			
7	$(ODACl + H_4PMo_{11}VO_{40})^{e}$	57.1 ± 1.7	98.8 ± 0.9			
8	(DODA) ₄ PMo ₁₁ VO ₄₀	53.3 ± 1.8	99 ± 0.9			
9	(DDA) ₄ PMo ₁₁ VO ₄₀	51.6 ± 1.8	98 ± 1			
10	(HDA)PMo ₁₁ VO ₄₀	56.3 ± 1.8	99 ± 0.9			
11	(TBA) ₄ PMo ₁₁ VO ₄₀	28.9 ± 1.2	91.1 ± 1.4			

Table 64. Selective oxidation of benzyl alcohol to benzaldehyde with H_2O_2 in the presence of the catalysts investigated ^a.

^a Reaction conditions: Benzyl alcohol (60 mmol), catalyst (0.03 mmol), H_2O_2 (50 mmol), solvent free, 90 °C, 6 h. ^b Conversion of benzyl alcohol. ^c Selectivity for benzaldehyde. ^d Standard deviation. ^e ODACl (0.12 mmol) and $H_4PMo_{11}VO_{40}$ (0.03 mmol) were simultaneously added into the reaction system.

A simple adsorption method provided heterogeneous copper(II)-cysteine/SiO₂-Al₂O₃ (**73**) catalyst which represented good activity and selectivity in aromatic alcohol oxidation reactions, as shown in Table 65 [106]. All reactants were completely converted to selective carbonyl compounds. In addition, shifting the substituent from electron withdrawing (Entries 2–5) to electron donating (Entries 6–9) remarkably increased the yield of corresponding aldehydes from 45% to 98%. The catalyst could also be recycled over five times.

Table 65. Solvent-free oxidation of various aromatic alcohols over Cu(II)-cysteine/SiO₂-Al₂O₃ 73 ^a.

^a Reaction conditions: Substrate (1 mmol), Cu(II)-cysteine/SiO₂-Al₂O₃ **73** (0.15 g, 17.5% Cu(II)-cysteine/SiO₂-Al₂O₃), H_2O_2 (4 mmol), solvent free, room temperature, 45 to 90 min. ^b Isolated yield.

Lal et al. [107] reported the solvent-free oxidation of primary (Entries 2–5, 9) and secondary (Entries 6–8) benzylic alcohols using a heterotrinuclear complex containing a dicopper(II)–monozinc(II)

centre, $[ZnCu_2(slsch)(NO_3)_2(H_2O)_8] \cdot 2H_2O$ (74), with hydrogen peroxide, as summarized in Table 66, with good yield and excellent selectivity and four consecutive run reusability.

$R \xrightarrow{\text{II}} OH [ZnCu_2(\text{slsch})(\text{NO}_3)_2(\text{H}_2\text{O})_8].2\text{H}_2\text{O} 74 \\ (8 \text{ mol}\%)$				
$R \stackrel{\text{II}}{=} R' \qquad R^{\text{II}} \qquad R^{\text{II}}$			R	R'
Entry	Substrate	Product	t/h	Yield (%) ^b
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	10	85
2	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	11	87
3	4-NMe ₂ C ₆ H ₄ CH ₂ OH	4-NMe ₂ C ₆ H ₄ CHO	11	88
4	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	9	82
5	2-ClC ₆ H ₄ CH ₂ OH	2-ClC ₆ H ₄ CHO	10	78
6	C ₆ H ₅ CH(OH)COC ₆ H ₅	$(C_6H_5)_2(CO)_2$	12	80
7	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	12	80
8	4-ClC ₆ H ₄ CH(OH)CH ₃	4-ClC ₆ H ₄ COCH ₃	14	82
9	4-MeC ₆ H ₄ CH(OH)CH ₃	4-MeC ₆ H ₄ COCH ₃	12	78

Table 66. Hydrogen peroxide mediated oxidation of alcohols to aldehydes and ketones ^a.

^a Reaction condition: Substrate (5 mmol), $[ZnCu_2(slsch)(NO_3)_2(H_2O)_8]$ -2H₂O 74 (8 mol%), H₂O₂ (30%, 10 mmol), solvent free, 100 °C, 9 to 14 h. ^b Isolated yields.

Under mild conditions, primary and secondary alcohols were oxidized by applying rutheniumbis(benzimidazole)pyridinedicarboxylate complex [Ru(bbp)(pydic)] (75) as catalyst and H_2O_2 as oxidant. Aldehydes and ketones were prepared with good yield and excellent selectivity (Table 67) [108].

Table 67. Oxidation of various alcohols with H₂O₂ catalyzed by Ru(bbp)(pydic) 75 ^a.

F	$R \xrightarrow{H} OH$ OH $R \xrightarrow{H} R'$ $R \xrightarrow{H} R'$	bp)(pydic) 75 (2 × 10 ⁻³ r (30%, 10 mmol), solver 60°C, 1-3 h	nmol) nt free		≈0 `R'
Entry	Substrate	Product	t/h	Conv. (%) ^b	Yield (%) ^b
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	1	97	96
2	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	1	98	96
3	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	1	96	93
4	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	2	82	81
5 c	4-Pyridinemethanol	Isonicolinaldehyde	3	76	74
6	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	1	92	92
7	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	3	82	82

^a Reaction condition: Substrate (2 mmol), Ru(bbp)(pydic) **75** (2 × 10^{-3} mmol), H₂O₂ (30%, 10 mmol), solvent free, 60 °C, 1 to 3 h. ^b Determined by GC. ^c Ru(bbp)(pydic) (4 × 10^{-3} mmol).

Keggintype polyoxometallates, such as $M_3(PW_{12}O_{40})_2$ [M = Ni, Zn, Co, Mn, Cu; denoted as MPW₁₂], FePW₁₂O₄₀ [FePW₁₂] (**76**), Ni₃(PMo₁₂O₄₀)₂ [NiPMo₁₂] (**77**), and Ni₂SiW₁₂O₄₀ [NiSiW₁₂] (**78**) were synthesized as catalysts, under solvent-free condition, for the selective oxidation of BzOH into BzH with hydrogen peroxide (Table 68) [109]. Among them, Ni₃(PW₁₂O₄₀)₂·26H₂O (**77**) provided high catalytic activity, TON of 550.6 mol/(mol cat.), and 87.3% selectivity. The above catalyst was also recovered and reused for three times.

$R \xrightarrow{[1]{U}} OH \xrightarrow{Ni_{3}(PW_{12}O_{40})_{2}.26H_{2}O \ 77 \ (0.5 g)}_{H_{2}O_{2} \ (30\%, 93 \ \text{mmol}), \ \text{solvent free}} R \xrightarrow{[1]{U}} O$						
Entry	Substrate	Product	Conv. (%)	Yield (%)	Sel. (%)	
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	90.9	79.4	87.3	
2	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO 4-OMeC ₆ H ₄ CHO ^b	93.9 82	27.1 78.7	28.9 96	

Table 68. Oxidation of alcohols ^a.

^a Reaction Condition: Substrate (47.5 mmol, 5 mL), $Ni_3(PW_{12}O_{40})_2 \cdot 26H_2O$ 77 (0.5 g), H_2O_2 (30%, 93 mmol, 10 mL), solvent free, 90 °C (in an water bath), 3.5 h. ^b Conditions: substrate (47.5 mmol, 5 mL), $Ni_3(PW_{12}O_{40})_2 \cdot 26H_2O$ (0.5 g), H_2O_2 (30%, 93 mmol, 10 mL), solvent free, 70 °C, 3.5 h.

Appling *L*-aspartic acid coupled with imidazolium based ionic liquid [L-AAIL] (**79**), in the presence of hydrogen peroxide as an ideal oxidant, provided a green protocol for the selective oxidation of alcohols which could be recycled and reused for seven runs. The substituted primary benzylic alcohols were selectively oxidized to aldehydes with 88% to 96% yield (Table 69, Entries 1–6, 9) and the secondary alcohols also produced ketones with 76% to 84% yield (Table 69, Entries 7, 8, 10) [110].

$R \xrightarrow{ }{ } OH$ CH $H_2O_2 (5 \text{ mmol}), \text{ solvent free}$ $25^{\circ}C, 30-210 \text{ min}$				O R'
Entry	Substrate	Product	t/min	Yield (%) ^{b,c}
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	30	96
2	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	38	93
3	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	40	92
4	4-NH ₂ C ₆ H ₄ CH ₂ OH	4-NH ₂ C ₆ H ₄ CHO	38	94
5	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	35	96
6	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	35	88
7	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	65	84
8	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	85	82
9	Furfuryl alcohol	Furfural	210	88
10	2-Pyridinemethanol	Picolinaldehyde	190	90

Table 69. L-AAIL 79 catalyzed oxidation of alcohols by hydrogen peroxide at 25 °C ^a.

^a Reaction condition: Substrate (2 mmol), L-AAIL **79** (0.0025 mmol), H_2O_2 (5 mmol), solvent free, 25 °C, 30 to 210 min. ^b Quantified by HPLC of the crude product. ^c Isolated yield by flash chromatography.

Under solvent-free conditions, hydrogen peroxide as oxidant and metal dodecanesulfonate salts, $M(DS)_x$ [M = Fe³⁺ (80), Cu²⁺ (81), Ni²⁺ (82) and Sn²⁺ (83), DS = dodecanesulfonate, x = 3 or 2] as catalysts were conducted by biphasic catalysis for benzyl alcohol oxidation to benzaldehyde. The results are summarized in Table 70 [111] and indicate that Fe(DS)₃ (80) catalyst represented a surprisingly high activity, exhibiting nearly 100% conversion of BzOH and TON of 194.4 mol/(mol cat) as compare with other catalytic systems, due to its difference in Lewis acidity (Entry 1) [112]. In addition, this catalyst could be recovered and reused three times. Overoxidation of BzH into benzylic acid was minimized in biphasic operation systems due to reducing the contact opportunity between BzH in bulk organic phase and the catalyst on the interphase or H₂O₂ that was soluble in the aqueous phase.

$(1) \qquad \qquad$					
Fntry	Catalyst (0.25 mmol)	Conv (%)	TON (mol/mol)		
1	Fe(DS) ₃	100	194.4		
2	Cu(DS) ₂	47.3	92		
3	Ni(DS) ₂	7.8	15.2		
4	Sn(DS) ₂	4	7.8		

Table 70. Catalytic activity of various dodecanesulfonate salts ^a.

^a Reaction conditions: Ratio of H₂O₂ to alcohol (0.22:0.0486, 4.5:1), catalyst (0.2 g), solvent free, 90 °C, 6 h, stirring speed 250 rpm.

A series of conventional chromium(III) Schiff base complexes were immobilized on MCM-41. Without any organic solvent, phase transfer catalyst, or additive, the mentioned complexes showed much higher catalytic performance in benzyl alcohol conversion to benzaldehyde, due to their corresponding homogeneous analogs. The catalyst represented difference activity by varying ligand in the following order: 84-L4 > 84-L2 > 84-L1 > 84-L5 > 84-L3 (Figure 2) [113]. The difference could be attributed to ligand structures which **84**-L4 with π -extended coordination structure exhibiting the best catalytic performance.

Figure 2. Homogeneous chromiun (III) Schiff base complexes and their immobilized analouge were prepared as described in "experimental" section.

Different alcohol oxidations were also applied over the representative catalyst **84**-L4 (Table 71) [113]. All benzylic alcohols were oxidized with good yields, and the major products were the corresponding ketones or aldehydes. Overoxidation of aldehydes into their corresponding acids were also observed. The catalyst could be reusedfor four catalytic runs, with only a little change in the catalytic performance.

As illustrated in Table 72 [114], green oxidant hydrogen peroxide and cyclopentadienyl molybdenum acetylide catalyst, $CpMo(CO)_3(C\equiv CPh)$ (85), were used to explore selective oxidations of different aromatic alcohols to aldehydes with very high conversion (90%) and aldehyde selectivity

(90%). The catalytic system could be reused even after five recycles with no decrease in alcohol conversion and aldehyde selectivity.

Table 71. Catalytic performance of the representative immobilized complex in the oxidation of alcohols ^a.

	°∀́ОН	84- L4 (0.25	g)	~ 0		
H_2O_2 (0.125 mol), solvent free 50 °C; 4 h						
Entry	Substrate	Product	Conv. (mol%) ^b	Yield (mol%) ^c		
			45 ^d	45		
1		С Ц СНО	44 ^e	44		
1	C6115CH20H	C6115CHU	43 ^f	42		
			41 g	38		

^a Reaction conditions: Substrate (0.05 mol), **84**-L4 (0.25 g), H₂O₂ (0.125 mol), solvent free, 50 °C, 4 h. ^b Conversion = (moles of substrate reacted/moles of substrate in the feed) × 100. ^c Yield = (moles of substrate converted to the products/moles of substrate in the feed) × 100. ^{d, e, f, g} Recycle runs: 1, 2, 3, 4 respectively.

	р ПОН	CpMo(CO) ₃ (C≡C	Ph) 85 (1-0.0	1 mmol)		≥0	
	$\begin{array}{c} R \xrightarrow{[l]}{} \\ H_2O_2 (30\%, 0.1 \text{ mol}), \text{ solvent free} \\ 80^{\circ}C, 8 \text{ h} \end{array}$						
Entry	Substrate	Product	Product Conv (%)		Sel. (%)		TON
5	Substruct	Tiouuct			Aldehyde	Acid	- 1011
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	86	79	92	8	396
2	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	90	78	87	13	391
3	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	90	90	90	10	392
4	3,5-OMeC ₆ H ₃ CH ₂ OH	3,5-OMeC ₆ H ₃ CHO	83	71	85	15	352
5	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	60	53	88	12	264
6	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	65	62	91	9	296
7	2,4-ClC ₆ H ₃ CH ₂ OH	2,4-ClC ₆ H ₃ CHO	78	70	90	10	343

Table 72. Oxidation of different alcohols ^a.

^a Reaction conditions: Substrate (0.05 mol), CpMo(CO)₃(C=CPh) 85 (1 to 0.01 mmol), H₂O₂ (30%, 0.1 mol), solvent free, 80 °C, 8 h.

Nano- γ -Fe₂O₃ **86** as a selective and active catalyst for alcohol and olefin oxidation yielded the corresponding aldehyde, with good to excellent selectivity, without losing catalyst activity even after reusing 5 times. As illustrated in Table 73 [115], significant impact on the catalyst activity was provided by substitutions on the aromatic ring of the benzyl alcohol. Moreover, as compared with benzyl alcohol, 1-phenylethanol, diphenylmethanol, and 1-phenyl-1-propanol gave good conversions with lower selectivity (Table 73, Entries 4–6).

Some methyl-containing Cr(salen) complexes which immobilized on MCM-41 were prepared as catalysts and exhibited for the selective oxidation of benzyl alcohol (BzOH) with H_2O_2 . All organic solvent-free systems, with no phase transfer catalyst or additive, showed much higher catalytic activity than their homogeneous analogue. Benzaldehyde (BzH), benzoic acid, and benzyl benzoate were only detected as products (Table 74) [116]. By increasing methyl content of catalysts, from Cr(salen)-MCM-41(CH₃)₁ (87) to Cr(salen)-MCM-41(CH₃)₃ (89), BzOH conversion and H_2O_2 efficiency decreased slowly, whereas BzH selectivity increased, as can be seen in the presence of Cr(salen)-MCM-41(CH₃)₂ (88) and 89, BzOH was completely oxidized to BzH with no the formation of

2

3

4

5

6

Cr(salen)

Cr(salen)-MCM-41

Cr(salen)-MCM-41(CH₃)₁

Cr(salen)-MCM-41(CH₃)₂

Cr(salen)-MCM-41(CH₃)₃

byproducts. The best BzOH conversion of 65.0% with 100% selectivity to benzaldehyde (BzH) was reached using catalytic system **88** [116].

R	nano-g-Fe ₂ O ₃ 86 (1 mol%, 16 mg)	
$R \stackrel{\text{OH}}{\underset{l'}{}} R'$	H ₂ O ₂ (30%, 10 mmol), solvent free 75 °C, 12 h	R II R'

Table 73. Selective oxidation of alcohols to aldehyde	les and ketones with nano- γ -Fe ₂ O ₃ 86 ^a .	
---	--	--

Entry	Substrate	Product	Conv. (%)	Sel. (%)	TON
1	4-(tert-Butyl)C ₆ H ₄ CH ₂ OH	4-(tert-Butyl) C ₆ H ₄ CHO	10	>99	10
2	4-FC ₆ H ₄ CH ₂ OH	4-FC ₆ H ₄ CHO	87	51	44
3	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	98	61	60
4	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	42	60	25
5	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	35	42	44
6	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	49	52	25
7	2-Biphenylmethanol	2-Biphenylcarbaldehyde	6	>99	6

^a Reaction conditions: Substrate (10 mmol, 1.08 g), nano- γ -Fe₂O₃ **86** (1 mol%, 16 mg), H₂O₂ (30 wt%, 1 mL, 10 mmol), solvent free, 75 °C, 12 h.

		heterogen	ised catal or ous comp	yst (0.25 g) lex (1 mol%)		
		H ₂ O ₂ (30%, 0).125 mol 50 °C, 4 l), solvent free		
Entry	Catalwat	Conv. of BzOH		Sel. (mol	%) ^c	H ₂ O ₂ Efficiency
Liftiy	Catalyst	(mol %) ^b	BzH	Benzoic Acid	Benzyl Benzoate	(mol %) ^d
1	Blank	3	100	0	0	5.1

65.4

80.6

92.3

100

100

23.5

12.4

5.6

0

0

11.1

7

2.1

0

0

15.3

46.5

77.3

76.6

70.9

12.2

40.5

66.1

65

61.3

Table 74. Catalytic performance of the obtained complexes in the selective oxidation of denzyl alcohol	la.
---	-----

^a Reaction conditions: Benzyl alcohol (0.05 mol), heterogenized catalyst (0.25 g) or homogeneous complex (1 mol%), H_2O_2 (30%, 0.125 mol), solvent free, 50 °C, 4 h. ^b Conversion = (moles of BzOH reacted/moles of BzOH in the feed) × 100. ^c Selectivity = (moles of BzOH converted to the products/moles of BzOH reacted) × 100. ^d Efficiency of H_2O_2 for BzOH oxidation = (moles of H_2O_2 converted to the products/moles of H_2O_2 consumed) × 100.

Wang et al. reported the preparation of Mo^{VI} oxo-diperoxo complex $[MoO(O_2)_2(TEDA)_2]$ (90) (TEDA = 1,4-diazabicyclo [2.2.2]octane) [117], which successfully catalyzed the high yield oxidations of alcohols to their corresponding carbonyl groups by H_2O_2 . The catalyst was active even for three recycling experiments with no overoxidation (Table 75).

Some tetra-alkylpyridinium octamolybdate (**91–94**) were used as catalysts for selective oxidations of benzyl alcohol. Among them, as illustrated in Table 76, [118], tetraalkylpyridinium octamolybdate exhibited high activity and selectivity due to oxygen transfer ability from hydrogen peroxide to the substrate. This matter is clear by 82.3% to 94.8% benzyl alcohol conversion and 87.9% to 96.7%

benzaldehyde selectivity. The simple and easy catalyst preparations and utilization, high recovery, and short reaction time made the catalytic system an ideal choice for future investigations.

[MoO(O₂)₂(TEDA)₂] **90** (0.01 mol, 1 mol %) OH Ò R H_2O_2 (30%, 2 mmol), solvent free 80 °C, 6 h Entry Product Yield (%)^b Substrate Sel. (%) 1 C₆H₅CHO 96 98 C₆H₅CH₂OH 2 4-MeC₆H₄CH₂OH 4-MeC₆H₄CHO 96 96

Table 75. $[MoO(O_2)_2(TEDA)_2]$ -catalyzed oxidation of selected alcohols using H_2O_2 as oxidant ^a.

^a Reaction conditions: Substrate (1 mmol), [MoO(O₂)₂(TEDA)₂] **90** (0.01 mol, 1 mol %), H₂O₂ (30%, 2 mmol), solvent free, 80 °C, 6 h, control experiments without complex **90** showed no oxidation under the same reaction conditions. ^b Determined by GC using an internal standard technique.

Table 76. Oxidation of benzyl alcohol to benzaldehyde by hydrogen peroxide over tetra-alkylpyridinium octamolybdate catalysts ^a.

