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Abstract: Consideration of the extensive family of known uranyl ion complexes of polycarboxylate
ligands shows that there are quite numerous examples of crystalline solids containing capsular, closed
oligomeric species with the potential for use as selective heterogeneous photo-oxidation catalysts.
None of them have yet been assessed for this purpose, and some have obvious deficiencies, although
related framework species have been shown to have the necessary luminescence, porosity and, to some
degree, selectivity. Aspects of ligand design and complex composition necessary for the synthesis
of uranyl ion cages with appropriate luminescence and chemical properties for use in selective
photo-oxidation catalysis have been analysed in relation to the characteristics of known capsules.
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1. Introduction

Intensive research over the past few decades has been devoted to the synthesis of crystalline
cavity-containing, framework, and coordination polymer species of a porous nature suited to the
storage, immobilisation, sensing, or reaction of a wide variety of substrates of environmental and
economic importance [1–15]. (The references cited here are a somewhat eclectic selection intended
to illustrate the range of chemistry involved, rather than to be comprehensive, which is far from the
case.) This has resulted not only in real advances towards practical objectives in gas storage [1,5,16,17]
but also in unanticipated developments such as that of the “crystalline sponge” method [18,19] of
determining the molecular structures of molecules otherwise difficult to crystallise. While metal ions
clearly have a fundamental role in determining the structure of these materials, of equal importance is
that they endow the solids with functionality specific to the given metal ion. One such function is
that of photoactivity, a property which may have various manifestations [2,8], but which in the case of
uranium(VI) as uranyl ion, UO2

2+, derivatives, is anticipated to be that of photo-oxidation catalysis,
long known in their solution chemistry [20–22].

Although photocatalysis by metal-organic framework (MOF) systems in particular could be
described in 2017 as a “largely unexplored field” [23], it has rapidly become a popular area of
study [24]. Investigations of hetereogeneous photocatalysis by uranyl-containing solids [25–35],
however, have remained largely limited to those of oxidative destruction of environmental pollutants or
to basic mechanistic work, although water splitting has been frequently cited as a possible application.
Selectivity of these reactions has not been a major focus and in some early instances [34] would
be expected to have been determined by the nature of the preformed support upon which uranyl
centres were immobilised. Given that the use of a radioactive material would pose problems in any
large-scale application for environmental remediation or water splitting, an alternative, more appealing
prospect is that of selective photochemical synthesis within cavities of a porous uranyl complex crystal,
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a prospect which parallels what has already been realised for synthesis in general with other metal
ion derivatives [2,36–38] and which is rendered worthy of wider investigation by the observation of
selective incorporation of various materials into the cavities of some known uranyl ion coordination
polymers [39–45].

In general, polycarboxylates, often in the company of aza-aromatic species, are the most
important class of ligands giving rise to coordination polymers, metal-organic frameworks, and closed
metallo-clusters [1–14,46]. This is particularly true of uranyl ion containing systems [30,47–51], and it
is for this reason that the present report is focussed upon uranyl polycarboxylates, though this is not to
say that less-investigated species such as, for example, those based on polyphosphonates [52–55] are
not of equal potential interest. We do note, however, that while uranyl ion photocatalysed oxidation of
carboxylic acids is a long known reaction [20,21], it is slow and there is little evidence that the synthesis
of uranyl carboxylates [49] is significantly influenced by it, so that the extraordinary variety of known
carboxylate systems is open to exploration. With the particular objective of defining possibly more
efficient pathways to photoactive closed uranyl-polycarboxylate oligomers, expected to be the most
stringent form of receptor, we present an analysis of both positive and negative aspects of the crystal
structures and composition of currently known system.

2. Discussion

The first closed uranyl polycarboxylate oligomer to be structurally characterised [56]
was that formed by a monoester derivative of the cis,trans stereoisomer of
1,3,5-trimethylcyclohexane-1,3,5-tricarboxylic acid in its dianionic form (L2−) and with the
composition (HNEt3)8[(UO2)8(L)8(O2)4]·5CHCl3·16H2O·6CH3OH (A, CSD refcode GOPVUC).
The box-like, octa-anionic oligomer found in this structure (Figure 1) defines a cavity large enough to
accommodate two triethylammonium cations and (partly) two chloroform molecules, indicating that
small molecule reactions within the cavity could be possible provided the cations could be replaced by
reactive species. It also has features found in many other uranyl complexes in that the carboxylate
groups are bound as κ2O,O’ chelates and the peroxide ligands act as bridges to produce convergent
U(O2)U units. The adventitious presence of peroxide in the complex is not an unusual observation
in uranyl ion coordination chemistry and detailed studies [57,58] have led to its rationalisation as
a result of photochemical reduction of uranyl ion by water or organic substrates (such as methanol) to
give U(V), which subsequently reacts with atmospheric oxygen to give peroxide. The bent form of
the U(O2)U unit is favourable for the formation of a closed species and this effect is spectacularly
exemplified in the extraordinary family of cages formed by uranyl ion in the presence of peroxide
ion and various co-ligands such as oxide, hydroxide, nitrate, phosphate and other simple oxyanions,
a family known to extend up to a multi-compartmental cage built from 124 uranyl units [59,60].
The presence of bound peroxide on uranyl ion, however, has the unfortunate consequence that
uranyl ion emission, with its characteristic multiple vibronic components [21,61], is quenched, though
ligand-centred emission is observed in some cases [58,62].
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Figure 1. (a) A perspective view of the octa-uranate cage present in the crystal of complex A, 
showing the included triethylammonium ions and chloroform molecules but not the ester groups on 
the ligand; (b) The complete ligand, with its ester group; (c) The bent O6U(O2)UO6 unit present in the 
complex. H-atoms were not included in the structure. (Colour code: grey = C, blue = N, red = O, green 
= Cl, yellow = U.) 

Thus, the [(UO2)8(L)8(O2)4]8− cavity must be considered unsuitable for photocatalysed oxidation 
reactions involving the excited UO22+ ion. The same conclusion must be drawn in relation to the 
octanuclear uranyl cage (Figure 2), found in the complex of composition 
(HNEt3)8[(UO2)8(H2bcat)4(O2)8]⋅22H2O, (B, CSD refcode QAGCOR) [63], obtained with a bis-catechol 
ligand in its doubly deprotonated form (H2bcat2−). The origin of the peroxide ligands is presumably 
the same as that of peroxide in complex A, although any loss of uranyl emission (not actually 
demonstrated) here could be due to the phenoxide ligands, similar highly coloured but non-emissive 
complexes being well known for the calixarenes [64]. (UO2)4(O2)4 units form two bowl-shaped 
entities that provide caps to the cage. That the estimated internal volume [63] of the cage in B is less 
than that of the cavity in A may explain why only water molecules are found within and the 
triethylammonium counter cations are located externally, being involved in H-bonding to peroxo-O 
atoms. 
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Figure 2. Perspective views of (a) the octanuclear cage found in the crystal of complex B, showing the 
oxygen atoms of the two included water molecules (H-atoms not located) and the external location of 
triethylammonium ions; (b) the capping unit of the cage formed by 4 uranyl ions bridged by 4 
peroxide ions and (c) the bis