$\begin{array}{c} & [R (\pi - C_5 H_5 N)]_4 Mo_8 O_{26} (0.5 - 0.8 \text{ g}) \\ & \\ \hline \\ & \\ \hline \\ & \\ \hline \\ & \\ & \\ \hline \\ & \\ &$									
Entry	Catalyst	Amount of Catalyst/g	BzOH/H2O2 Molar Ratio	t/h	Conv. (%)	Sel. (%)			
1		0.5	1:1.2	1.7	93.6	90.5			
2	PvC4	0.8	1:1.1	1	86.4	91.8			
3	-)	0.8	1:1	0.5	82.3	94.6			
4		Recycle ^b	1:1	0.6	83.9	93.3			
5	PyC8	0.5	1:1.1	0.6	90.5	89.4			
6	PyCl4	0.5	1:1	0.4	85.5	96.7			
7	PyCl6	0.5	1:1.1	0.6	92.7	89.5			
8	PyCl6	Recycle ^c	1:1.1	1	94.8	87.9			
9	PyC4	0.8	1:2	6.5	99.5	76.5			
10	PyC4	0.8	1 ^d :1.1	0.4	22.6	99.6			

^a Reaction conditions: Benzyl alcohol (10.8 g, 0.1 mol), catalyst (0.5 to 0.8 g), H_2O_2 (15%, 25 g, 0.12 mol), reflux, 0.4 to 1.7 h. ^b Catalyst of Entry 4 was recycled. ^c Catalyst of Entry 8 was recycled. ^d Here, the alcohol is cyclohexanol. The catalysts of PyC4, PyC6, PyC14, and PyC16 are [$n-C_4H_9(\pi-C_5H_5N)$]₄Mo₈O₂₆, [$n-C_8H_{17}(\pi-C_5H_5N)$]₄Mo₈O₂₆, [$n-C_{14}H_{29}(\pi-C_5H_5N)$]₄Mo₈O₂₆, and [$n-C_{16}H_{33}(\pi-C_5H_5N)$]₄Mo₈O₂₆, respectively.

 $Na_4H_3[SiW_9Al_3(H_2O)_3O_{37}]\cdot 12H_2O(SiW_9Al_3)$ (95) was synthesized and applied as the catalyst for organic-solvent-free selective oxidations of alcohol to ketones using H_2O_2 without any phase-transfer catalyst under mild, safe, and simple reaction conditions (Table 77) [119]. Benzaldehydes was prepared with selective benzylic alcohol oxidations in moderate to good yields without overoxidation. Additionally, *N*-atom of 2-pyridinemethanol and *S*-atom of 2-thiophenemethanol showed no oxidation.

	Р.П.ОН	SiW ₉ Al ₃ 95 (1.7 µmol)	 R		
	H ₂ O ₂	(30%, 30-50 mmol), solvent free 60-95 °C, 2-12 h.	e R		
Entry	Substrate	Product	t/h	Conv. (%)	Sel. (%)
1	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	6	100	99
2	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	7	100	99
3	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	5	100	99
4	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	6	100	99
5	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	12	74	99
6	2-Pyridinemethanol	Picolinaldehyde	5	100	99
7	Furfuryl alcohol	Furfural	2	100	99
8	2-Thiophenemethanol	2-Thiophenecarboxaldehyde	4	100	99

а.
•

 a Reaction condition: Substrate (20 mmol), SiW_9Al_3 95 (1.7 μ mol), H_2O_2 (30%, 30 to 50 mmol), solvent free, 60 to 95 °C, 2 to 12 h.

2.3. Oxidation of Benzylic and Heterocyclic Alcohols in the Presence of Various Solvents

2.3.1. Acetonitrile Solvent

Keggin-type polyoxometalate $[n-C_4H_9)_4N]_x[PW_{11}ZnO_{39}]\cdot nH_2O$ was successfully immobilized on imidazole functionalized ionic liquid-modified mesoporous MCM-41 by physical adsorption $(PW_{11}Zn@MCM-41-Im)$ (96) [120]. The supported ionic liquid catalyst was easily recovered by simple filtration and reused in four reaction runs. Different alcohols were efficiently oxidized in reflux condition, as shown in Table 78, with high yields and good selectivity. A slight influence on the reaction of benzylic alcohols and electronic nature (electron-withdrawing and electron-donating groups) of the substituent were observed (Table 78, Entries 2–6).

Table 78. Oxidation of alcohols with H_2O_2 catalyzed by $PW_{11}Zn@MCM-41$ -Im **96** under reflux conditions ^a.

	В Щ ОН	PW ₁₁ Zn@MCM-41-Im 9 (50 mg, 0.003 mmol)	6)
	H ₂ O ₂	(30%, 5 mmol), CH ₃ CN (3 reflux, 10-15 h	3 mL)	ĸŢŗ	
Entry	Substrate	Product	t (h)	Yield (%) ^b	TOF (h ⁻¹)
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	10	94	15.83
2	2-ClC ₆ H ₄ CH ₂ OH	2-ClC ₆ H ₄ CHO	14	88	10.47
3	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	12	94	13.09
4	2-BrC ₆ H ₄ CH ₂ OH	2-BrC ₆ H ₄ CHO	15	90	10
5	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	12	92	12.77
6	2,4-ClC ₆ H ₃ CH ₂ OH	2,4-ClC ₆ H ₃ CHO	13	60	7.69
7	2-NO ₂ C ₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	12	75	10.41
8	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	12	70	9.72
9	4-OHC ₆ H ₄ CH ₂ OH	4-OHC ₆ H ₄ CHO	12	82	11.08
10	2-OMeC ₆ H ₄ CH ₂ OH	2-OMeC ₆ H ₄ CHO	12	92	12.77
11	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	14	94	9.64
12	2-MeC ₆ H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	12	94	11.05
13	4-Tert-butylC ₆ H ₄ CH ₂ OH	4-Tert-butylC ₆ H ₄ CHO	11	65	9.84

^a Reaction conditions: Substrates (0.5 mmol), $PW_{11}Zn@MCM-41$ -Im **96** (50 mg, 0.003 mmol), H_2O_2 (30%, 5 mmol), CH_3CN (3 mL), reflux, 10 to 15 h. ^b GC yield based on the starting alcohol.

Three paramagnetic metal complexes of 3-hydroxy-3,3'-biindoline-2,2'-dione (dihydroindolone, H_4ID) (MH₂ID) with Ni²⁺, Cu²⁺, and VO²⁺ ions with were synthesized and applied in oxidation

reactions using aqueous H_2O_2 in acetonitrile. Although all the NiH₂ID (97), CuH₂ID (98), and VOH₂ID (99) catalysts showed good catalytic activity, chemo-, and regioselectivity, VOH₂ID had the highest potential due to more Lewis acid character and the high oxidation number of the central V⁴⁺ ion in 99 as compared with both Ni²⁺- and Cu²⁺-species in the same homogenous aerobic atmosphere [121]. As illustrated in Table 79, 99 afforded the best amount of the selective product such as benzaldehyde (85%) [122].

Table 79. Oxidation process catalyzed by VOH₂ID **99** using an aqueous H₂O₂ in acetonitrile ^a.

			ЭН	H ₂ O ₂ (3 m CH ₃ CN (3 85 °C, 4	mol) mL) h	\rightarrow	0			
Entry	Substrata	Product	t/h	Ca	onv. (%	.)	Conv.	Sel.	TON	TOF®
Entry	Substrate	i louuct 91	ΥΠ	R ^b (Residual)	Pc	Side Products	(%)	(%)	ION	101
1			1	50	47	3	50	94	23.5	23.5
2	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	2	28	64	8	72	88	32	16
3	_		3	3	85	12	97	87	42.5	14.1
4	=		4	0	71	29	100	71	35.5	8.87

^a Reaction conditions: Benzyl alcohol (R) (1 mmol), VOH₂ID **99** (0.02 mmol), H₂O₂ (3 mmol), CH₃CN (10 mL), 85 °C, 4 h. ^b Residual amount (%) of the reactant after finishing the catalytic process (R). ^c Selectivity percentage of benzaldehyde (P), and the other side products. ^d TON (turn over number) is the ratio of moles of product obtained to the moles of catalyst. ^e Corresponding TOF (turn over frequency) (TON/h) is shown as mol (mol catalyst)⁻¹ h⁻¹.

Iron catalysts supported on porous furfuryl alcohol derived resins were synthesized and applied for the selective comparison of benzyl alcohol to benzaldehyde. As shown in Table 80, FeCl₂ (0.5 mol%) as a reference reaction was tested for the oxidation of 0.77 M benzyl alcohol with 2.3 eq. H_2O_2 in acetonitrile [123]. After microwave irradiation (5 min), 53% conversion with 78% selectivity to benzaldehyde was detected. Loading iron catalysts supported on P420 (Fe/P420 (**100**)) or P500resin (Fe/P500 (**101**)) with 10 times lower Fe content (0.05 mol%), similar selectivity with lower conversion in the product mixture was obtained. (Tables 80 and 81) [123]. In addition, the selectivity in the final reaction mixture by preventing further oxidation to benzoic acid was optimized by continuous addition of H_2O_2 between 1.5 and 2.3 eq.

Table 80. Benzyl alcohol conversion and selectivity using Fe nanoparticles supported on P420 resin **100** as compared with free dissolved FeCl₂, using 1.5 and 2.3 equiv. $H_2O_2^{a}$.

$\begin{array}{c} FeCl_{2} (0.5 \text{ mol}\%) \\ Fe/P420 \ 100 \ (0.3-0.0.23 \text{ mol}\%) \\ \hline H_{2}O_{2} (33 \text{ or } 50 \text{ w/v}\%, 1.5 \text{ and } 2.3 \text{ equiv.}) \\ \hline CH_{3}CN \ (2 \text{ mL}), \text{ microwave irradiation } (300 \text{ W}) \\ autogenous pressure (5 \text{ to } 17 \text{ bar}) \end{array}$								
			90-132 °C, Catalyst	1.2-5 min		H ₂ O ₂	Conv.	Sel. (%)
Entry	Substrate	Product	Fe/P420	FeCl ₂	_ t/min	(equiv.)	(%)	BzH
1			-	0.5	5	2.3	53	78
2	-		0.03	-	5	2.3		
3	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	0.05	-	5	2.3	22	78
4	-		0.23	-	1.2	2.3	20	
5	-		0.05	-	5	1.5		
6	-		0.12	-	2.3	1.5		

^a Reaction conditions: Substrate (0.77 M, 0.2 mL, 1.92 mmol), FeCl₂ (0.5 mol%), Fe/P420 **100** (0.3 to 0.0.23 mol%), H_2O_2 (1.5 and 2.3 equiv., 0.3 mL of a 33 or 50 w/v% aqueous H_2O_2 solution), CH₃CN (2 mL), microwave irradiation (300 W), autogenous pressure (5 to 17 bar with an average of 16 bar), 90 to 132 °C, 1.2 to 5 min.

Table 81. Benzyl alcohol conversion and selectivity using Fe nanoparticles supported on P500 **101** as compared with dissolved FeCl₂, using 1.5 and 2.3 equiv. $H_2O_2^{a}$.

Í	$\begin{array}{c} FeCl_{2} (0.5 \text{ mol}\%) \\ Fe/P500 \ \textbf{101} (0.3-0.0.12 \text{ mol}\%) \\ \hline OH \underline{H_{2}O_{2} (33 \text{ or } 50 \text{ w/v}\%, 1.5 \text{ and } 2.3 \text{ equiv.})} \\ \end{array} $									
CH ₃ CN (2 mL), microwave irradiation (300 W) autogenous pressure (5 to 17 bar) 90-132 °C, 1.2-5 min.										
Entry	Substrate	Product	Catalyst	(mol%)	t/min	H_2O_2	Conv.			
Littiy	Substrate	Tioduct	Fe/P500	FeCl ₂	ymm	(equiv.)	(%)			
1			-	0.5	5	2.3				
2	-		0.03	-	5	2.3	6–9			
3	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	0.05	-	5	2.3				
4	-		0.05	-	5	1.5				
5	-		0.12	-	2.3	1.5				
6	_		0.23	-	1.5	1.5				

^a Reaction conditions: Substrate (0.77 M, 0.2 mL, 1.92 mmol), FeCl₂ (0.5 mol%), Fe/P500 **101** (0.3 to 0.0.12 mol%), H₂O₂ (1.5 and 2.3 equiv., 0.3 mL of a 33 or 50 w/v% aqueous H₂O₂ solution), CH₃CN (2 mL), microwave irradiation (300 W), autogenous pressure (5 to 17 bar with an average of 16 bar), 90 to 132 °C, 2.3 to 5 min.

Metal molybdates were coupled with Co, Ni, and Cu with Mo, respectively, for the preparation of bimetallic complexes which was used successfully in alcohol oxidation reactions by Xinhua et al., in 2018 [124]. The 100% selectivity in conversion of the alcohols to corresponding carbonyl compounds showed noticeable performance of theses catalysts which could be reused three times. The results represented that CoMoO₄ (**102**) catalyst provided lower conversion and much higher selectivity (approximately 100%). In addition, non-terminal alcohols could be oxidized to ketones sufficiently (Table 82, Entries 2 and 3). Although NiMoO₄ (**103**) had near 100% selectivity, Cu₄Mo₃O₁₂ (**104**) provided no product (Table 82, Entry 1) due to the existence of a bimetallic combination effect in the oxidation reactions.

Ω. OHCoMoO₄ 102 (0.05 g, 23 mol%) R H₂O₂ (30%, 0.23 g, 2 mmol) OH CH₃CN (5 mL) R' 70 °C, 18 h Conv. (%) ^b Yield (%) ^b Entry Substrate Product 43 43 37 ^{c,d} 36 ^{c,d} 1 C₆H₅CH₂OH C₆H₅CHO _ d _ d 2 C₆H₅CH(OH)CH₃ C₆H₅COCH₃ 37 37 3 c (C₆H₅)₂CHOH 30 30 $(C_6H_5)_2CO$ 4 4-BrC₆H₄CH₂OH 4-BrC₆H₄CHO 46 46 5 e 1-Naphthylmethanol 1-Naphthaldehyde 13 13 6 e 4-NO₂C₆H₄CH₂OH 4-NO₂C₆H₄CHO 25 25

Table 82. Selective oxidation of different alcohols ^a.

^a Reaction conditions: Substrate (1 mmol), CoMoO₄ **102** (0.05 g, 23 mol%), H_2O_2 (30%, 0.23 g, 2 mmol), CH₃CN (5 mL), 70 °C, 18 h. ^b Calculated by GC with nonane as the internal standard. ^c With NiMoO₄ as the catalyst (0.05 g, 23 mol%). ^d With Cu₄Mo₃O₁₂ as the catalyst (0.04 g, 6 mol%). ^e Isolated by column chromatography.

Baghbanian et al. [125] immobilized 12-tungstophosphoric acid onto poly(N-vinylimidazole) which was modified by magnetic nanozeolite (MNZ@PVImW) (105). The results of successful catalytic oxidations of benzylic alcohols in the presence of synthesized catalyst under optimized reaction conditions are summarized in Table 83. In addition, without loss of catalytic activity, the catalyst could be reused eight times.

		$\begin{array}{c} & & \\ & & \\ OH \\ & & \\ OH \\ & \\ R' \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$R = \frac{1}{105 (2 \text{ mg})}$ $R = \frac{1}{100}$ $R = \frac{1}{100}$ $R = \frac{1}{100}$ $R = \frac{1}{100}$	O R		
Entry	Substrate	Prod	uct	t/min	Conv. (%) ^b	Yield (%)
		Α	В			
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	C ₆ H ₅ CO ₂ H	30	96	95
2	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	4-MeC ₆ H ₄ CO ₂ H	25	92	92
3	2-MeC ₆ H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	2-MeC ₆ H ₄ CO ₂ H	25	91	90
4	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	4-OMeC ₆ H ₄ CO ₂ H	25	96	95
5	3,4-OMeC ₆ H ₃ CH ₂ OH	3,4-OMeC ₆ H ₃ CHO	3,4-OMeC ₆ H ₃ CO ₂ H	20	91	90
6	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	$4-NO_2C_6H_4CO_2H$	60	82	80
7	3-NO ₂ C ₆ H ₄ CH ₂ OH	3-NO ₂ C ₆ H ₄ CHO	3-NO ₂ C ₆ H ₄ CO ₂ H	90	79	75
8	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	4-ClC ₆ H ₄ CO ₂ H	45	92	91
9	3-ClC ₆ H ₄ CH ₂ OH	3-ClC ₆ H ₄ CHO	3-ClC ₆ H ₄ CO ₂ H	45	92	90
10	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	4-BrC ₆ H ₄ CO ₂ H	40	92	91
11	3-BrC ₆ H ₄ CH ₂ OH	3-BrC ₆ H ₄ CHO	3-BrC ₆ H ₄ CO ₂ H	40	90	89
12	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	-	30	90	88
13	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	-	45	92	90
14	4-OMeC ₆ H ₄ CH(OH)C ₆ H ₅	4-OMeC ₆ H ₄ COC ₆ H ₅	-	40	91	90
15	4-ClC ₆ H ₄ CH(OH)C ₆ H ₅	4-ClC ₆ H ₄ COC ₆ H ₅	-	40	88	85

Table 83. Oxidation of various alcohols catalyzed by MNZ@PVImW 105^a.

^a Reaction conditions: Substrate (1 mmol), MNZ@PVImW **105** (2 mg), H_2O_2 (4 mmol), CH₃CN (3 mL), 40 °C, 20 to 90 min. ^b Conversions were calculated based on initial mmol of benzyl alcohol.

A simple and efficient catalytic oxidation of benzylic and hetero-aryl alcohols to their corresponding carbonyl compound using recoverable heterobimetallic sodium-dioxidovanadium (V) complexes (**106**) was reported (Table 84) [126].

Table 84. Catalytic oxidation of alcohols by heterobimetallic vanadium(V) complexes 10	06	а
--	----	---

	R U OH	heterobimetallic dioxido-vana (0.01 mn	dium(V) o 10l)	complexes 106	R [
	R II R'	H ₂ O ₂ (15%, 4.8 70 °C, 2.3-7	5 mmol) 7.2 h		R	R'	
Entry	Substrate	Product	t/h	Yield (%) ^b	TON	TOF (h ⁻¹)	Yield (%) ^c
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	3.4	89	445	130.88	93
2	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	4	91	455	113.75	94
3	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	4.3	80	400	93.02	87
4	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	6	No reaction	-	-	-
5	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	7.2	No reaction	-	-	-
6	3-ClC ₆ H ₄ CH ₂ OH	3-ClC ₆ H ₄ CHO	4.5	74	370	82.22	79
7	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	4.5	88	400	97.78	90

Entry	Substrate	Product	t/h	Yield (%) ^b	TON	TOF (h ⁻¹)	Yield (%) ^c
8	3-MeC ₆ H ₄ CH ₂ OH	3-MeC ₆ H ₄ CHO	5	86	430	86	88
9	2-MeC ₆ H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	5	84	420	84	86
10	C ₆ H ₅ CH(OH)COC ₆ H ₅	$(C_6H_5)_2(CO)_2$	4	86	430	107.5	88
11	Furfuryl alcohol	Furfural	3	85	425	141.67	89
12	2-Pyridinemethanol	Picolinaldehyde	4	89	445	111.25	92
13	2-Thiophenemethanol	2-Thiophenecarboxaldehyde	2.3	78	390	169.57	82
14	2,3,4-OMeC ₆ H ₂ CH ₂ OH	2,3,4-OMeC ₆ H ₂ CHO	3.5	94	470	134.29	96

Table 84. Cont.

^a Reaction condition: Substrate (4.84 mmol), heterobimetallic dioxido-vanadium(V) complexes **106** (0.01 mmol), H₂O₂ (15%, 4.85 mmol), 70 °C, 2.3 to 7.2 h. ^b Isolated yield. ^c GC Yield.

The hydrothermal method was applied for the preparation of MCM-41 nanostructure-modified with vanadium, iron, and cobalt. Under optimized conditions, a molar ratio substrate/oxidant of 4/1 and 7 h of reaction, as summarized in Table 85, BzH was the main product with 7% and 12% yield for V-M(60) (**107**) and Fe-M(60) (**108**), respectively [127]. High TON (1100 mol/mol V), 95% selectivity to BzH, and 31.7% yield made V-M(60) performance better than **108** and Co-M(60) (**109**) due to effective dispersion of vanadium species in the framework that could be considered as the active sites for the oxidation reaction. Moreover, the catalyst could be effectively reused and recovered for at least three cycles without loss of its activity and selectivity.

		`ОН	M-M(x) (100 mg)			
		BzOH:H ₂ O	₂ (4:1), CH 70 °C,	I ₃ CN (91.1 7 h	5 mmol)		
Entry	Sample	Conv. of BzOH		Sel. (%)		BzH Vield (%)	TON
Littiy	Sumple		BzH	BzA	BzB	DZII IICIA (70)	ION
1	V-M(60)	7.1 ^b (28.3) ^c	100	-	-	7.1	235
2	Fe-M(60)	13.3 ^b (53.2) ^c	90.5	6.0	3.5	12	50.5
3	Co-M(60)	0.9 ^b (3.5) ^c	100	-	-	0.9	2.1

Table 85. Benzyl alcohol oxidation with H_2O_2 on M-M(x) catalysts under standards conditions ^a.

^a Reaction conditions: B_2OH/H_2O_2 molar ratio (4:1), M-M(x) (100 mg), CH₃CN (91.15 mmol, Sintorgan, 99.5%), 70 °C, 7 h. ^b B₂OH conversion (%). ^c B₂OH conversion (mol% of max).

Using a synthetic manganese catalyst for catalytic oxidation and oxidative kinetic resolution (OKR) of secondary alcohols in the presence of an environmentally benign oxidant hydrogen peroxide and a small amount of additive sulfuric acid provided the high yields of products (up to 93%) with excellent enantioselectivity (>90% *ee* in the OKR of secondary alcohols). Moreover, **111** provided a higher enantiomeric excess (90% *ee*) than **110** (65%) in 1-phenylethanol oxidation (Table 86, Entry 1 and footnote c) [128].

A variety of picolinic/quinaldinic acids as ligands mixed in situ with $Fe(OAc)_2$ (112) catalyzed the H_2O_2 oxidation of 1-phenylethanol especially with 6-methylpicolinic acid (6-MepicH) and 4-chloropicolinic acid (4-ClpicH) (Table 87) [129]. The oxidation possesses proceeded using 35% aq. H_2O_2 in CH₃CN solution with isolated Fe complexes (113) as the catalyst (Table 88) [129]. In addition, the results showed that the redox potential of Fe III and the lability of picolinate or quinaldinate ligand were important factors for the catalytic reaction. Table 86. Substrate scope of oxidative kinetic resolution of secondary alcohols using the $111/H_2O_2/H_2SO_4$ catalytic system. ^{a,b}

110: Ar = Ph**111:** Ar = 3,5-di-^tBu-Ph

Entry	Substrate	Product	H ₂ O ₂ (equiv.)	Conv. (%)	ee (%)	
1 ^c	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	0.8	69	90	
2	4-ClC ₆ H ₄ CH(OH)CH ₃	4-ClC ₆ H ₄ COCH ₃	0.8	74	92	
3	3-ClC ₆ H ₄ CH(OH)CH ₃	3-ClC ₆ H ₄ COCH ₃	0.9	69	92	
4	2-ClC ₆ H ₄ CH(OH)CH ₃	2-ClC ₆ H ₄ COCH ₃	0.9	68	96	
5 ^d	4-NO ₂ C ₆ H ₄ CH(OH)CH ₃	4-NO ₂ C ₆ H ₄ COCH ₃	0.9	60	96	
6 ^d	4-PhC ₆ H ₄ CH(OH)CH ₃	4-PhC ₆ H ₄ COCH ₃	0.9	65	93	
7	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	0.8	71	92	
8	4-BrC ₆ H ₄ CH(OH)Et	4-BrC ₆ H ₄ COEt	0.8	69	96	
9	4-ClC ₆ H ₄ CH(OH)Et	4-ClC ₆ H ₄ COEt	0.7	62	90	
10	4-FC ₆ H ₄ CH(OH)Et	4-FC ₆ H ₄ COEt	0.8	68	96	
11	3-FC ₆ H ₄ CH(OH)Et	3-FC ₆ H ₄ COEt	0.9	69	94	
12	2-FC ₆ H ₄ CH(OH)Et	2-FC ₆ H ₄ COEt	0.8	61	90	
13	C ₆ H ₅ CH(OH)iPr	C ₆ H ₅ COiPr	0.8	66	92	
14	C ₆ H ₅ CH(OH) <i>c</i> -Hex	C ₆ H ₅ CO <i>c</i> -Hex	0.8	65	92	
15	C ₆ H ₅ CH(OH)(CH ₂) ₅ Me	C ₆ H ₅ CO(CH ₂) ₅ Me	0.8	64	93	

^a Reaction conditions: An CH₃CN (0.5 mL) solution containing H_2O_2 (30%, 0.70 to 0.90 equiv.) was added dropwise into an CH₃CN (1 mL) solution containing secondary alcohol (0.5 mmol), **111** (0.2 mol%), and H_2SO_4 (1 mol%) by using a syringe pump at 0 °C for 1 h. ^b Conversion yields and ee values were determined by GC with a CP-Chirasil-Dex CB column. ^c When **110** was used as a catalyst under the identical reaction conditions, the conversion yields and *ee* values were 66% and 65%, respectively. ^d Conversion yields were calculated from the isolated products and the ee values were determined by HPLC with IA column.

	CH ₃ –	Fe(OAc) ₂ 112 (0 Picolinic/Quinale (0.05 equiv. + 0. H ₂ O ₂ (35%, 2 CH ₃ CN (2 mL), 25	.05 equiv.) dinic acids 05 equiv.) equiv.) 5 °C, 30 min		CH ₃
N	OH Me N	ОН	O N	ОН Л	O OH
picH	6-N	ЛерісН	qnH	X 4-Xpic (X= O)	H Me, Me, Cl)
Entry	Picolinic Qui	naldinic Acids	Conv. (%) ^b	Yield (%) ^b	Sel. (%) ^c
1	6-MepicH	picH	78	71	91
2	6-MepicH	4-OMepicH	74	69	93
3	6-MepicH	4-MepicH	70	63	93
4	6-MepicH	4-ClpicH	85 94 d	81 93 ^d 91 ^e	95 99 d
5	qnH	picH	46	39	85
6	qnH	4-OMepicH	35	25	71
7	qnH	4-MepicH	39	31	79
8	qnH	4-ClpicH	73	65	89
9 f	picH	-	57	33	59
10 ^f	4-OMepicH	-	13	8	59
11 ^f	4-MepicH	-	44	40	91
12 ^f	4-ClpicH	-	39	36	93
13 ^f	6-MepicH	-	25	20	77
14 ^f	qnH	-	9	6	60

^a Reaction conditions: 1-Phenylethanol (12 g, 0.1 mol), Fe(OAc)₂ **112** (0.5 equiv.), picolinic/quinaldinic acids (0.5 equiv.) + 0.5 equiv.), H₂O₂ (35%, 2 equiv.), CH₃CN (2 mL), 25 °C, 30 min, and further stirring for 5 min, unless otherwise stated. ^b Determined by GC by using biphenyl as an internal standard. Average of two runs. ^c Yield/conversion × 100. ^d H₂O₂ (35%) in CH₃CN was used. ^e Yield of isolated product, 10 g scale. ^f 0.10 equiv. of acid were used.

The coprecipitation approach was applied for hybrid chromium (VI)-based magnetic nanocomposite catalyst (Fe₃O₄@SiO₂@PPh₃@Cr₂O₇²⁻ (114)) preparation by Maleki et al., in 2016 [130]. This catalyst was used for the first report of using magnetic nanocomposites with ultrasonic irradiation for the oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide at room temperature (Table 89). Total conversion of benzyl alcohol to benzaldehyde and the reusability of the catalyst at least five times were the benefit of this system.

Yadollahi et al. [131] first reported using transition metal-substituted polyoxometalate $[PW_{11}ZnO_{39}]^{5-}$ (PW₁₁Zn) (POMs) supported on activated carbon (AC) for oxidation of alcohols in the presence of H₂O₂ and CH₃CN as solvent (Table 90). In addition, with high selectivity, the oxidation of *p*-hydroxybenzyl alcohol without oxidation of the hydroxyl group was carried out (Table 90, Entry 13) and showed no change in the catalytic activity/selectivity of PW₁₁Zn@AC (**115**) for at least five catalytic cycles of sequence loading.

	$\begin{array}{c} OH \\ CH_3 \\ 1a \end{array} \qquad \begin{array}{c} Fe \text{ complex I} \\ H_2O_2 () \\ H_3CN (2 \text{ m}) \end{array}$	113 (0.05 equiv. 2.0 equiv.) L), 25 °C, 30 m	() $()$ $()$ $()$ $()$ $()$ $()$ $()$	`СН ₃
Entry	Fe complex	Conv. (%) ^b	Yield (%) ^b	Sel. (%) ^c
1	[Fe(6-Mepic) ₂ (pic)]	69	59	85
2	[Fe(6-Mepic) ₂ (4-Mepic)]	66	56	85
3	[Fe(6-Mepic) ₂ (4-Clpic)]	76 (67) ^d	65 (63) ^d	86 (95) ^d
4	[Fe(qn) ₂ (4-Mepic)]	39	33	85
5	[Fe(qn) ₂ (4-Clpic)]	76	64	84
6	[Fe(4-OMepic) ₃]	24	4	17
7	[Fe(4-Mepic) ₃]	8	6	75
8	[Fe(4-Clpic) ₃]	14	10	71
9	[Fe(pic) ₃]	24	13	54
10	[Fe(6-Mepic) ₃]	22	17	74

Table 88. Catalytic oxidation of 1-phenylethanol by isolated Fe complexes 113^a.

^a Reaction conditions: 1- Phenylethanol (12 g, 0.1 mol), Fe complex **113** (0.05 equiv.), H_2O_2 (35%, 2 equiv.), CH_3CN (2 mL), 25 °C, 30 min, and further stirring for 5 min, unless otherwise stated. ^b Determined by GC using biphenyl as an internal standard. Average of two runs. ^c Yield/conversion × 100. ^d 0.1 equiv. of CH₃COOH was added.

Table 89. The oxidations of benzyl alcohol to benzaldehyde in the presence of $Fe_3O_4@SiO_2@PPh_3@Cr_2O_7^{2-}$ nanocomposite **114** ^a.

^c Keaction conditions: Substrate (5 mmol), Fe₃O₄@SiO₂@PPh₃@Cr₂O₇⁻ 114 (0.05 g), H₂O₂ (30%, 0.6 mL), CH₃CN (2 mL), room temperature, 20 min, ultrasonic irradiation. ^b Obtained by gas chromatography mass spectrometry analysis.

Two thiosemicarbazide Schiff bases, 1-(4-dimethylaminobenzylidene) thiosemicarbazide (ABTSC) and 1-(2-pyridincarboxyl-idene) thiosemicarbazide (TCTS), were applied for the coordination with Co(II), Ni(II), Zn(II), Cd(II), and Ag(I) transition metal salts, chloride, and acetate, and then under optimized conditions proceeded successfully for the oxidation of benzylic alcohols, Table 91 [132]. The environmentally friendly oxidation catalytic systems exhibited great activities in successive runs without loss in activity. The best results under the optimum conditions were obtained with $Co(ABTSC)_2(OAc)_2$ (116) catalyst as in 4-methoxybenzyl alcohol oxidation to aldehyde with 95% conversion and 100% benzaldehyde selectivity.

OH PW11Z	Zn@AC 115 (5 μmol)		×₀
$R_{\overline{ }}$ $H_2O_2(30\%)$ re	%,1 mL), CH ₃ CN (3 mL) flux, 25-240 min	R	
Substrate	Product	t/min ^b	TOF (h ⁻¹) ^c
C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	45	267
2-MeC ₆ H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	35	343
4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	25	480
2-OMeC ₆ H ₄ CH ₂ OH	2-OMeC ₆ H ₄ CHO	35	343
4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	25	480
3-OMeC ₆ H ₄ CH ₂ OH	3-OMeC ₆ H ₄ CHO	70	171
2-NO ₂ C ₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	180	67
4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	240	50
4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	50	240
4-FC ₆ H ₄ CH ₂ OH	4-FC ₆ H ₄ CHO	25	480
4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	35	343
2,4-ClC ₆ H ₃ CH ₂ OH	2,4-ClC ₆ H ₃ CHO	90	133
4-OHC ₆ H ₄ CH ₂ OH	4-OHC ₆ H ₄ CHO	50	240
3-Br-2-HOC ₆ H ₃ CH ₂ OH	3-Br-2-HOC ₆ H ₃ CH ₂ OH	25	480
	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} & \begin{array}{c} & PW_{11}Zn@AC 115 (5 \ \mu mol) \\ & H_2O_2 (30\%, 1 \ mL), CH_3CN (3 \ mL) \\ reflux, 25-240 \ min \end{array} \\ \hline \\ & \begin{array}{c} & Substrate & Product \\ & C_6H_5CH_2OH & C_6H_5CHO \\ & C_6H_5CH_2OH & 2-MeC_6H_4CHO \\ & 2-MeC_6H_4CH_2OH & 4-MeC_6H_4CHO \\ & 4-MeC_6H_4CH_2OH & 4-MeC_6H_4CHO \\ & 2-OMeC_6H_4CH_2OH & 4-OMeC_6H_4CHO \\ & 4-OMeC_6H_4CH_2OH & 4-OMeC_6H_4CHO \\ & 3-OMeC_6H_4CH_2OH & 3-OMeC_6H_4CHO \\ & 2-NO_2C_6H_4CH_2OH & 4-NO_2C_6H_4CHO \\ & 4-NO_2C_6H_4CH_2OH & 4-NO_2C_6H_4CHO \\ & 4-BrC_6H_4CH_2OH & 4-BrC_6H_4CHO \\ & 4-BrC_6H_4CH_2OH & 4-BrC_6H_4CHO \\ & 4-BrC_6H_4CH_2OH & 4-BrC_6H_4CHO \\ & 4-BrC_6H_4CH_2OH & 4-CIC_6H_4CHO \\ & 4-CIC_6H_4CH_2OH & 4-CIC_6H_4CHO \\ & 4-OHC_6H_4CH_2OH & 4-OHC_6H_4CHO \\ & 4-OHC_6H_4CHO \\ & 4-OHC_6H_4CH_2OH & 4-OHC_6H_4CHO \\ & 4-OHC_6H_4CHO \\ & 4-OHC_6H_4CHO \\ & 4-OHC_6H_4CH_2OH & 4-OHC_6H_4CHO \\ & 4-OHC_6H_4CHO \\ & 4-OHC_6H_4CH_2OH & 4-OHC_6H_4CHO \\ & 4-OHC_6H_4CHO \\ & 4-OHC_6H_4CH_2OH & 4-OHC_6H_4CHO \\ & 4-OHC_6H_4CHO \\ & 4-OHC_6H_$	$\begin{array}{c} R \stackrel{II}{\sqcup} \longrightarrow OH \\ \hline PW_{11}Zn@AC 115 (5 \mu mol) \\ \hline H_2O_2 (30\%, 1 mL), CH_3CN (3 mL) \\ reflux, 25-240 min \end{array} \\ \hline R \stackrel{II}{\sqcup} \sum Product \\ \hline fm \ Product \\ $

Table 90. Oxidation of various alcohols with hydrogen peroxide catalyzed by PW₁₁Zn@AC **115** ^a.

^a Reaction conditions: Substrate (1 mmol), $PW_{11}Zn@AC$ **115** (5 µmol), H_2O_2 (30%, 1 mL), CH_3CN (3 mL), reflux, 25 to 240 min. ^b Yields are quantitative and refer to GC yields. ^c Turnover frequency.

Table 91. Oxidation benzyl alcohol derivatives for complex [Co(ABTSC) ₂ (OAc) ₂] 11	16	6)	,	5	f	((Ĺ	1	Ľ	1	1	1	Ĺ]	2	12)	С	C	.(ł	A	1)	2	((2	2):)	2	C	(3	S	7	I	5	3	F	r	4	A	())(Э	C](2	C	[(2	x	<u>;</u> >	e	le)]	2	r	l	n	n	n	0	C	20	С	(r	r	r	r)1)]	0	0	fo	f	f		5	s	25	2	e	(I	V	ľ	i	i	t	1	1	а	г	ĉ	ï	7	7	I	V	V	1	i	i	i		ri	r	r	1	1	2]	2	9	9	e	e	e	e	e	e	e	6	e	le	l	ł	ł	ł	ł	d	c	C	((,		l	1
--	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----	---	---	---	----	---	---	---	---	---	---	---	---	---	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----	----	---	---	----	---	---	----	--	---	---	------------	---	----	----	---	---	---	---	---	---	---	---	----	---	---	--	---	---	---	---	----	----	---	---	----	---	---	--	---	---	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	----	---	---	---	---	----	---	---	---	---	---	---	---	---	---	---	---	---	----	---	---	---	---	---	---	---	---	---	---	---	--	---	---

	1	116 M= Co, X= OAc			
Entry	Substrate	Product	Yield (%)	Sel. (%)	
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	85	100	
2	2-NO ₂ C ₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	65	97	
3	3-NO ₂ C ₆ H ₄ CH ₂ OH	3-NO ₂ C ₆ H ₄ CHO	65	97	
4	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	75	100	
5	2-OMeC ₆ H ₄ CH ₂ OH	2-OMeC ₆ H ₄ CHO	85	100	
6	3-OMeC ₆ H ₄ CH ₂ OH	3-OMeC ₆ H ₄ CHO	90	100	
7	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	95	100	

^a Reaction conditions: Substrate (1 mmol), [Co(ABTSC)₂(OAc)₂] **116** (0.03 mmol), H₂O₂ (30%, 3 mmol), CH₃CN (3 mL), 82 °C, 80 min.

Nanocrystalline cobalt aluminate (CoAl₂O₄), using both conventional (sample A: CoAl₂O₄-CCM) (117) and microwave combustion method (sample B: CoAl₂O₄-MCM) (118), was synthesized for comparative investigation in various alcohol oxidations to corresponding carbonyl compounds, as shown in Tables 92 and 93 [133]. 117 showed weaker ferromagnetic in nature as compared with CoAl₂O₄-MCM and both also showed a lower conversion rate in the oxidation of benzyl alcohol [134]. This result was confirmed more powerful for 118 and similar results were achieved within a shorter time. In addition, both catalytic systems catalytic were reusable activity/selectivity during at least five catalytic cycles.

Table 92. Oxidation of substituted alcohols to aldehydes using cobalt aluminate (CoAl₂O₄) (sample A) **117** under the optimum conditions ^a.

	OH OH $CoAl_2O_4$ (H_2O_2 (5 m	sample A) 117 (0.5 g) mol), CH ₃ CN (5 mmol) 80 °C, 8 h		O R'
Entry	Substrate	Product	Conv. (%)	Sel. (%)
1	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	74.11	81.34
2	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	63.09	79.12
3	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	63.45	83.25
4	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	58.34	80.94
5	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	80.91	98.68

 a Reaction conditions: Substrate (5 mmol), CoAl_2O_4 (sample A) **117** (0.5 g), H_2O_2 (5 mmol), CH_3CN (5 mmol), 80 °C, 8 h.

Table 93. Oxidation of substituted alcohols to aldehydes using cobalt aluminate (CoAl₂O₄) (sample B) **118** under optimum conditions ^a.

R	OH OH $CoAl_2O_4$ $H_2O_2 (5 m)$		O R'	
			R	_J
Entry	Substrate	Product	Conv. (%)	Sel. (%)
1	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	73.71	78.84
2	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	58.07	74.89
3	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	78.54	85.43
4	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	71.23	81.87
5	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	95.98	98.90

^a Reaction conditions: Substrate (5 mmol), $CoAl_2O_4$ (sample B) **118** (0.5 g), H_2O_2 (5 mmol), CH_3CN (5 mmol), 80 °C, 8 h.

The sol-gel technique via hydrolysis of tetraethyl orthosilicate (TEOS) was applied for the preparation of mono substituted Keggin type POMs, $[n-C_4H_9)_4N]_x[PW_{11}MO_{39}]\cdot nH_2O$ (PWM) (M = Cr, Mn, Fe, Co, Ni, and Cu) in silica matrix (PWM/SiO₂) and were examined in the oxidation reactions of different aromatic alcohols with aqueous 30% H₂O₂. Because for the preparation of benzaldehyde, PWFe/SiO₂ (**119**) composite showed the highest activity (80% yields) among all of catalytic systems,

further oxidation was performed by this catalyst (Table 94) [33]. Benzyl alcohol its derivatives with electron donating and withdrawing groups in *para-*, *orto-* and *meta-*positions, provided yields as excellent as primarily aromatic alcohols to the corresponding aldehydes. The **119** catalyst could also be recovered for five oxidation runs.

	$R \xrightarrow{H} OH \\ OH \\ H_{2}O_{2} (30\%)$	FiO_2 119 (0.03 mmol) 1 mL), CH ₃ CN (3 mL)		≥ ₀
	$R \stackrel{\text{II}}{=} R'$ ref	flux, 2.5-50 h	R	R'
Entry	Substrate	Product	t/h	Yield (%) ^b
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	4	92
2	2-MeC ₆ H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	3	98
3	3-MeC ₆ H ₄ CH ₂ OH	3-MeC ₆ H ₄ CHO	3	100
4	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	2.5	100
5	$4-(tert-Butyl)C_6H_4CH_2OH$	4-(<i>tert</i> -Butyl)MeC ₆ H ₄ CHC) 4	65
6	2-OMeC ₆ H ₄ CH ₂ OH	2-OMeC ₆ H ₄ CHO	4.5	92
7	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	2.5	100
8	3-BrC ₆ H ₄ CH ₂ OH	3-BrC ₆ H ₄ CHO	3.15	98
9	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	3	99
10	2-BrC ₆ H ₄ CH ₂ OH	2-BrC ₆ H ₄ CHO	4.5	96
11	2-NO ₂ C ₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	3	60
12	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	3	55
13	4-OHC ₆ H ₄ CH ₂ OH	4-OHC ₆ H ₄ CHO	4	85
14	2-OHC ₆ H ₄ CH ₂ OH	2-OHC ₆ H ₄ CHO	5	75
15	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	3.15	99
16	2,4-ClC ₆ H ₃ CH ₂ OH	2,4-ClC ₆ H ₃ CHO	50	96
17	3-IC ₆ H ₄ CH ₂ OH	3-IC ₆ H ₄ CHO	4	90
18	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	2.5	99

Table 94. Oxidation	of alcohols with	hydrogen i	peroxide cataly	zed by P	WFe/SiO ₂ 119 ^a .

^a Reaction condition: Substrate (1 mmol), PWFe/SiO₂ **119** (0.03 mmol), H_2O_2 (30%, 1 mL), CH₃CN (3 mL), reflux, 2.5 to 50 h. ^b Yields refer to GC yields.

Oxidation of *para*-substituted phenyl methyl sulfides and benzyl alcohols with H_2O_2 in acetonitrile solution were examined by a series of diiron (III) complexes of 1,3-bis(2'-arylimino)isoindoline, [(Fe(L)Cl)₂O], and 1,4-di-(2'-aryl)aminophthalazine, [Fe₂(μ -OMe)₂(H₂L)Cl₄], 1,4-di-(4'-methyl-2'-thiazolyl)aminophthalazine, and 1,4-di-(2'-benzthiazolyl)-aminophthalazine (Table 95) [135]. The results of the [Fe₂(μ -O)(L^{3,5,7})₂Cl₂] (**120–122**) catalysts confirmed that complex **120** provided the highest conversion because of catalyzing both oxygen-atom transfer and hydrogen-atom abstraction. In addition, among phthalazine-based complexes, the best oxidative activity was found with **124**, since benzyl alcohol gave the benzaldehyde with 100% selectivity by catalysts in all these reactions, and no other products were provided.

The oxidation of alcohols employing H_2O_2 as oxidant by manganese-containing catalytic system $[Mn^{IV,IV}_2O_3(tmtacn)_2]^{2+}$ (126)/carboxylic acid (where tmtacn = N,N',N''-trimethyl-1,4,7-triazacyclononane was reported (Table 96) [136]. Co-catalyst trichloroacetic acid provided the most active catalyst system and side reactions due to side products were not observed [137,138].

	OH	120-125 (1	0 µmol)		\searrow	
	H ₂ O ₂ (2.5 mmol), CH ₃ CN (5 mL) 20 °C, 1-2 h					
Entry	Catalyst	Substrate	t/h	Conv. (%)	Product dist	tribution (%)
j		4'R-PhCH ₂ OH	9	Conti (70)	4'R-PhCHO	4'R-PhCO ₂ H
1	$[E_{0}(u, O)(I^{3}), C_{1}]$	Н	1	2.4	100	0
1	[1 ^e 2(µ-O)(L)2Cl2]	Н	2	12.5	100	0
C	$[E_{2}(u, O)(1^{5}), C_{1}]$	Н	1	0.97	100	0
2	$[re_2(\mu-O)(L^*)_2Cl_2]$	Н	2	0.97	100	0
2	$[\mathbf{F}_{\mathbf{r}} (\mathbf{r}, \mathbf{O})(\mathbf{I}^{7}), \mathbf{C}]$	Н	1	0.15	100	0
3	$5 [Fe_2(\mu-O)(L^2)_2Cl_2]$	Н	2	1.2	100	0
4	$[\mathbf{E}_{2} (u, \mathbf{O}\mathbf{M}_{2}) (\mathbf{H}, \mathbf{I}, 4)]$	Н	1	7	100	0
4	$[re_2(\mu-Ome)_2(\Pi_2L^2)Cl_4]$	Н	2	11	100	0
		Н	1	9.5	100	0
		Н	2	12	100	0
		OMe	1	10	100	0
		OMe	2	13	100	0
5	$[F_{0}, (\mu, OM_0), (H_{\bullet}I_{\bullet})C_{1}]$	Me	1	9	100	0
5	[1e2(µ=0]vie)2(112L)C14]	Me	2	11	100	0
		Cl	1	9	100	0
		Cl	2	10	100	0
		NO ₂	1	4	100	0
	NO ₂	2	5	100	0	
6	$[Fe_2(\mu\text{-}OMe)_2(H_2L^8)Cl_4]$		0.17 ^b	3	100	0

Table 95. Results of the oxidation of benzyl alcohols catalyzed by isoindoline- $([Fe_2(\mu-O)(L^{3,5,\prime})_2C$	[l ₂])
(120–122) and phthalazine-based ([Fe ₂ (μ -OMe) ₂ (H ₂ ^{4,6,8})Cl ₄]) (123–125) diiron complexes ^a .	

^a Reaction conditions: Substrate (1 mmol), ([Fe₂(μ -O)(L^{3,5,7})₂Cl₂]) (**120–122**) and ([Fe₂(μ -OMe)₂(H₂^{4,6,8})Cl₄]) (**123–125**) (10 μ mol), H₂O₂ (2.5 mmol), CH₃CN (5 mL), 20 °C, 1 to 2 h. ^b Complex precipitation after 10 min.

Table 96. Oxidation of secondary alcohols to ketones using H_2O_2 catalyzed by $[Mn^{IV,IV}_2O_3(tmtacn)](PF_6)_2$ (**126**)^a.

Entry	Substrate	Product	Conv. (%) ^b	Yield (%) ^c
1	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	100	77
2	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	100	63
3	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	100	93

^a Reaction conditions: Substrate (3 mmol), $[Mn^{IV,IV}_2O_3(tmtacn)](PF_6)_2$ **126** (0.1 mol%), Cl_3CCO_2H (1 mol%), H_2O_2 (50%, 1.45 equiv.), CH_3CN ([substrate] = 1M), room temperature, 16 h. ^b Conversion was determined by ¹H NMR spectroscopy. ^c Isolated yields.

~ - -

As illustrated in Table 97, an in situ prepared catalyst based on manganese(II) salts $(Mn(ClO_4)_2 \cdot 6H_2O (127))$, pyridine-2-carboxylic acid, and butanedione with H_2O_2 as oxidant at ambient temperatures as catalyst system provided good-to-excellent yields and conversions with high TONs (up to 10,000) [139]. In addition, secondary alcohols were converted to ketones selectively in substrates bearing multiple alcohol groups which reduced the need to introduction protecting groups prior to the oxidation and subsequent removal. In general, the results confirmed that benzyl CH oxidation proceeded in preference to aliphatic CH oxidation.

R	OH pyridin R'	$ClO_4)_2 \cdot 6H_2O$ 127 (0.01 mol ¹ he-2-carboxylic acid (0.5 mol butanedione (0.5 equiv.) NaOAc (1 mol%) H ₂ O ₂ (50%, 3 equiv.) CH ₃ CN, rt, 12-16 h	$\xrightarrow{(1)} R \xrightarrow{[1]}$	O R'
Entry	Substrate	Product	Conv. (%) ^b	Yield (%) ^c
1	C ₆ H ₅ CH(OH)CH	C ₆ H ₅ COCH ₃	97	90
2	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	92	77
3	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	90	80
4	1-Tetralol	1-Tetralone	88	75
5 d	4-OMeC ₆ H ₄ CH(OH)	CH ₃ 4-OMeC ₆ H ₄ COCH ₃	3 70	64
6	4-BrC ₆ H ₄ CH(OH)C	$2H_3$ $4-BrC_6H_4COCH_3$	78	76

Table 97. Oxidation of secondary alcohols ^a.

^a Reaction conditions: Substrate (0.5 M, 1 mmol), Mn(ClO₄)₂·6H₂O **127** (50 μ M, 0.01 mol%), pyridine-2-carboxylic acid (2.5 mM, 0.5 mol%), NaOAc (5 mM, 1 mol%), butanedione (0.25 M, 0.5 equiv.), H₂O₂ (50%, 1.5 M, 3 equiv.) in CH₃CN, room temperature, 12 to 16 h. ^b Conversions and yields based on the substrate, determined by ¹H NMR spectroscopy. ^c Isolated yields, unless stated otherwise. ^g Substrate (0.25 M, 0.5 mmol).

Chemoselective oxidation of alcohols to their corresponding carbonyl compounds in short reaction times and high yields were reported by an efficient protocol including H_2O_2 as oxidant at 80 °C in acetonitrile in the presence of nanoparticles of Fe₂O₃-SiO₂ (**128**) (Table 98) [140]. The catalyst was successfully recycled at least five times with no substantial loss in the activity of the reused catalyst.

Table 98. Oxidation of various alcohols catalyzed by (9.6 wt% Fe) Fe_2O_3-S	GiO ₂ /Imidazole/H ₂ O ₂ ^a	
--	--	--

$R \xrightarrow{[1]{}} OH \xrightarrow{Fe_2O_3-SiO_2 128 (10 \text{ mg}, 17.2 \mu \text{mol}, 9.6 \text{ wt% Fe})}_{\text{imidazole (40 \mu \text{mol}), H_2O_2 (30\%, 14 \text{ mL})} R \xrightarrow{[1]{}} R \xrightarrow{[1]{}}$				0	
Entry	Substrate	Product	Conv. (%)	Sel. (%) ^b	TON
1 ^d	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	94	100	55
2 ^d	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	100	100	58

^a Reaction conditions: Substrate (1 mmol), Fe₂O₃-SiO₂ **128** (9.6 wt% Fe, 10 mg, 17.2 µmol), imidazole (40 µmol), H₂O₂ (30%, 14 mmol), CH₃CN (3 mL), 80 ± 1 °C, 5 h. Conversions and yields are based on the starting substrate. ^b All products were identified by comparison of their physical and spectral data with those of authentic samples or GC-MS. ^c Reaction time = 4 h.

In the presence of H_2O_2 , a reusable (three times) and high stable heteropolyoxometalates $[C_7H_7N(CH_3)_3]_3PMo_4O_{16}$ (BTPM) (140) catalyst was catalyzed for selective oxidation of BzH with selectivity more than 99% and 92.8% of BzOH conversion (Scheme 1) [141].

Scheme 1. Process of the catalytic oxidation of BzOH.

Vanadium phosphorus oxide (VPO) (**129**) was introduced as an operational catalyst in the presence of hydrogen peroxide for the preparation of aldehydes and ketones from alcohol oxidations without employing any sacrificial oxidants or base at 65 to 70 °C in acetonitrile solvent (Table 99) [142]. Although both activated and non-activated alcohols were selectively and efficiently converted to the corresponding carbonyls with no producing byproducts, activated alcohols such as benzhydrol, benzyl alcohol, and 1-phenylethanol (Entries 1, 2, and 3, respectively) afforded a much higher conversion. The catalyst could also be easily reused for five successive cycle runs with a slight decrease in its efficiency.

R-	OH OH R'	VPO 12 O ₂ (30%, 40 mm 65 °C,	9 (10 mg) ol), CH ₃ CN (10 mI 4 h, N ₂		[≈] 0 C R'
Entry	Substrate	Product	Conv. (%)	Sel. (%)	TON
1	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	52	100	80
2	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	66	78 ^b	102
3	C ₆ H ₅ CH(OH)CH ₃	₃ C ₆ H ₅ COCH ₃	77	100	118
4	2-FC ₆ H ₄ CH ₂ OH	2-FC ₆ H ₄ CHO	42	62 ^c	65

Table 99. Oxidation of various alcohols over VPO 129 catalyst using H₂O₂ and acetonitrile ^a.

^a Reaction conditions: Substrate (10 mmol), VPO **129** (10 mg), H_2O_2 (30%, 40 mmol), CH₃CN (10 mL), 65 °C, 4 h, stir, N_2 . ^b Remaining benzoic acid. ^c Remaining fluoro benzoic acid.

An environmentally friendly protocol including hydrogen peroxide, liquid phase at atmospheric pressure over Fe^{3+} /montmorillonite-K10 (130) catalyst synthesized by the ion-exchange method at pH = 4 in acetonitrile solvent was proposed for the oxidation of various primary and secondary aromatic, as illustrated in Table 100 [143]. Oxidation of the -OH group adjacent to the benzene ring (activated alcohols) was easier such as in 1-phenylethanol (Entry 1) and benzyl alcohols (Entries 2–3) and also it showed higher conversions (86% to 95%). The catalyst was also reused for five times.

$R \xrightarrow{[1]}{\text{OH}} OH = Fe^{3+}/K10 130 (0.25 \text{g})$ $R \xrightarrow{[1]}{\text{H}_2} R' = \frac{Fe^{3+}/K10 130 (0.25 \text{g})}{65 ^\circ\text{C}, 8 \text{h, air}}$				© O R'	
Entry	Substrate	Product	Conv. (%)	Sel. (%)	TON
1	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	86	95 ^b	48
2	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	>95	32 ^c	54
3	3-ClC ₆ H ₄ CH ₂ OH	3-ClC ₆ H ₄ CHO	>95	5 c	54
4	4-FC ₆ H ₄ CH ₂ OH	4-FC ₆ H ₄ CHO	>95	41 ^d	54

Table 100. Oxidation of various alcohols over Fe³⁺/K10 130 catalyst using H₂O₂ and acetonitrile ^a.

^a Reaction conditions: Substrate (12.5 mmol), Fe³⁺/K10 **130** (0.25 g), H₂O₂ (30%, 50 mmol), CH₃CN (10 mL), 65 °C, 8 h, stir, air. ^b 4 h, remaining benzaldehyde. ^c 4 h, remaining respective benzoic acids. ^d 0.5 h, remaining fluoro benzoic acid.

2.3.2. Toluene Solvent

Oxo-vanadium (V=O) was immobilized on the surface of Fe_3O_4 @PDA [VO(PDA)@Fe_3O_4] as a magnetic adsorbent and stabilizing agent. VO(PDA)@ Fe_3O_4 (**131**) nanoparticles demonstrated high catalytic activity as a recyclable catalyst in the chemoselective oxidation of benzylic alcohols to aldehydes using hydrogen peroxide in high yield (Table 101) [144]. The synthesized catalyst could be reused seven times and could be easily separated.

Table 101. Oxidation of benzylic alcohols catalyzed by VO(PDA)@Fe₃O₄ 131 ^a.

R tu R tu	OH $VO(PI$ (60 mg OH H_2O_2 R' toluene (5		O R'	
Entry	Substrate	Product	t (h)	Yield (%)
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	6	96
2	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	8	90
3	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	8	88
4	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	12	90
5	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	8	92
6	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	10	90

^a Reaction conditions: Substrate (1 mmol), VO(PDA)@Fe₃O₄ **131** (60 mg, 1.5 mol%), H_2O_2 (30%, 2.5 mmol), toluene (5 mL), reflux, 6 to 12 h.

The deposition-precipitation method was applied for the preparation of a series of bimetallic copper-nickel (CuNix, x = 0.1, 0.2, 0.5, and 1) nanoparticles supported on activated carbon (AC) for assessing the effect of different ratios of Ni added into the Cu catalyst. A comparison between bimetallic Cu-Ni nanoparticles and monometallic Cu and Ni nanoparticles showed that the catalytic activity increased in the presence of the CuNi₁/AC (**132**) catalyst for the oxidation of benzyl alcohols to the corresponding aldehyde in a short reaction time at 80 °C (Table 102) [145].

ОН	catalyst (0.1 g)	
	H ₂ O ₂ (30%, 3.3 mL), toluene 80 °C, 2 h	(20 mL)
Entry	Catalyst	Conv. (%)
1	Cu/AC	13.8
2	Ni/AC	33.6
3	CuNi _{0.1} /AC	35.1
4	CuNi _{0.2} /AC	36.5
5	CuNi _{0.5} /AC	37.1
6	CuNi ₁ /AC	46.8

Table 102. Catalytic performance of the catalysts for the oxidation of benzyl alcohol to benzaldehyde ^a.

^a Reaction conditions: Benzyl alcohol (2.6 mL), catalyst (0.1 g), H₂O₂ (30%, 3.3 mL), toluene (20 mL), 80 °C, 2 h.

Redox reaction between in situ generated zero-valent cobalt nanomaterial and KMnO₄ produced gram-scale synthesis of recoverable heterobimetallic Co-Mn oxide ($Co_2Mn_3O_8$) (133) in water was successfully applied for oxidation of benzyl, aliphatic, cinamyl, pyridine, and thiophene moiety alcohols to aldehydes/ketones, both in the presence of hydrogen peroxide, with excellent selectivity (>99%) and yield (Table 103) [146].

Table 103. Substrate scope for $Co_2Mn_3O_8$ -promoted oxidation of a variety of alcohols in the presence of hydrogen peroxide ^a.

$\begin{array}{ c c c c c c c } \hline Entry & Substrate & Product & t/h & Conv. (%) & TOF (h^{-1}) \\ \hline 1 & 4-OMeC_6H_4CH_2OH & 4-OMeC_6H_4CHO & 10 & 85 & 170 \ ^{\rm b} \\ \hline 2 & Indole-3-carbinol & Indole-3-carboxaldehyde & 12 & 78 & 130 \ ^{\rm b} \\ \hline 3 & 2-Thiophenemethanol & 2-Thiophenecarboxaldehyde & 12 & 72 & 120 \ ^{\rm b} \\ \hline 4 & 2-Pyridinemethanol & Picolinaldehyde & 10 & 80 & 160 \ ^{\rm b} \\ \hline 5 & C_6H_5CH(OH)CH_3 & C_6H_5COCH_3 & 10 & 95 & 190 \ ^{\rm c} \\ \hline 6 & (C_6H_5)_2CHOH & (C_6H_5)_2CO & 10 & 85 & 170 \ ^{\rm c} \\ \hline \end{array}$		R II OH OH R II R'	Co ₂ Mn ₃ O ₈ 133 (0.05 mol%) H ₂ O ₂ (0.7 mL), toluene (30 mL) 130 °C, 10-12 h	R <u>ℓ</u> R <u>ℓ</u> R 〔	O O R'	
$\begin{array}{ c c c c c c c c }\hline 1 & 4-OMeC_6H_4CH_2OH & 4-OMeC_6H_4CHO & 10 & 85 & 170^{\rm b} \\ \hline 2 & Indole-3-carbinol & Indole-3-carboxaldehyde & 12 & 78 & 130^{\rm b} \\ \hline 3 & 2-Thiophenemethanol & 2-Thiophenecarboxaldehyde & 12 & 72 & 120^{\rm b} \\ \hline 4 & 2-Pyridinemethanol & Picolinaldehyde & 10 & 80 & 160^{\rm b} \\ \hline 5 & C_6H_5CH(OH)CH_3 & C_6H_5COCH_3 & 10 & 95 & 190^{\rm c} \\ \hline 6 & (C_6H_5)_2CHOH & (C_6H_5)_2CO & 10 & 85 & 170^{\rm c} \\ \hline \end{array}$	Entry	Substrate	Product	t/h	Conv. (%)	TOF (h ⁻¹)
$ \begin{array}{ c c c c c c c c } \hline 2 & Indole-3-carbinol & Indole-3-carboxaldehyde & 12 & 78 & 130 \ ^{\rm b} \\ \hline 3 & 2-Thiophenemethanol & 2-Thiophenecarboxaldehyde & 12 & 72 & 120 \ ^{\rm b} \\ \hline 4 & 2-Pyridinemethanol & Picolinaldehyde & 10 & 80 & 160 \ ^{\rm b} \\ \hline 5 & C_6H_5CH(OH)CH_3 & C_6H_5COCH_3 & 10 & 95 & 190 \ ^{\rm c} \\ \hline 6 & (C_6H_5)_2CHOH & (C_6H_5)_2CO & 10 & 85 & 170 \ ^{\rm c} \\ \hline \end{array} $	1	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	10	85	170 ^b
$\begin{array}{ c c c c c c c c c c }\hline 3 & 2-Thiophenemethanol & 2-Thiophenecarboxaldehyde & 12 & 72 & 120 \ \hline b \\ \hline 4 & 2-Pyridinemethanol & Picolinaldehyde & 10 & 80 & 160 \ \hline b \\ \hline 5 & C_6H_5CH(OH)CH_3 & C_6H_5COCH_3 & 10 & 95 & 190 \ \hline c \\ \hline 6 & (C_6H_5)_2CHOH & (C_6H_5)_2CO & 10 & 85 & 170 \ \hline c \\ \hline \end{array}$	2	Indole-3-carbinol	Indole-3-carboxaldehyde	12	78	130 ^b
$\begin{array}{ c c c c c c c }\hline & 4 & 2 \mbox{-Pyridinemethanol} & Picolinal dehyde & 10 & 80 & 160 \mbox{ b} \\ \hline & 5 & C_6 H_5 CH (OH) CH_3 & C_6 H_5 CO CH_3 & 10 & 95 & 190 \mbox{ c} \\ \hline & 6 & (C_6 H_5)_2 CH OH & (C_6 H_5)_2 CO & 10 & 85 & 170 \mbox{ c} \\ \hline \end{array}$	3	2-Thiophenemethanol	2-Thiophenecarboxaldehyde	12	72	120 ^b
5 C ₆ H ₅ CH(OH)CH ₃ C ₆ H ₅ COCH ₃ 10 95 190 ° 6 (C ₆ H ₅) ₂ CHOH (C ₆ H ₅) ₂ CO 10 85 170 °	4	2-Pyridinemethanol	Picolinaldehyde	10	80	160 ^b
6 (C ₆ H ₅) ₂ CHOH (C ₆ H ₅) ₂ CO 10 85 170 ^c	5	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	10	95	190 ^c
	6	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	10	85	170 ^c

^a Reaction conditions: Substrate (10 mmol), $Co_2Mn_3O_8$ **133** (0.05 mol%), H_2O_2 (0.7 mL), toluene (30 mL), 130 °C, 10 to 12 h. ^b Yields were calculated from GC with o-xylene as an internal standard. ^c NMR yield.

The selective oxidation of alcohols catalyzed successfully by $Fe_3O_4@mSiO_2/NH-PV_2W$ (134) as a novel magnetically recyclable catalyst was prepared by immobilization of divanadium-substituted Keggin phosphotungstic acid $H_5PV_2W_{10}O_{40}$ on mesoporous silica-coated Fe_3O_4 core-shell nanoparticles (Table 104) [147]. With an external magnetic field, the catalyst was easily separated after the completion of the reactions and without any loss of its catalytic activity, the recovered catalyst could be reused at least five times. Although the catalyst showed high catalytic activities with 98% and 99% selectivity for conversion of benzyl alcohol to benzaldehyde, the secondary benzyl alcohols were reluctantly oxidated to corresponding ketones such as 40% and 36% conversion oxidation for 1-phenylethanol, as shown in Entry 4.

	$\begin{array}{c} & & \\ & & \\ OH \\ & & \\ H_2O_2 \end{array}$	D ₂ /NH-V ₂ PW 134 (0. (2 mL), toluene (2mI 80 °C, 8 h	$\frac{02 \text{ g}}{2} \xrightarrow{R \stackrel{\text{II}}{\underline{1}}} R \stackrel{\text{II}}{\underline{1}}$	O O R'
Entry	Substrate	Product	Conv. (%)	Sel. (%)
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	98	99
2	3-MeC ₆ H ₄ CH ₂ OH	3-MeC ₆ H ₄ CHO	97	99
3	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	98	99
4	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	40	99

^a Reaction condition: Substrate (1 mM), Fe₃O₄@SiO₂/NH-V₂PW **134** (0.02 g), H₂O₂ (2 mL), toluene (2 mL), 80 °C, 8 h.

2.3.3. Acetic Acid Solvent

A simple combination included NaBr (135), H_2O_2 , and AcOH was overlooked among many reported catalytic systems for catalytic oxidations of alcohols [148–150]. Oxidation of secondary benzylic alcohols bearing substituents such as Cl, Br, NO₂, and diarylmethanol derivatives in aqueous hydrogen peroxide as terminal oxidant were explored by this system with excellent yields (Table 105) [151].

$R \stackrel{\text{OH}}{\underset{ll}{}} R \xrightarrow{\text{OH}} R \xrightarrow{\text{NaBr 135 (10 mol\%)}}{\frac{\text{H}_2\text{O}_2 (2 \text{ equiv.})}{\text{CH}_3\text{COOH (1 mL), 60 °C, 2 h}} R \stackrel{\text{O}}{\underset{ll}{}} R$					
Entry	Substrate	Product	Yield (%)		
1	C ₆ H ₅ CH(OH) <i>n</i> -Oct	C ₆ H ₅ COn-Oct	98		
2	4-ClC ₆ H ₄ CH(OH) <i>n</i> -Pr	4-ClC ₆ H ₄ COn-Pr	93		
3	4-BrC ₆ H ₄ CH(OH)CH ₃	4-BrC ₆ H ₄ COCH ₃	>99		
4	4-NO ₂ C ₆ H ₄ CH(OH)CH ₃	4-NO ₂ C ₆ H ₄ COCH ₃	95		
5	3-NO ₂ C ₆ H ₄ CH(OH)CH ₃	3-NO ₂ C ₆ H ₄ COCH ₃	95		
6	1-(Naphthalen-2-yl)propan-1-ol	1-(Naphthalen-2-yl)propan-1-one	91		
7	4-OMeC ₆ H ₄ CH(OH)CH ₃	4-OMeC ₆ H ₄ COCH ₃	7		
8	C ₆ H ₅ CH(OH)(CH ₂) ₂ Cl	C ₆ H ₅ CO(CH ₂) ₂ Cl	93		
9	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	98		
10	1-Naphthyl(phenyl)methanol	1-Benzoylnaphthalene	90		
11	9-Fluorenol	9-Fluorenone	97		

Table 105. Substrate scope under optimized conditions ^a.

^a Reaction conditions: Substrate (0.5 mmol), NaBr 135 (10 mol%), H_2O_2 (2 equiv.), CH_3COOH (1 mL), 60 °C, 2 h.

Under optimized conditions, substrate having *p*-methoxypenyl group provided the oxidation product **c'** with poor yield due to formation of major product 4-methoxy- α -methylbenzyl acetate (**d**) and 4-methoxy- α -methylbenzyl hydroperoxide (**e**). Without NaBr catalyst, **d** and **e** products were largely prepared which indicated that the formation of these products occurred independently from the oxidation reaction pathway. With more experience, the best optimized condition was performed in AcOH-EtOAc (3:7, 0.25 M), giving the desired ketone **c'** in 86% isolated yield (Table 106, Entries 1–5).

5 c

AcOH-EtOAc (3:7)

MeO-C	$\bigcirc OH \qquad $	C, 2 h MeO c'	O + MeO 	d oOH e	
Entry	Solvent	Yield of c' (%) ^b	Yield of d (%) ^b	Yield of e (%) ^b	
1	AcOH	7	27	15	
2	AcOH-EtOAc (7:3)	31	31	10	
3	AcOH-EtOAc (5:5)	47	13	7	
4	AcOH-EtOAc (3:7)	60	5	4	

Table 106. Optimization of conditions for substrate c^a.

^a Reaction conditions: *p*-Methoxybenzyl alcohol (0.5 mmol), NaBr **135** (10 mol%), solvent (1 mL), 60 °C for 2 h. ^b Determined by ¹H NMR analysis of crude material. ^c Volume of solvent used was 2 mL. ^d Isolated yield.

86 d

Trace

As illustrated in Table 107, this protocol was successfully applied for the preparation of corresponding oxidative products $\mathbf{f'}-\mathbf{j'}$ a variety of substrates such as 1-*o*-methoxyphenyl-1-ethanol (\mathbf{f}), cyclopropylphenylmethanol (\mathbf{g}), and various cyclic substrates $\mathbf{h}-\mathbf{j}$ with good yields (Table 107) [150,151].

Table 107. The preparation of corresponding oxidative products $\mathbf{f}' - \mathbf{j}'^{a}$.

	$R \xrightarrow{II} OH OH OH OH OH CH_3COOH R \xrightarrow{II} R' CH_3COOH CH_$	$\frac{135 (10 \text{ mol}\%)}{\text{H}(2 \text{ mL}), 60 ^{\circ}\text{C}, 2 \text{ h}} \qquad \begin{array}{c} R \xrightarrow[l]{} \\ R \xrightarrow[l]{} $	
Entry	Substrate	Product	Yield (%)
1	4-OMeC ₆ H ₄ CH(OH)CH ₃	4-OMeC ₆ H ₄ COCH ₃ (\mathbf{c}')	86
2	2-OMeC ₆ H ₄ CH(OH)CH ₃	2-OMeC ₆ H ₄ COCH ₃ (\mathbf{f}')	73
3 ^b	C ₆ H ₅ CH(OH) <i>c</i> -Pr	$C_6H_5CH(OH)c$ -Pr (g')	61
4	3,3-Dimethyl-1-indanol	3,3-Dimethyl-1-indanone (\mathbf{h}')	70
5	4,4-Dimethyl-1-tetralol	4,4-Dimethyl-1-tetralone (i')	73
6	2,3,4,5-Tetrahydrobenzo[b]oxepin-5-ol	3,4-Dihydrobenzo[b]oxepin-5(2 H)-one (j')	66

^a Reaction conditions: Substrate (0.5 mmol), NaBr 135 (10 mol%), CH₃COOH (2 mL), 60 °C, 2 h. ^b NaBr 135 (20 mol%).

Heterogeneous catalytic oxidation of preyssler type heteropolyacid supported onto silica gel, $H_{14}[NaP_5W_{30}O_{110}]/SiO_2$ (**136**) was reported for the converting of substituted benzyl alcohols converted to the corresponding benzaldehyde derivatives, as shown in Table 108 [26]. Using 0.03 g H_{14} -P₅ supported onto silica gel in refluxing acetic acid represented the best results with excellent yields. After extended reaction times, overoxidation products such as carboxylic acids were not observed and the catalytic activity remained after three runs.

Trace

$R \xrightarrow[l]{U} OH \xrightarrow{H_{14}[NaP_5W_{30}O_{110}]/SiO_2 136 (0.03 g)}{CH_3COOH (5 mL), reflux, 10-30 min} R \xrightarrow[l]{U} O$						
Entry	Substrate	Product	t/min	Yield (%) ^a		
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	13	99		
2	2-OHC ₆ H ₄ CH ₂ OH	2-OHC ₆ H ₄ CHO	10	98		
3	2-MeC ₆ H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	12	99		
4	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	14	99		
5	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	15	98		
6	Furfuryl alcohol	Furfural	30	97		

Table 108. Oxidation of alcohols using H₁₄-P₅ supported onto silica gel 136^a.

^a Reaction conditions: Substrate (1 mmol), $H_{14}[NaP_5W_{30}O_{110}]/SiO_2$ **136** (0.03 g), CH₃COOH (5 mL), reflux, 10 to 30 min. ^b Yields analyzed by GC.

2.3.4. Dimethylacetamide Solvent

As shown in Table 109, a series of heteropolytungstates catalysts, $Q_3PW_{12}O_{40}$ (137), $Q_3PMo_{12}O_{40}$ (138), and $Q_3PMo_4O_{24}$ (139) (Q⁺ represents [C₇H₇N(CH₃)₃]⁺), were applied for the BzOH oxidation reactions by Jian [152]. Using 137 and 138 as catalyst needed no feature of the reaction-controlled phasetransfer catalysis, within the determined reaction time, the catalysts were still soluble in the solvent, and the reaction conversions were poor (38.5% and 24.6%, respectively). Applying [C₇H₇N(CH₃)₃]₉PW₉O₃₄ (140) as catalyst under optimal conditions, DMAc, H₂O₂/BzOH:1, 95.0% conversion of benzyl alcohol (based on H₂O₂) and over 99% selectivity of benzaldehyde was achieved. In addition, the catalyst could be reused and recycled three times.

$R \xrightarrow{\text{II}} OH \xrightarrow{\text{catalyst/H}_2O_2/\text{alcohol molar ratio}}_{\text{DMAc (10 mL), 80 °C, 0.5-3.5 h}} R \xrightarrow{\text{II}} O$									
				Solubility of Catalyst		Conv	TON (mmol)/	TOF	
Entry	Catalyst	Solvent	t/h	During Reaction	After Reaction	(%)	Catalyst (mmol)	(h ⁻¹)	
1	$Q_3PW_{12}O_{40}$	DMAc	3.5	soluble	soluble	38.5	87	25	
2	Q9PW9O34	DMAc	0.5	soluble	insoluble	95	214	428	
3	Q3PMo12O40	CH ₃ CN	3.5	soluble	soluble	24.6	55	16	
4	Q ₃ PMo ₄ O ₂₄	CH ₃ CN	3.5	soluble	insoluble	92.8	209	60	

Table 109. Catalytic oxidation of BzOH by various heteropolyoxometalates with $H_2O_2^{a}$.

^a Reaction conditions: Catalyst/H₂O₂/alcohol molar ratio (1:225:250), DMAc (10 mL), 80 °C, 0.5 to 3.5 h.

2.3.5. Methanol Solvent

As presented in the Table 110, Dabiri et al. [153] reported oxidation of alcohols to the related carbonyl compounds using a vanadium Schiff base complex on nano silica catalyst (VSBC@NS) (141). Nano silica NH₂-functionalized, 2,4-dihydroxy benzaldehyde, and VO(acac)₂ were reacted and provided heterogeneous 141 catalysts which showed good efficiency, chemical stability, and at least five times reusability in selective oxidation of alcohols to aldehydes.

2.3.6. tert-Buthanol Solvent

Tandon and co-workers [154] reported a quasi-homogenous reaction system included using 1:1.5 *t*-butanol-H₂O₂, not expensive PTC tetrabutyl ammonium hydrogen sulfate (TBAHSO₄) as the phase

transfer and heteropolyanion Na_2WO_4 (**142**) as the catalyst for simple secondary alcohol oxidations to ketones at 90 °C. As shown in Table 111, 100% yield of products in 30 min confirmed the power of this catalytic system.

		H VSBC@NS H ₂ O ₂ (MeOH (2 n	141 (20 mol% 1.2 equiv.) nL), reflux, 4 h	$ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	O O R'	
Entry	Substrate	Product	Conv. (%)	Yield (%) ^b	TON	TOF (h ⁻¹)
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	98	95	4.75	1.19
2	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	93	89	4.45	1.11
3	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	90	88	4.4	1.1
4	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	81	76	3.8	0.95
5	3-NO ₂ C ₆ H ₄ CH ₂ OH	3-NO ₂ C ₆ H ₄ CHO	84	81	4.05	1.01
6	1-Indanol	1-Indanone	94	91	4.55	1.14
7	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	89	86	4.3	1.08

Table 110.	Oxidation	of alcohols ^a .

^a Reaction conditions: Substrate (0.5 mmol), VSBC@NS **141** (20 mol%), H₂O₂ (1.2 equiv.), MeOH (2 mL), reflux, 4 h. ^b GC yield, *n*-dodecane was used as an internal standard.

Table 111.	Oxidation	of secondary	alcohols	with hydro	ogen pero	oxide in	tert-butanol	а.

R	$ \begin{array}{c} \stackrel{\text{OH}}{{}{}{}} \\ R' \\ \hline \\ R' \\ \hline \\ R' \\ \hline \\ R' \\ \hline \\ \frac{\text{TBAHSO}_4 (169 \text{ mg}, 0.5 \text{ mmol})}{\text{H}_2 \text{O}_2 (30\%, 1.72 \text{ mL}, 15 \text{ mmol})} \\ \hline \\ R \\ \hline \\ R' \\ \hline \\ \hline \\ R' \\ \hline \\ R' \\ \hline \\ R' \\ \hline \\ R \\ \hline \\ R' \\ \\ R' \\ \hline \\ R' \\ \\ R' \\$		O R'
Entry	Substrate	Product	Yield (%)
1	1-Naphthaleneethanol	1-Acetonaphthone	98
2	(C ₆ H ₅) ₂ CHOH	$(C_6H_5)_2CO$	100
3	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	100

^a Reaction conditions: Substrate (1.84 g, 10 mmol), Na₂WO₄ **142** (164 mg, 0.5 mmol), TBAHSO₄ (169 mg, 0.5 mmol), H₂O₂ (30%, 1.72 mL, 15 mmol), *t*-BuOH (2 mL), 90 °C, 30 min.

Oxidation of benzylic alcohols also provided corresponding aldehydes or acids with good yields (Table 112) [154]. Substitution of the aromatic ring influenced the state of oxidation like *p*-methoxybenzaldehyde was produced with 87% yield from *p*-methoxybenzyl alcohol in four hours and further oxidation did not occur; whereas *p*-nitrobenzaldehyde (62%) and *p*-nitrobenzoic acid (30%) were produced from *p*-nitrobenzyl alcohol oxidation. In addition, non-benzylic primary alcohols were directly converted to their corresponding carboxylic acids (Table 112, Entry 3). The results showed that, generally, secondary alcohols were more reactive towards oxidation than primary alcohols.

2.3.7. Xylene Solvent

Hayashi, in 2012 [155], reported using 30% H₂O₂ in the presence of activated carbon (143) for the oxidation of secondary benzylic alcohols to ketones (Table 113). At first, 9-fluorenol was selected as a substrate (Table 114) and 9-fluorenone was obtained with 77% yield (100 weight% of activated carbon, *m*-xylene, 95 °C, 18 h). When ten equivalents of 30% H₂O₂ were used, less (4 equiv.) and more amounts (15 equiv.) of 30% H₂O₂ caused a decrease of yield (Table 114, Entries 1 (68%) and 3 (35%), respectively). After drying, the activated carbon was recovered and reused without deactivation.

	$\begin{array}{c} & & \\ & & \\ OH \\ & & \\ & \\ R' \\ R' \\ R' \\ H_2O_2 (30\% \text{ soln}, \text{ t-BuOH (2 mL)}) \end{array}$	$\begin{array}{c} 64 \text{ mg, } 0.5 \text{ mmol}) \\ \text{ng, } 0.5 \text{ mmol}) \\ 1.72 \text{ mL, } 15 \text{ mmol}) \\ 0, 90 ^{\circ}\text{C, } 30 \text{ min} \\ \end{array} \qquad \mathbf{R} \stackrel{[]}{\overset{[]}}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[]}{\overset{[}$	O R'
Entry	Substrate	Product	Yield (%)
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO ^a	75 ^g
2	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CO ₂ H ^b	100
3	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CH ₂ CO ₂ H ^b	84
4	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO ^c	87 ^h
5	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CH ₂ CO ₂ H ^d	87
6	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO ^{b,e}	62
7	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO ^{e,f}	52

 Table 112. Oxidation of primary alcohols with hydrogen peroxide in *tert*-butanol.

Reaction conditions: Alcohol/H₂O₂/Na₂WO₄/PTC = ^a 20:30:1:1 (8 h), ^b 20:40:1:1, ^c 20:30:1:1, ^d 20:50:1:1, ^e 18 h, ^f 100:200:1:2 (18 h). ^g Remaining 25%: benzoic acid. ^h Rest is unreacted alcohol.

Table 113. Oxidation of various alcohols to the corresponding carbonyl compounds ^a.

Entry	Substrate	Product	Yield (%)
1	Phenyl(2-quinolinyl)methanol	Phenyl(2-quinolinyl)methanone	74
2	α -Quinolyl-ethanol	1-(2-Quinolinyl)ethanone	67
3	Phenyl(2-pyridyl)methanol	Phenyl 2-pyridyl ketone	64
4	9-Fluorenol	9-Fluorenone	77
5	C ₆ H ₅ CH(OH)COC ₆ H ₅	(C ₆ H ₅) ₂ (CO) ₂	91

 a Reaction conditions: Substrate (1 mmol), activated carbon **143** (100 wt%), H₂O₂ (30%, 10 mmol), anhydrous xylene (10 mL), 95 °C, 18 h.

Table 114. Oxidation of 9-fluorenol^a.

OH	activated carbon 143 (100 wt%) H ₂ O ₂ (30%, 4,10,15 equiv.) anhydrous xylene (10 mL) 95 °C, 18 h	
Entry	X (equiv.)	Yield (%) ^b
1	4	68
2	10	77
3	15	35

^a Reaction conditions: 9-Fluorenol (1 mmol), activated carbon **143** (100 wt%), H₂O₂ (30%, 4, 10, 15 mmol), anhydrous xylene (10 mL), 95 °C, 18 h. ^b Isolated yield after silica gel column chromatography.

2.3.8. Chloroform Solvent

A solvent-controlled selective oxidation of benzyl alcohol (BnOH) by 30 wt% H_2O_2 with iron(III) tosylate (Fe(OTs)₃·6H₂O) (144) was reported (Table 115) [156]. The results confirmed that using different solvents provided dissimilar products such as in chloroform, quantitative conversion to benzaldehyde (BzH) was shown, while in acetonitrile, benzoic acid was detected with high yield.

Table 115. Oxidat	ion of benzyl alcoho	ol catalyzed by Fe((OIs)3.6H2O 144 v	with $H_2O_2^{a}$.

. .

. . . .

OH $\frac{\text{Fe(OTs)}_{3.6\text{H}_2\text{O}} 144 (0.1 \text{ mmol})}{n(\text{H}_2\text{O}_2)/n(\text{BnOH}) = 6/1}$ CHCl ₃ (10 g), 60 °C, 16 h.						
Entry	Substrate	Product	Conv. (%)	Yield (%)	Sel. (%)	TON (mol/mol _{cat})
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	89.3	85.6	94.1	85.5
^a Reaction	^a Reaction conditions: Benzyl alcohol (1.08 g, 10 mmol), Fe(OTs) ₂ ,6H ₂ O 144 (0.1 mmol), H ₂ O ₂ (30%, molar ratio					

^a Reaction conditions: Benzyl alcohol (1.08 g, 10 mmol), Fe(OTs)₃.6H₂O **144** (0.1 mmol), H₂O₂ (30%, molar ratio $n(H_2O_2)/n(BnOH) = 6/1$), CHCl₃ (10 g), 60 °C, 16 h.

2.4. Oxidation of Benzylic and Heterocyclic Alcohols in Dual-Phase System

...

2.4.1. Acetonitrile-Water

Tungstate ions immobilized on the homemade periodic mesoporous organosilica with imidazolium ionic liquid framework which was denoted as WO_4 =@PMO-IL (145) were prepared and applied with hydrogen peroxide in the oxidation of primary and secondary alcohols to the corresponding carbonyl compounds (Table 116) [157]. Various primary even pretty hindered substrate 2-nitro-benzyl alcohol were also converted to the corresponding aldehyde with excellent selectivities and good yields without any overoxidation (Table 116, Entry 5). With acceptable to excellent yield, under the same reaction conditions, secondary aromatic alcohols were also converted to the corresponding ketones (Table 116, Entry 5). In addition, the catalyst could be also efficiently recovered and reused in seven subsequent reaction cycles without deactivation [157].

Table 116. Oxidation of various alcohols with WO⁼₄@PMO-IL 145 catalyst ^a.

	$R \xrightarrow{ }{ } OH WO$ $OH \xrightarrow{ }{ } R'$	$_{4}^{=}$ @PMO-IL 145 (1.5 mol% H ₂ O ₂ (5 equiv.) CH ₃ CN:H ₂ O (1:1, 0.5 mL) 90 °C, 7.5-33 h	∕₀) →		
Entry	Substrate	Product	t/h	Conv. (%) ^b	Sel. (%)
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	12	75	100
2	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	7.5	76	100
3	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	11	82	100
4	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	24	65	93
5	2-NO ₂ C ₆ H ₄ CH ₂ OH	2-NO ₂ C ₆ H ₄ CHO	33	77	97
6	3-ClC ₆ H ₄ CH ₂ OH	3-ClC ₆ H ₄ CHO	21	80	100
7	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	15	94	100
8	C ₆ H ₅ CH(OH)Et	C ₆ H ₅ COEt	15	73	100
9	C ₆ H ₅ CH(OH)CH ₂ C ₆ H ₅	C ₆ H ₅ COCH ₂ C ₆ H ₅	16	42	100

^a Reaction condition: Substrate (1 mmol), CH₃CN:H₂O (1:1, 0.5 mL), WO₄⁼@PMO-IL **145** (1.5 mol %), H₂O₂ (30%, 5 equiv.), 90 °C, 7.5 to 33 h. ^b GC yield using standard addition method.

The mild alcohol oxidations with hydrogen peroxide were catalyzed by heterogeneous catalyst iron(III) tetrakis(*p*-sulfonatophenylporphyrinato)acetate supported on polyvinylpyridine and Amberlite IRA-400 (**146**). As illustrated in Table 117, benzyl alcohol and substituted benzyl alcohols were efficiently converted to their corresponding aldehydes with no significant effect of substituents on the oxidation process [158]. In addition, secondary alcohols were converted to their corresponding ketones with good yields. The catalysts could also be applied in four regeneration cycles without significant loss of their activity.

		Fe(III) porphyrins imidazole ((H ₂ O ₂ (6 mmol), CH ₃ C rt, 3-8	s 146 (20 μm).4 mmol) N:H ₂ O (1:1 8 h	$\frac{10 \text{ mol}}{\text{, 10 mL}} = \frac{R \frac{1}{2}}{R \frac{1}{2}}$		≈O `R'
Entry	Culture	Due du st	Fe(TPPS)-Ad IRA-400	Fe(7	(PPS)-PVP
Littiy	Substrate	Product	t/h	Yield (%) ^b	t/h	Yield (%) ^b
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	4	91	4	90
2	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	4	90	3	90
3	4-BrC ₆ H ₄ CH ₂ OH	4-BrC ₆ H ₄ CHO	3	89	3	90
4	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	4	92	4	92
5	2-ClC ₆ H ₄ CH ₂ OH	2-ClC ₆ H ₄ CHO	4	90	4	93
6	3-OMeC ₆ H ₄ CH ₂ OH	3-OMeC ₆ H ₄ CHO	5	91	5	90
7	1-Indanol	1-Indanone	8	76	7	74
8	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	5	90	4	86

Table 117 Performance of catalysts in the exidation of alcohols with H_2O_2	-
Idule 117. Lettorinatice of calabysis in the oxidation of alcohols with 11909	а.

^a Reaction conditions: Substrate (1 mmol), supported Fe(III) porphyrins **146** (20 μmol), imidazole (0.4 mmol), H₂O₂ (6 mmol), CH₃CN:H₂O (1:1, 10 mL), room temperature, 3 to 8 h. ^b GC yield based on starting alcohol.

Tetrabutylammonium decatungstate (VI) (TBADT) (147) as catalyst was applied in the oxidation of selected alcohols with hydrogen peroxide as a green oxidant using acetonitrile/water 1,2- or dichloroethane/water as a solvent system. Microwave irradiation combined with elevated pressure in two phase system acetonitrile/water resulted in the highest conversions of substrates in the range of 80% to 100% (Table 118) [159]. TBADT also conserved its catalytic activity for two regeneration cycles.

		H TBADT 1 H ₂ O ₂ (30	l 47 (1 mol% %, 18 mmol) R		
	$R \stackrel{fi}{=} R$	CH ₃ CN: 80 °C,	H ₂ O (3 mL) 10-15 min	ŀ	R'	
Entry	Crok abrata	Drie dri at	Conv.	(mol%)	Products Prop	ortion (mol%)
Entry	Substrate	Product	MW ^b	MW ^c	MW ^b	MWP ^c
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO C ₆ H ₅ CO ₂ H	64	100	955	964
2	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	81	96	100	100

Table 118. Oxidation of selected alcohols in the acetonitrile/water system ^a.

^a Reaction conditions: Substrate (6 mmol), TBADT **147** (1 mol%), H_2O_2 (30%, 18 mmol), $CH_3CN:H_2O$ (3 mL), 80 °C, 10 to 15 min. ^b MW, microwave heating for 30 min. ^c MWP, microwave heating under higher pressure for 15 min.

2.4.2. Water-Toluene

 H_2O_2 in the presence of catalytic amounts of titanium oxide loaded SiO₂-based phase-boundary (148) was used to investigate oxidation of various hydrophobic alcohols, especially relatively bulky alcohols with their oxidation limited by well-known titanium-containing microporous materials due to their limitations of pore size (Table 119) [160,161]. Primary benzylic alcohols were efficiently converted into corresponding aldehydes. The rate of their oxidation depended not only on substituents (-Cl, -OCH₃, and -CH₃) but also on their positions (*p*-, *m*-, and *o*-) (Entries 1–6). Correspondingly, in relatively high selectivity, secondary benzylic alcohols were oxidized to corresponding ketones (Entries 7 and 8).

	$R \xrightarrow{ }{ } OH W/$ $OH H$ $R \xrightarrow{ }{ } R'$	o-Ti-SiO ₂ 148 (67 mg) I ₂ O ₂ (30%, 1.8 mmol) toluene (3 mL) 60 °C, 16 h	$ \begin{array}{c} R \stackrel{\text{II}}{\underset{II}}{\underset{\text{II}}{\underset{\text{II}}{\underset{\text{II}}{\underset{II}}{\underset{\text{II}}{\underset{\text{II}}}{\underset{II}}}{\underset{II}}}{\underset{II}}}}}}}}$	~0 `R'
Entry	Substrate	Product	Yield (mmol) ^b	Sel. (%) ^c
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	1.29	97
2	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	1.33	92
3	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	1.20	74
4	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	1.81	80
5	3-MeC ₆ H ₄ CH ₂ OH	3-MeC ₆ H ₄ CHO	1.48	92
6	2-MeC ₆ H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	1.15	99
7	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	0.85	100
8	(C ₆ H ₅) ₂ CHOH	(C ₆ H ₅) ₂ CO	0.91	100

Table 119. Oxidation of various alcohols catalyzed by w/o-Ti-SiO₂ 148 using H_2O_2 as an oxidant ^a.

^a Reaction conditions: Substrate (8 mmol), w/o-Ti-SiO₂ **148** (67 mg), H₂O₂ (30%, 1.8 mL), toluene (3 mL), 60 °C, 16 h. ^b Yield of the produced aldehyde determined by GC using internal standard technique. ^c Selectivity for aldehyde production is defined as the percentage of the aldehyde yield to the total amount of products.

2.4.3. Dichloromethane-Water

A tetrameric DABCO–bromine complex (**149**) as a novel active bromine complex was introduced for the fast oxidation of allylic, benzylic, primary, and secondary alcohols to carbonyl compounds with excellent yields and without overoxidation (Table 120) [27].

Table 120. Oxidation of alcohols to aldehydes and ketones with the DABCO-bromine complex 149 ^a.

R	OH DABCO-Br ₂	149 (0.262 g, 0.166 mo	ol)	
K II	CH ₂ C	l ₂ :H ₂ O (6 ml:2 mL) rt, 3-5 h	→ K-	
Entry	Substrate	Product	t/h	Yield (%)
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	4	97
2	4-ClC ₆ H ₄ CH ₂ OH	4-ClC ₆ H ₄ CHO	5	98
3	4-OMeC ₆ H ₄ CH ₂ OH	4-OMeC ₆ H ₄ CHO	4	97
4	4-NO ₂ C ₆ H ₄ CH ₂ OH	4-NO ₂ C ₆ H ₄ CHO	5	87
5	2-MeC ₆ H ₄ CH ₂ OH	2-MeC ₆ H ₄ CHO	3	95
6	4-MeC ₆ H ₄ CH ₂ OH	4-MeC ₆ H ₄ CHO	3	96

^a Reaction conditions: Substrate (1 mmol), DABCO–Br₂ **149** (0.262 g, 0.166 mol), $CH_2Cl_2:H_2O$ (6 mL:2 mL), room temperature, 3 to 5 h.

3. Conclusions

In this review, an attempt has been made to summarize some efficient catalytic systems for the selective oxidation of primary and secondary alcoholic OH groups to carbonyl or carboxyl functional groups, using H_2O_2 as the green oxidant. Different chemical environments such as an aqueous media, a solvent-free system, and various organic solvent and dual-phase systems in the present of hydrogen peroxide oxidant indicated good selectivity and in most cases no overoxidation to acid were observed. Moreover, in many articles, electron-donating were compared with electron-withdrawing functional groups in benzyl alcohol derivative oxidations. In most literature, it was found that there were different yields and conversions of primary and secondary benzylic alcohols with electron-donating and -withdrawing functional groups. It was also shown that electron-donating or -withdrawing functional groups had the same effect on the oxidation results of many researches. In light of the above, it is hoped that this review can assist as a valuable critical overview of the area and the contributions help in further research in this field.

Author Contributions: This work has been completed in continuation of M.M.H., N.G. and E.H. activities in the field of oxidation of alcohols. All authors have read and agreed to the published version of the manuscript.

Funding: This work supported by five year granted research chair by INSF as well as Alzahra Universoty Research Council.

Acknowledgments: The authors are thankful to Alzahra University research Council for partial financial assistance. MMH also appreciates financial support from Iran National Science Foundation (INSF), granted via an individual granted research chair.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

PCC	pyridinium chlorochromate
BzOH	benzyl alcohol
BzH	benzaldehyde
RSM	response surface methodology
PTA	phosphotungstic acid
APTES	3-aminopropyltriethoxysilane
TLC	thin layer chromatography
MNPs	magnetic nanoparticles
EPI	epichlorohydrin
MEG	ethylene glycol
EPR	electron paramagnetic resonance spectroscopy
TEA	trimethylamine
TBHP	<i>tert</i> -butyl hydroperoxide
Fe-BTC	iron(III)-benzenetricarboxylate
BET	Brunauer-Emmett-Teller
TEDA	1,4-diazabicyclo[2.2.2]octane
OKR	oxidative kinetic resolution
POM	Polyoxometalate
AC	activated carbon
ABTSC	1-(4-dimethylaminobenzylidene) thiosemicarbazide
TCTS	1-(2-pyridincarboxyl-idene) thiosemicarbazide
TEOS	tetraethyl orthosilicate
TBA	tetra- <i>n</i> -butylammonium
PVP	polyvinylpolypyrrolidone
VPO	vanadium phosphorus oxide
DMAc	dimethylacetamide
UHP	urea-hydrogen peroxide
PEGDME250	polyethylene glycol dimethyl ether 250
TBAHSO ₄	tetrabutyl ammonium hydrogen sulfate

PTC	phase transfer catalyst
TBADT	tetrabutylammonium decatungstate
DABCO	1,4-diazabicyclo[2.2.2] octane

References

- Chen, G.; Zhou, Y.; Long, Z.; Wang, X.; Li, J.; Wang, J. Mesoporous polyoxometalate-based ionic hybrid as a triphasic catalyst for oxidation of benzyl alcohol with H₂O₂ on water. *ACS Appl. Mater. Interfaces* 2014, 6, 4438–4446. [CrossRef] [PubMed]
- 2. Anastas, P.T.; Warner, J.C. Principles of green chemistry. In *Green Chemistry: Theory and Practice*; Oxford University Press: Oxford, UK, 1998.
- 3. Sheldon, R.A.; Arends, I.; Dijksman, A. New developments in catalytic alcohol oxidations for fine chemicals synthesis. *Catal. Today* **2000**, *57*, 157–166. [CrossRef]
- 4. Lee, D.G.; Spitzer, U.A. Aqueous dichromate oxidation of primary alcohols. J. Org. Chem. **1970**, 35, 3589–3590. [CrossRef]
- 5. Trost, B.M. The atom economy-a search for synthetic efficiency. *Science* 1991, 254, 1471–1477. [CrossRef]
- 6. Carey, J.S.; Laffan, D.; Thomson, C.; Williams, M.T. Analysis of the reactions used for the preparation of drug candidate molecules. *Org. Biomol. Chem.* **2006**, *4*, 2337–2347. [CrossRef]
- 7. Parmeggiani, C.; Cardona, F. Transition metal based catalysts in the aerobic oxidation of alcohols. *Green Chem.* **2012**, *14*, 547–564. [CrossRef]
- 8. Goti, A.; Cardona, F. Hydrogen peroxide in green oxidation reactions: Recent catalytic processes. In *Green Chemical Reactions*; Springer: Berlin/Heidelberg, Germany, 2008; pp. 191–212.
- 9. Jones, C. *Applications of Hydrogen Peroxide and Derivatives;* Royal Society of Chemistry: Cambridge, UK, 1999; Volume 5, pp. 65–69.
- 10. Strukul, G. *Catalytic Oxidations with Hydrogen Peroxide as Oxidant;* Kluwer Academic: Dordrecht, The Netherlands, 1992.
- Sato, K.; Hyodo, M.; Aoki, M.; Zheng, X.-Q.; Noyori, R. Oxidation of sulfides to sulfoxides and sulfones with 30% hydrogen peroxide under organic solvent-and halogen-free conditions. *Tetrahedron* 2001, 57, 2469–2476. [CrossRef]
- 12. Dumitriu, E.; Guimon, C.; Cordoneanu, A.; Casenave, S.; Hulea, T.; Chelaru, C.; Martinez, H.; Hulea, V. Heterogeneous sulfoxidation of thioethers by hydrogen peroxide over layered double hydroxides as catalysts. *Catal. Today* **2001**, *66*, 529–534. [CrossRef]
- 13. Noyori, R.; Aoki, M.; Sato, K. Green oxidation with aqueous hydrogen peroxide. *Chem. Commun.* **2003**, *16*, 1977–1986. [CrossRef]
- 14. Dixneuf, P.; Cadierno, V. Metal-Catalyzed Reactions in Water; John Wiley & Sons: Hoboken, NJ, USA, 2013.
- 15. Guajardo, N.; Carlesi, C.; Schrebler, R.; Morales, J. Applications of liquid/liquid biphasic oxidations by hydrogen peroxide with ionic liquids or deep eutectic solvents. *ChemPlusChem* **2017**, *82*, 165–176. [CrossRef]
- Ahmad, J.U.; Räisänen, M.T.; Leskelä, M.; Repo, T. Copper catalyzed oxidation of benzylic alcohols in water with H₂O₂. *Appl. Catal A. Gen.* 2012, 411, 180–187. [CrossRef]
- 17. Ahmad, J.U.; Figiel, P.J.; Räisänen, M.T.; Leskelä, M.; Repo, T. Aerobic oxidation of benzylic alcohols with bis (3, 5-di-tert-butylsalicylaldimine) copper (II) complexes. *Appl. Catal A. Gen.* **2009**, *371*, 17–21. [CrossRef]
- Figiel, P.J.; Leskelä, M.; Repo, T. TEMPO-Copper (II) Diimine-Catalysed Oxidation of Benzylic Alcohols in Aqueous Media. *Adv. Synth. Catal* 2007, 349, 1173–1179. [CrossRef]
- 19. Heravi, M.M.; Ajami, D.; Ghassemzadeh, M. Wet alumina supported chromium (VI) oxide: A mild, efficient and inexpensive reagent for oxidative deprotection of trimethylsilyl and tetrahydropyranyl ethers in a solventless system. *Synthesis* **1999**, *1999*, 393–394. [CrossRef]
- 20. Heravi, M.M.; Behbahani, F.K.; Oskooie, H.A.; Shoar, R.H. Catalytic aromatization of Hantzsch 1,4-dihydropyridines by ferric perchlorate in acetic acid. *Tetrahedron Lett.* **2005**, *46*, 2775–2777. [CrossRef]
- 21. Heravi, M.M.; Abdolhosseini, N.; Oskooie, H.A. Regioselective and high-yielding bromination of aromatic compounds using hexamethylenetetramine–bromine. *Tetrahedron Lett.* **2005**, *46*, 8959–8963. [CrossRef]
- 22. Heravi, M.M.; Behbahani, F.K.; Oskooie, H.A.; Shoar, R.H. Mild and efficient tetrahydropyranylation of alcohols and dehydropyranylation of THP ethers catalyzed by ferric perchlorate. *Tetrahedron Lett.* **2005**, *46*, 2543–2545. [CrossRef]

- 23. Bamoharram, F.F.; Heravi, M.M.; Roshani, M.; Tavakoli, N. N-oxidation of pyridine carboxylic acids using hydrogen peroxide catalyzed by a green heteropolyacid catalyst: Preyssler's anion,[NaP5W30O110] 14–. *J. Mol. Catal A Chem.* **2006**, *252*, 219–225. [CrossRef]
- 24. Bamoharram, F.F.; Heravi, M.M.; Roshani, M.; Akbarpour, M. Catalytic performance of Preyssler heteropolyacid as a green and recyclable catalyst in oxidation of primary aromatic amines. *J. Mol. Catal A Chem.* **2006**, *255*, 193–198. [CrossRef]
- 25. Heravi, M. 'Zeofen', a user-friendly oxidizing reagent. Chem. Commun. 1999, 9, 833-834. [CrossRef]
- Heravi, M.M.; Zadsirjan, V.; Bakhtiari, K.; Oskooie, H.A.; Bamoharram, F.F. Green and reusable heteropolyacid catalyzed oxidation of benzylic, allylic and aliphatic alcohols to carbonyl compounds. *Catal. Commun.* 2007, *8*, 315–318. [CrossRef]
- 27. Heravi, M.M.; Derikvand, F.; Ghassemzadeh, M.; Neumüller, B. Synthesis, characterization and structure of a tetrameric DABCO–bromine complex: A novel oxidizing agent for oxidation of alcohols to carbonyl compounds. *Tetrahedron Lett.* **2005**, *46*, 6243–6245. [CrossRef]
- 28. M Heravi, M.; Fazeli, A.; Faghihi, Z. Recent Advances in Application of Pyridinium Chlorochromate (PCC) in Organic Synthesis. *Curr. Org. Synth.* **2016**, *13*, 220–254. [CrossRef]
- 29. Xiao, S.; Zhang, C.; Chen, R.; Chen, F. Selective oxidation of benzyl alcohol to benzaldehyde with H₂O₂ in water on epichlorohydrin-modified Fe 3 O 4 microspheres. *New J. Chem.* **2015**, *39*, 4924–4932. [CrossRef]
- 30. Xu, C.; Zhang, J.; Huang, X.; Chen, F. One-step nonaqueous synthesis of modified magnetic Fe₃O₄ microspheres by using epichlorohydrin as functional solvent. *Chem. Lett.* **2018**, *48*, 22–25. [CrossRef]
- Zhang, J.; Xiao, S.; Chen, R.; Chen, F. Promotional effect of short-chain saturated alcohols on Fe₃O₄-catalyzed decomposition of H₂O₂ and its application in selective oxidation of benzyl alcohol. *J. Chem. Technol. Biot.* 2019, *94*, 1613–1621. [CrossRef]
- 32. Hajavazzade, R.; Kargarrazi, M.; Mahjoub, A.R. Phosphotungstic Acid Supported on MgAl₂O₄ Nanoparticles as an Efficient and Reusable Nanocatalyst for Benzylic Alcohols Oxidation with Hydrogen Peroxide. *J. Inorg. Organomet. P* **2019**, *29*, 1–10. [CrossRef]
- Farsani, M.R.; Yadollahi, B. Synthesis, characterization and catalytic performance of a Fe polyoxometalate/ silica composite in the oxidation of alcohols with hydrogen peroxide. *J. Mol. Catal A Chem.* 2014, 392, 8–15. [CrossRef]
- Patel, P.; Nandi, S.; Menapara, T.; Biradar, A.V.; Nagarale, R.K.; Khan, N.H.; Kureshy, R.I. Glycoluril: A heterogeneous organocatalyst for oxidation of alcohols and benzylic sp3 carbons. *App. Catal. A. Gen.* 2018, 565, 127–134. [CrossRef]
- 35. Darvishi, K.; Amani, K.; Rezaei, M. Preparation, characterization and heterogeneous catalytic applications of GO/Fe₃O₄/HPW nanocomposite in chemoselective and green oxidation of alcohols with aqueous H₂O₂. *Appl. Organomet. Chem.* **2018**, *32*, e4323. [CrossRef]
- Hao, P.; Zhang, M.; Zhang, W.; Tang, Z.; Luo, N.; Tan, R.; Yin, D. Polyoxometalate-based Gemini ionic catalysts for selective oxidation of benzyl alcohol with hydrogen peroxide in water. *Catal. Sci. Technol.* 2018, *8*, 4463–4473. [CrossRef]
- 37. Xiaoxiang, H.; Yingying, K.; Chunhua, X.; Xiujuan, T.; Qing, C.; Kuiwu, W.; Chin-Te, H.; Li-Li, L.; Shang-Bin, L. Heteropoly Tungstate Supported on Metal Oxide Catalysts for Liquid Phase Oxidation of Benzyl Alcohol with Hydrogen Peroxide. *J. Braz. Chem. Soc.* 2018, 29, 88–98. [CrossRef]
- 38. Ünver, H. Crystal structure of an alkoxide bridged dinuclear copper (II) complex: Mild and selective oxidation of primary and secondary alcohols in water. *Transit. Met. Chem.* **2018**, *43*, 641–646. [CrossRef]
- 39. Hashemian, S.; Sedrpoushan, A.; Eshbala, F.H. Co-Zeolite Imidazolate Frameworks (ZIF-9@ Zeolite) as Heterogen Catalyst for Alcohols Oxidation. *Catal. Lett.* **2017**, *147*, 196–203. [CrossRef]
- Bhattacharjee, R.R.; Mal, S.S. A Liquid Derivative of Phosphotungstic Acid as Catalyst for Benzyl Alcohol Oxidation in Water: Facile Separation and Stability of Benzaldehyde at Room Temperature. *ChemistrySelect* 2017, 2, 4368–4375. [CrossRef]
- Kai, O.; Xiaoxiang, H.; Chunhua, X.; Xiujuan, T.; Qing, C. Water-soluble heteropolyacid-based ionic liquids as effective catalysts for oxidation of benzyl alcohol in water with hydrogen peroxide. *Green Process. Synth.* 2017, *6*, 385–395. [CrossRef]
- 42. Han, X.; Kuang, Y.; Xiong, C.; Tang, X.; Chen, Q.; Hung, C.-T.; Liu, L.-L.; Liu, S.-B. Heterogeneous amino acid-based tungstophosphoric acids as efficient and recyclable catalysts for selective oxidation of benzyl alcohol. *Korean J. Chem. Eng.* **2017**, *34*, 1914–1923. [CrossRef]
- 43. Yang, Y.; Liu, X.; Li, X.; Zhao, J.; Bai, S.; Liu, J.; Yang, Q. A yolk–shell nanoreactor with a basic core and an acidic shell for cascade reactions. *Angew. Chem. Int. Ed.* **2012**, *51*, 9164–9168. [CrossRef]
- Yan, Q.; Fang, Y.C.; Jia, Y.X.; Duan, X.H. Chemoselective hydrogen peroxide oxidation of primary alcohols to aldehydes by a water-soluble and reusable iron (III) catalyst in pure water at room temperature. *New J. Chem.* 2017, 41, 2372–2377. [CrossRef]
- 45. Fu, H.; Hu, C.; Huang, Z.; Zhou, J.; Peng, X. Ammonium Tungstate as an Effective Catalyst for Selective Oxidation of Alcohols to Aldehydes or Ketones with Hydrogen Peroxide under Water–A Synergy of Graphene Oxide. *Synlett* **2018**, *29*, 447–451.
- Mirsafaei, R.; Heravi, M.M.; Hosseinnejad, T.; Ahmadi, S. Copper (II) nanoparticles: An efficient and reusable catalyst in green oxidation of benzyl alcohols to benzaldehydes in water. *Appl. Organomet. Chem* 2016, 30, 823–830. [CrossRef]
- 47. Hosseini Eshbala, F.; Mohanazadeh, F.; Sedrpoushan, A. Tungstate ions (WO4=) supported on imidazolium framework as novel and recyclable catalyst for rapid and selective oxidation of benzyl alcohols in the presence of hydrogen peroxide. *Appl. Organomet. Chem* **2017**, *31*, e3597. [CrossRef]
- 48. Wang, H.; Fang, L.; Yang, Y.; Hu, R.; Wang, Y. Immobilization Na7PW11O39 on quanternary ammonium functionalized chloromethylated polystyrene by electrostatic interactions: An efficient recyclable catalyst for alcohol oxidation. *App. Catal A Gen* **2016**, *520*, 35–43. [CrossRef]
- Sloboda-Rozner, D.; Witte, P.; Alsters, P.L.; Neumann, R. Aqueous Biphasic Oxidation: A Water-Soluble Polyoxometalate Catalyst for Selective Oxidation of Various Functional Groups with Hydrogen Peroxide. *Adv. Synth. Catal.* 2004, 346, 339–345. [CrossRef]
- 50. Sadri, F.; Ramazani, A.; Ahankar, H.; Taghavi Fardood, S.; Azimzadeh Asiabi, P.; Khoobi, M.; Woo Joo, S.; Dayyani, N. Aqueous-phase oxidation of alcohols with green oxidants (Oxone and hydrogen peroxide) in the presence of MgFe₂O₄ magnetic nanoparticles as an efficient and reusable catalyst. *J. Nanostruct.* 2016, 6, 264–272.
- Emayavaramban, P.; Babu, S.G.; Karvembu, R.; Kadirvelu, K.; Dharmaraj, N. Gold Nanoparticles Supported on Magnesium Oxide Nanorods for Oxidation of Alcohols. *J. Nanosci. Nanotechno.* 2016, 16, 2517–2526. [CrossRef]
- 52. Cruz, P.; Pérez, Y.; del Hierro, I.; Fajardo, M. Copper, copper oxide nanoparticles and copper complexes supported on mesoporous SBA-15 as catalysts in the selective oxidation of benzyl alcohol in aqueous phase. *Microporous Mesoporous Mater.* **2016**, *220*, 136–147. [CrossRef]
- Kalbasi, R.J.; Nourbakhsh, A.A.; Zia, M. Aerobic Oxidation of Alcohols Catalyzed by Copper Nanoparticle-Polyacrylamide/SBA-15 as Novel Polymer-Inorganic Hybrid. *J. Inorg. Organomet. P* 2012, 22, 536–542. [CrossRef]
- 54. Valodkar, V.; Tembe, G.; Ravindranathan, M.; Ram, R.; Rama, H. Catalytic oxidation by polymer-supported copper (II)–l-valine complexes. *J. Mol. Catal. A Chem.* **2004**, *208*, 21–32. [CrossRef]
- 55. Fan, J.; Pu, F.; Sun, M.; Liu, Z.-W.; Han, X.-Y.; Wei, J.-F.; Shi, X.-Y. Immobilized bis-layered ionic liquids/ peroxotungstates as an efficient catalyst for selective oxidation of alcohols in neat water. *New J. Chem.* **2016**, 40, 10498–10503. [CrossRef]
- Zohreh, N.; Tavakolizadeh, M.; Hosseini, S.H.; Jahani, M.; Pourjavadi, A.; Bennett, C. Highly dispersible bis-imidazolium/WO 4 2– modified magnetic nanoparticles: A heterogeneous phase transfer catalyst for green and selective oxidations. *New J. Chem.* 2016, 40, 10325–10332. [CrossRef]
- Tong, J.; Su, L.; Li, W.; Wang, W.; Ma, H.; Wang, Q. Hybrids of [C4mim] 3+ xPMo12- xVxO40: A new catalyst for oxidation of benzyl alcohol to benzaldehyde in water with greatly improved performances. *Polyhedron* 2016, 115, 282–287. [CrossRef]
- 58. Yao, X.; Bai, C.; Chen, J.; Li, Y. Efficient and selective green oxidation of alcohols by MOF-derived magnetic nanoparticles as a recoverable catalyst. *RSC Adv.* **2016**, *6*, 26921–26928. [CrossRef]
- 59. Yang, Z.; Zhang, X.; Yao, X.; Fang, Y.; Chen, H.; Ji, H. β-cyclodextrin grafted on lignin as inverse phase transfer catalyst for the oxidation of benzyl alcohol in H₂O. *Tetrahedron* **2016**, *72*, 1773–1781. [CrossRef]
- 60. Farsani, M.R.; Assady, E.; Jalilian, F.; Yadollahi, B.; Rudbari, H.A. Green oxidation of alcohols with hydrogen peroxide catalyzed by a tetra-cobalt polyoxometalate in water. *J. Iran. Chem. Soc.* **2015**, *12*, 1207–1212. [CrossRef]
- Long, N.Q.; Quan, N.A. Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by nano Au/γ-Al₂O₃ under environment-friendly conditions. *React. Kinet. Mech. Catal.* 2015, 114, 147–155. [CrossRef]

- Hong, Y.; Yan, X.; Liao, X.; Li, R.; Xu, S.; Xiao, L.; Fan, J. Platinum nanoparticles supported on Ca (Mg)-zeolites for efficient room-temperature alcohol oxidation under aqueous conditions. *Chem. Commun.* 2014, 50, 9679–9682. [CrossRef]
- 63. Su, H.; Yang, C. Selective oxidation of benzyl alcohol catalyzed by (TEAH) nH3-nPW12O40 and its reaction mechanism. *Chin. J. Catal.* **2014**, *35*, 1224–1234. [CrossRef]
- 64. Peterson, B.M.; Herried, M.E.; Neve, R.L.; McGaff, R.W. Oxidation of primary and secondary benzylic alcohols with hydrogen peroxide and tert-butyl hydroperoxide catalyzed by a "helmet" phthalocyaninato iron complex in the absence of added organic solvent. *Dalton Trans.* **2014**, *43*, 17899–17903. [CrossRef]
- 65. Sadri, F.; Ramazani, A.; Massoudi, A.; Khoobi, M.; Tarasi, R.; Shafiee, A.; Azizkhani, V.; Dolatyari, L.; Joo, S.W. Green oxidation of alcohols by using hydrogen peroxide in water in the presence of magnetic Fe₃O₄ nanoparticles as recoverable catalyst. *Green Chem. Lett. Rev.* **2014**, *7*, 257–264. [CrossRef]
- 66. Mu, B.; Liu, P.; Dong, Y.; Lu, C.; Wu, X. Superparamagnetic pH-sensitive multilayer hybrid hollow microspheres for targeted controlled release. *J. Polym. Sci. Part A Polym. Chem.* **2010**, *48*, 3135–3144. [CrossRef]
- Wang, P.; Dong, Z.; Lei, Y.; Du, Y.; Li, H.; Yang, H.; Nie, Y.; Ma, J. Highly selective oxidation of alcohols catalyzed by Cu (II)-Schiff base-SBA-15 with hydrogen peroxide in water. *J. Porous Mater.* 2013, 20, 277–284. [CrossRef]
- Atashin, H.; Malakooti, R. Magnetic iron oxide nanoparticles embedded in SBA-15 silica wall as a green and recoverable catalyst for the oxidation of alcohols and sulfides. *J. Saudi Chem. Soc.* 2017, 21, S17–S24. [CrossRef]
- 69. Davis, S.E.; Ide, M.S.; Davis, R.J. Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. *Green Chem.* **2013**, *15*, 17–45. [CrossRef]
- Wei, Q.; James, S.L. A metal–organic gel used as a template for a porous organic polymer. *Chem. Commun.* 2005, *3*, 1555–1556. [CrossRef]
- Hosseini-Monfared, H.; Näther, C.; Winkler, H.; Janiak, C. Highly selective and "green" alcohol oxidations in water using aqueous 10% H₂O₂ and iron-benzenetricarboxylate metal–organic gel. *Inorg. Chim. Acta* 2012, 391, 75–82. [CrossRef]
- Kharat, A.N.; Bakhoda, A.; Jahromi, B.T. Green and chemoselective oxidation of alcohols with hydrogen peroxide: A comparative study on Co (II) and Co (III) activity toward oxidation of alcohols. *Polyhedron* 2011, 30, 2768–2775. [CrossRef]
- 73. Zhao, W.; Zhang, Y.; Ma, B.; Ding, Y.; Qiu, W. Oxidation of alcohols with hydrogen peroxide in water catalyzed by recyclable keggin-type tungstoborate catalyst. *Catal. Commun.* **2010**, *11*, 527–531. [CrossRef]
- 74. Ma, B.; Zhang, Y.; Ding, Y.; Zhao, W. A water-soluble dilacunary silicotungstate as an effective catalyst for oxidation alcohols in water with hydrogen peroxide. *Catal. Commun.* **2010**, *11*, 853–857. [CrossRef]
- 75. Tundo, P.; Romanelli, G.P.; Vázquez, P.G.; Aricò, F. Multiphase oxidation of alcohols and sulfides with hydrogen peroxide catalyzed by heteropolyacids. *Catal. Commun.* **2010**, *11*, 1181–1184. [CrossRef]
- 76. Maity, P.; Bhaduri, S.; Lahiri, G.K. A water soluble heteropolyoxotungstate as a selective, efficient and environment friendly oxidation catalyst. *J. Chem. Sci.* **2009**, *121*, 377–385. [CrossRef]
- 77. Sato, K.; Aoki, M.; Takagi, J.; Noyori, R. Organic solvent-and halide-free oxidation of alcohols with aqueous hydrogen peroxide. *J. Amer. Chem. Soc.* **1997**, *119*, 12386–12387. [CrossRef]
- 78. Sato, K.; Takagi, J.; Aoki, M.; Noyori, R. Hydrogen peroxide oxidation of benzylic alcohols to benzaldehydes and benzoic acids under halide-free conditions. *Tetrahedron Lett.* **1998**, *39*, 7549–7552. [CrossRef]
- Jia, A.; Lou, L.-L.; Zhang, C.; Zhang, Y.; Liu, S. Selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide over alkali-treated ZSM-5 zeolite catalysts. *J. Mol. Catal A. Chem* 2009, 306, 123–129. [CrossRef]
- 80. Tayebee, R.; Alizadeh, M.H. Water as an efficient solvent for oxygenation transformations with 34% hydrogen peroxide catalyzed by some heteropolyoxometalates. *Monatsh. Chem.* **2007**, *138*, 763–769. [CrossRef]
- 81. Hulce, M.; Marks, D.W. Organic-solvent-free phase-transfer oxidation of alcohols using hydrogen peroxide. *J. Chem. Educ.* **2001**, *78*, 66. [CrossRef]
- 82. Lampman, G.M.; Sharpe, S.D. A phase transfer catalyzed permanganate oxidation: Preparation of vanillin from isoeugenol acetate. *J. Chem. Educ.* **1983**, *60*, 503. [CrossRef]
- Naeimi, A.; Honarmand, M.; Sedri, A. Ultrasonic assisted fabrication of first MoO₃/copper complex bio-nanocomposite based on Sesbania sesban plant for green oxidation of alcohols. *Ultrason. Sonochem.* 2019, 50, 331–338. [CrossRef]

- Boruah, J.J.; Das, S.P. Solventless, selective and catalytic oxidation of primary, secondary and benzylic alcohols by a Merrifield resin supported molybdenum (vi) complex with H₂O₂ as an oxidant. *RSC Adv.* 2018, *8*, 34491–34504. [CrossRef]
- 85. Dimitratos, N.; Lopez-Sanchez, J.A.; Morgan, D.; Carley, A.F.; Tiruvalam, R.; Kiely, C.J.; Bethell, D.; Hutchings, G.J. Solvent-free oxidation of benzyl alcohol using Au–Pd catalysts prepared by sol immobilisation. *PCCP* **2009**, *11*, 5142–5153. [CrossRef]
- 86. Tareq, S.S.; Saiman, M.I.; Hin, T.-Y.Y.; Abdullah, A.H.; Rashid, U. The impact of hydrogen peroxide as an oxidant for solvent-free liquid phase oxidation of benzyl alcohol using Au-Pd supported carbon and titanium catalysts. *Bull. Chem. React. Eng.* **2018**, *13*, 373–385. [CrossRef]
- Farhadi, S.; Hakimi, M.; Maleki, M. 12-Molybdophosphoric acid anchored on aminopropylsilanized magnetic graphene oxide nanosheets (Fe₃O₄/GrOSi(CH₂)₃–NH₂/H₃ PMo₁₂O₄₀): A novel magnetically recoverable solid catalyst for H₂O₂-mediated oxidation of benzylic alcohols under solvent-free conditions. *RSC Adv.* 2018, *8*, 6768–6780.
- 88. D Kurbah, S.; Kumar, A.; Shangpung, S.; Asthana, M.; Syiemlieh, I.; A Lal, R. Oxidation of Alcohols by Hydrogen Peroxide Catalyzed by Trinuclear Copper (II) Complex [Cu₃(slmh)(μ-Cl)₂(CH₃OH)₃]. 0.5 CH₃OH derived from Disalicylaldehyde Malonoyldihydrazone. *Curr. Organocatalysis* 2017, 4, 62–68. [CrossRef]
- 89. Malakooti, R.; Feghhi, A. MoO x–pyridine organic–inorganic hybrid wires as a reusable and highly selective catalyst for the oxidation of alcohols: A comparison study between reaction-controlled phase-transfer catalysis and heterogeneous catalysis. *New J. Chem.* **2017**, *41*, 3405–3413. [CrossRef]
- 90. D Kurbah, S.; Kumar, A.; Asthana, M.; Shangpung, S.; Koch, A.; A Lal, R. Water Soluble Heterobimetallic Complex [CuZn (bz)₃(bpy)₂] BF₄ a Catalyzed Selective Oxidation of Alcohols to Aldehydes Mediated by Hydrogen Peroxide in Aqueous Medium in the Absence of a Base and Co-Catalyst. *Curr. Organocatalysis* 2016, 3, 45–51. [CrossRef]
- 91. Saeednia, S.; Ardakani, M.H.; Pakdin-Parizi, Z.; Iranmanesh, P.; Sinaei, S. Solvent-free chemoselective oxidation of alcohols by hydrogen peroxide using a new synthesized copper complex as reusable heterogeneous nanocatalyst. *J. Iran. Chem. Soc.* **2016**, *13*, 1963–1975. [CrossRef]
- 92. Saxena, S.K.; Viswanadham, N.; Ala'a, H. Enhanced selective oxidation of benzyl alcohol to benzaldehyde on mesopore created mordenite catalyst. *J. Porous Mater.* **2016**, *23*, 1671–1678. [CrossRef]
- 93. Wang, B.; Hu, Y.; Fang, D.; Wu, L.; Xing, R. Efficient and Reusable Sn (II)-containing Imidazolium-based Ionic Liquid as a Catalyst for the Oxidation of Benzyl Alcohol. *J. Chin. Chem. Soc.* **2016**, *63*, 991–999. [CrossRef]
- 94. Nasrollahzadeh, M.; Bagherzadeh, M.; Karimi, H. Preparation, characterization and catalytic activity of CoFe2O4 nanoparticles as a magnetically recoverable catalyst for selective oxidation of benzyl alcohol to benzaldehyde and reduction of organic dyes. *J. Colloid Interface Sci.* **2016**, *465*, 271–278. [CrossRef]
- 95. Trakarnpruk, W. Mn-and Co-substituted polyoxotungstates on MCM-41 and layered double hydroxide as catalysts in the oxidation of benzyl alcohol and cyclohexane. *Mendeleev. Commun.* **2016**, *3*, 256–258. [CrossRef]
- 96. Varadwaj, G.B.B.; Rana, S.; Parida, K. Cs salt of Co substituted lacunary phosphotungstate supported K10 montmorillonite showing binary catalytic activity. *Biochem. Eng. J.* **2013**, *215*, 849–858. [CrossRef]
- 97. Zhou, W.; Liu, J.; Pan, J.; Sun, F.a.; He, M.; Chen, Q. Effect of Mg²⁺ on the catalytic activities of CoMgAl hydrotalcites in the selective oxidation of benzyl alcohol to benzaldehyde. *Catal. Commun.* **2015**, *69*, 1–4. [CrossRef]
- 98. Hasannia, S.; Yadollahi, B. Zn–Al LDH nanostructures pillared by Fe substituted Keggin type polyoxometalate: Synthesis, characterization and catalytic effect in green oxidation of alcohols. *Polyhedron* **2015**, *99*, 260–265. [CrossRef]
- Li, X.; Cao, R.; Lin, Q. Selective oxidation of alcohols with H₂O₂ catalyzed by long chain multi-SO₃H functionalized heteropolyanion-based ionic liquids under solvent-free conditions. *Catal. Commun.* 2015, 69, 5–10. [CrossRef]
- Wang, Z.-G.; Yang, Y.; Cao, X.-H.; Lu, M. Highly selective oxidation of alcohols with hydrogen peroxide and polyethylene oxide-supported long-chain imidazolium polyoxometalate hybrid catalyst. *J. Iran. Chem. Soc.* 2015, 12, 1765–1770. [CrossRef]
- 101. Judy-Azar, A.-R.; Mohebbi, S. A novel magnetic hybrid nanomaterial as a highly efficient and selective catalyst for alcohol oxidation based on new Schiff base complexes of transition metal ions. *J. Mol. Catal A Chem.* **2015**, *397*, 158–165. [CrossRef]

- Han, M.-K.; Kim, S.; Kim, S.T.; Lee, J.C. Bismuth Tribromide Catalyzed Oxidation of Alcohols with Aqueous Hydrogen Peroxide. *Synlett* 2015, 26, 2434–2436.
- Wu, G.; Wang, X.; Liu, X.; Ding, K.; Zhang, F.; Zhang, X. Environmental benign oxidation of benzyl alcohol catalyzed by sulphonato-salphen–chromium (III) complexes immobilized on MCM-41. *Catal. Lett.* 2014, 144, 364–371. [CrossRef]
- Pathan, S.; Patel, A. Solvent free clean selective oxidation of alcohols catalyzed by mono transition metal (Co, Mn, Ni)-substituted Keggin-phosphomolybdates using hydrogen peroxide. *App. Catal A. Gen.* 2013, 459, 59–64. [CrossRef]
- 105. Jing, L.; Shi, J.; Zhang, F.; Zhong, Y.; Zhu, W. Polyoxometalate-based amphiphilic catalysts for selective oxidation of benzyl alcohol with hydrogen peroxide under organic solvent-free conditions. *Ind. Eng. Chem. Res.* 2013, 52, 10095–10104. [CrossRef]
- 106. Zamani, F.; Izadi, E. Synthesis and Characterization of Copper (II)–Cysteine/SiO₂–Al₂O₃ as an Efficient and Reusable Heterogeneous Catalyst for the Oxidation of Aromatic Alcohols. *J. Inorg. Organomet. P* 2013, 23, 1501–1510. [CrossRef]
- 107. Borthakur, R.; Asthana, M.; Kumar, A.; Koch, A.; Lal, R. Solvent free selective oxidation of alcohols catalyzed by a trinuclear complex with a dicopper (II)–monozinc (II) centre using hydrogen peroxide as an oxidant. *RSC Adv.* 2013, *3*, 22957–22962. [CrossRef]
- 108. Zhou, X.-T.; Ji, H.-B.; Liu, S.-G. Solvent-free selective oxidation of primary and secondary alcohols catalyzed by ruthenium-bis (benzimidazole) pyridinedicarboxylate complex using hydrogen peroxide as an oxidant. *Tetrahedron Lett.* 2013, 54, 3882–3885. [CrossRef]
- Tian, W.; Hou, Y.; Wang, X.; Lu, B.; Zhao, J.; Cai, Q. A Simple Polyoxometallate for Selective Oxidation of Benzyl Alcohol to Benzaldehyde with Hydrogen Peroxide. *Chin. J. Chem.* 2012, 30, 433–437. [CrossRef]
- Karthikeyan, P.; Arunrao, A.S.; Narayan, M.P.; Kumar, S.S.; Kumar, S.S.; Bhagat, P.R. Selective oxidation of alcohol to carbonyl compound catalyzed by l-aspartic acid coupled imidazolium based ionic liquid. *J. Mol. Liq.* 2012, 173, 180–183. [CrossRef]
- 111. Yu, Y.; Lu, B.; Wang, X.; Zhao, J.; Wang, X.; Cai, Q. Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by biphasic catalysis. *Biochem. Eng. J.* **2010**, *162*, 738–742. [CrossRef]
- 112. Cui, S.; Lu, B.; Xiao, X.; Han, Y.; Cai, Q. Synthesis of diphenylmethane from benzene and paraformaldehyde catalyzed by acidic ionic liquids. *Catal. Lett.* **2007**, *119*, 277–282. [CrossRef]
- 113. Wang, X.; Wu, G.; Wei, W.; Sun, Y. Solvent-free oxidation of alcohols by hydrogen peroxide over chromium Schiff base complexes immobilized on MCM-41. *Transit. Met. Chem.* **2010**, *35*, 213–220. [CrossRef]
- 114. Biradar, A.V.; Dongare, M.K.; Umbarkar, S.B. Selective oxidation of aromatic primary alcohols to aldehydes using molybdenum acetylide oxo-peroxo complex as catalyst. *Tetrahedron Lett.* **2009**, *50*, 2885–2888. [CrossRef]
- 115. Shi, F.; Tse, M.K.; Pohl, M.-M.; Radnik, J.; Brückner, A.; Zhang, S.; Beller, M. Nano-iron oxide-catalyzed selective oxidations of alcohols and olefins with hydrogen peroxide. *J. Mol. Catal A. Chem* 2008, 292, 28–35. [CrossRef]
- 116. Wang, X.; Wu, G.; Li, J.; Zhao, N.; Wei, W.; Sun, Y. Surface-modified improvement in catalytic performance of Cr (salen) complexes immobilized on MCM-41 in solvent-free selective oxidation of benzyl alcohol. *Catal. Lett.* 2007, 119, 87–94. [CrossRef]
- 117. Wang, G.; Feng, L.; Luck, R.L.; Evans, D.G.; Wang, Z.; Duan, X. Sol–gel synthesis, characterization and catalytic property of silicas modified with oxomolybdenum complexes. *J. Mol. Catal A Chem.* 2005, 241, 8–14. [CrossRef]
- 118. Ming-Lin, G.; Hui-Zhen, L. Selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide over tetra-alkylpyridinium octamolybdate catalysts. *Green Chem.* **2007**, *9*, 421–423. [CrossRef]
- 119. Wang, J.; Yan, L.; Qian, G.; Li, S.; Yang, K.; Liu, H.; Wang, X. Na₄H₃[SiW₉Al₃(H₂O)₃O₃₇]·12H₂O/H₂O: A new system for selective oxidation of alcohols with H₂O₂ as oxidant. *Tetrahedron* **2007**, *63*, 1826–1832. [CrossRef]
- Hajian, R.; Jafari, F. Zinc polyoxometalate immobilized on ionic liquid-modified MCM-41: An efficient reusable catalyst for the selective oxidation of alcohols with hydrogen peroxide. *J. Iran. Chem. Soc.* 2019, 16, 563–570. [CrossRef]
- 121. Sedighipoor, M.; Kianfar, A.H.; Mahmood, W.A.K.; Azarian, M.H. Epoxidation of alkenes by an oxidovanadium (IV) tetradentate Schiff base complex as an efficient catalyst with tert-butyl hydroperoxide. *Inorg. Chim. Acta* 2017, 457, 116–121. [CrossRef]

- 122. Adam, M.S.S. Catalytic activity of nickel (II), copper (II) and oxovanadium (II)-dihydroindolone complexes towards homogeneous oxidation reactions. *Appl. Organomet. Chem.* **2018**, *32*, e4234. [CrossRef]
- 123. Mangin, F.; Prinsen, P.; Yepez, A.; Gilani, M.R.H.S.; Xu, G.; Len, C.; Luque, R. Microwave assisted benzyl alcohol oxidation using iron particles on furfuryl alcohol derived supports. *Catal. Commun.* 2018, 104, 67–70. [CrossRef]
- 124. Chuanfeng, H.; Jianhao, Z.; Zhida, H.; Huihui, F.; Xinhua, P. Metal Molybdate Catalysts for the Selective Oxidation of Olefins and Alcohols Using Hydrogen Peroxide as Oxidant. *Chin. J. Org. Chem.* **2018**, *38*, 486–491.
- Maleki, M.; Baghbanian, S.M.; Tajbakhsh, M. Heteropolyacid immobilized on polymer/magnetic zeolite nanocomposite as a new and recyclable catalyst for the selective oxidation of alcohols. *J. Iran.Chem. Soc.* 2018, 15, 359–368. [CrossRef]
- Kurbah, S.D.; Asthana, M.; Syiemlieh, I.; Lal, R.A. Peroxidative catalytic oxidation of alcohols catalyzed by heterobinuclear vanadium (V) complexes using H₂O₂ as terminal oxidizing agents. *Appl. Organomet. Chem.* 2018, 32, e4299. [CrossRef]
- 127. Cánepa, A.L.; Elías, V.R.; Vaschetti, V.M.; Sabre, E.V.; Eimer, G.A.; Casuscelli, S.G. Selective oxidation of benzyl alcohol through eco-friendly processes using mesoporous V-MCM-41, Fe-MCM-41 and Co-MCM-41 materials. *App. Catal A. Gen.* 2017, 545, 72–78. [CrossRef]
- 128. Miao, C.; Li, X.-X.; Lee, Y.-M.; Xia, C.; Wang, Y.; Nam, W.; Sun, W. Manganese complex-catalyzed oxidation and oxidative kinetic resolution of secondary alcohols by hydrogen peroxide. *Chem. Sci.* 2017, *8*, 7476–7482. [CrossRef] [PubMed]
- Tanaka, S.; Kon, Y.; Ogawa, A.; Uesaka, Y.; Tamura, M.; Sato, K. Mixed Picolinate and Quinaldinate Iron (III) Complexes for the Catalytic Oxidation of Alcohols with Hydrogen Peroxide. *ChemCatChem* 2016, *8*, 2930–2938. [CrossRef]
- 130. Maleki, A.; Rahimi, R.; Maleki, S. Efficient oxidation and epoxidation using a chromium (VI)-based magnetic nanocomposite. *Environ. Chem. Lett.* **2016**, *14*, 195–199. [CrossRef]
- Assady, E.; Yadollahi, B.; Riahi Farsani, M.; Moghadam, M. Zinc polyoxometalate on activated carbon: An efficient catalyst for selective oxidation of alcohols with hydrogen peroxide. *Appl. Organomet. Chem* 2015, 29, 561–565. [CrossRef]
- 132. Tayebani, M.; Shafaat, B.; Iravani, M. Hydrogen peroxide oxidation of primary alcohols by thiosemicarbazide Schiff base metal complexes. *Iran. J. Catal.* **2015**, *5*, 213–221.
- 133. Ragupathi, C.; Vijaya, J.J.; Narayanan, S.; Jesudoss, S.; Kennedy, L.J. Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by cobalt aluminate catalysis: A comparison of conventional and microwave methods. *Ceram. Int.* **2015**, *41*, 2069–2080. [CrossRef]
- 134. Prakash, S.; Charan, C.; Singh, A.K.; Shahi, V.K. Mixed metal nanoparticles loaded catalytic polymer membrane for solvent free selective oxidation of benzyl alcohol to benzaldehyde in a reactor. *App. Catal B: Environ.* **2013**, *132*, 62–69. [CrossRef]
- 135. Szávuly, M.; Szilvási, S.D.; Csonka, R.; Klesitz, D.; Speier, G.; Giorgi, M.; Kaizer, J. Catalytic oxidation of alcohols and sulfides with hydrogen peroxide using isoindoline and phthalazine-based diiron complexes. *J. Mol.Catal A. Chem* 2014, 393, 317–324. [CrossRef]
- 136. Saisaha, P.; Buettner, L.; van der Meer, M.; Hage, R.; Feringa, B.L.; Browne, W.R.; de Boer, J.W. Selective catalytic oxidation of alcohols, aldehydes, alkanes and alkenes employing manganese catalysts and hydrogen peroxide. *Adv. Synth. Catal* **2013**, *355*, 2591–2603. [CrossRef]
- 137. de Boer, J.W.; Brinksma, J.; Browne, W.R.; Meetsma, A.; Alsters, P.L.; Hage, R.; Feringa, B.L. Cis-dihydroxylation and epoxidation of alkenes by [Mn₂O(RCO₂)₂(tmtacn)₂]: Tailoring the selectivity of a highly H₂O₂-efficient catalyst. *J. Am. Chem. Soc.* **2005**, *127*, 7990–7991. [CrossRef] [PubMed]
- 138. de Boer, J.W.; Browne, W.R.; Brinksma, J.; Alsters, P.L.; Hage, R.; Feringa, B.L. Mechanism of cis-dihydroxylation and epoxidation of alkenes by highly H₂O₂ efficient dinuclear manganese catalysts. *Inorg. Chem.* 2007, 46, 6353–6372. [CrossRef] [PubMed]
- 139. Dong, J.J.; Unjaroen, D.; Mecozzi, F.; Harvey, E.C.; Saisaha, P.; Pijper, D.; de Boer, J.W.; Alsters, P.; Feringa, B.L.; Browne, W.R. Manganese-Catalyzed Selective Oxidation of Aliphatic C–H groups and Secondary Alcohols to Ketones with Hydrogen Peroxide. *ChemSusChem* 2013, *6*, 1774–1778. [CrossRef]
- 140. Masoudian, S.; Monfared, H.H.; Aghaei, A. Silica aerogel–iron oxide nanocomposites: Recoverable catalysts for the oxidation of alcohols with hydrogen peroxide. *Transit. Met. Chem* **2011**, *36*, 521–530. [CrossRef]

- 141. Weng, Z.; Liao, G.; Wang, J.; Jian, X. Selective oxidation of benzyl alcohol with hydrogen peroxide over reaction-controlled phase-transfer catalyst. *Catal. Commun.* **2007**, *8*, 1493–1496. [CrossRef]
- 142. Pillai, U.R.; Sahle-Demessie, E. Selective oxidation of alcohols over vanadium phosphorus oxide catalyst using hydrogen peroxide. *App. Catal A. Gen.* **2004**, 276, 139–144. [CrossRef]
- 143. Pillai, U.R.; Sahle-Demessie, E. Oxidation of alcohols over Fe³⁺/montmorillonite-K10 using hydrogen peroxide. *App. Catal A. Gen.* **2003**, 245, 103–109. [CrossRef]
- 144. Veisi, H.; Safarimehr, P.; Hemmati, S. Oxo-vanadium immobilized on polydopamine coated-magnetic nanoparticles (Fe₃O₄): A heterogeneous nanocatalyst for selective oxidation of sulfides and benzylic alcohols with H₂O₂. *J. Taiwan. Inst. Chem. E* **2018**, *88*, 8–17. [CrossRef]
- 145. Kimi, M.; Jaidie, M.M.H.; Pang, S.C. Bimetallic Cu-Ni nanoparticles supported on activated carbon for catalytic oxidation of benzyl alcohol. *J. Phys. Chem. Solids* **2018**, *112*, 50–53. [CrossRef]
- 146. Sarmah, K.; Pal, J.; Maji, T.K.; Pratihar, S. Magnetically Recoverable Heterobimetallic Co₂Mn₃O₈: Selective and Sustainable Oxidation and Reduction Reactions. *Acs Sustain. Chem. Eng.* **2017**, *5*, 11504–11515. [CrossRef]
- 147. Dong, X.; Zhang, X.; Wu, P.; Zhang, Y.; Liu, B.; Hu, H.; Xue, G. Divanadium-Substituted Phosphotungstate Supported on Magnetic Mesoporous Silica Nanoparticles as Effective and Recyclable Catalysts for the Selective Oxidation of Alcohols. *ChemCatChem* **2016**, *8*, 3680–3687. [CrossRef]
- 148. Pääkkönen, S.; Pursiainen, J.; Lajunen, M. Room-temperature oxidation of secondary alcohols by bromate–bromide coupling in acidic water. *Synth. Commun.* **2012**, *42*, 534–540. [CrossRef]
- Kuroboshi, M.; Goto, K.; Tanaka, H. Electrooxidation of alcohols in N-oxyl-immobilized silica gel/water disperse system: Approach to totally closed system. *Synthesis* 2009, 2009, 903–908. [CrossRef]
- 150. Moriyama, K.; Takemura, M.; Togo, H. Selective oxidation of alcohols with alkali metal bromides as bromide catalysts: Experimental study of the reaction mechanism. *J. Org. Chem.* **2014**, *79*, 6094–6104. [CrossRef]
- 151. Komagawa, H.; Maejima, Y.; Nagano, T. Sodium bromide-catalyzed oxidation of secondary benzylic alcohols using aqueous hydrogen peroxide as terminal oxidant. *Synlett* **2016**, *27*, 789–793. [CrossRef]
- 152. Weng, Z.; Wang, J.; Zhang, S.; Jian, X. Selective oxidation of benzyl alcohol by heteropolytungstate as reactioncontrolled phase-transfer catalyst with hydrogen peroxide. *Bull. Chem. Soc. Jpn* **2008**, *81*, 525–529. [CrossRef]
- 153. Dabiri, M.; Koohshari, M.; Shafipour, F.; Kasmaei, M.; Salari, P.; MaGee, D. Supported vanadium Schiff bases complex on nano silica: A heterogeneous catalyst for the selective oxidation of sulfides and alcohols. *J. Iran. Chem. Soc.* **2016**, *13*, 1265–1272. [CrossRef]
- 154. Chhikara, B.S.; Chandra, R.; Tandon, V. A versatile method for the hydrogen peroxide oxidation of alcohols using ptc condition in tert-butanol. *Synlett* 2005, 2005, 0872–0874. [CrossRef]
- 155. Nishida, S.; Hayashi, M. Oxidation of secondary benzylic alcohols to ketones and benzylic oxygenation of alkylarenes with hydrogen peroxide in the presence of activated carbon. *Synlett* **2012**, *23*, 1683–1685. [CrossRef]
- 156. Zhao, Y.; Yu, C.; Wu, S.; Zhang, W.; Xue, W.; Zeng, Z. Synthesis of Benzaldehyde and Benzoic Acid by Selective Oxidation of Benzyl Alcohol with Iron (III) Tosylate and Hydrogen Peroxide: A Solvent-Controlled Reaction. *Catal. Lett.* 2018, 148, 3082–3092. [CrossRef]
- 157. Karimi, B.; Rostami, F.B.; Khorasani, M.; Elhamifar, D.; Vali, H. Selective oxidation of alcohols with hydrogen peroxide catalyzed by tungstate ions (WO₄⁼) supported on periodic mesoporous organosilica with imidazolium frameworks (PMO-IL). *Tetrahedron* **2014**, *70*, 6114–6119. [CrossRef]
- 158. Masoudian, S.; Yahyaei, H. Oxidation of Alcohols with Hydrogen Peroxide Catalyzed by Supported Fe (III) Porphyrins; NISCAIR-CSIR: New Delhi, India, 2011.
- 159. Galica, M.; Kasprzyk, W.; Bednarz, S.; Bogdał, D. Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate. *Chem. Pap.* **2013**, *67*, 1240–1244. [CrossRef]
- 160. Hayashi, H.; Kikawa, K.; Murai, Y.; Shigemoto, N.; Sugiyama, S.; Kawashioro, K. Competitive oxidation of 1-and 2-propanol catalyzed by titanium silicalite-1 and the application for selective oxidation of 1-methoxy-2-propanol to 1-methoxy-2-propanone. *Catal. Lett.* **1996**, *36*, 99–102. [CrossRef]
- 161. Choi, K.-M.; Ikeda, S.; Ishino, S.; Ikeue, K.; Matsumura, M.; Ohtani, B. Oxidation of hydrophobic alcohols using aqueous hydrogen peroxide over amphiphilic silica particles loaded with titanium (IV) oxide as a liquid–liquid phase-boundary catalyst. *Appl. Catal A. Gen.* 2005, 278, 269–274. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).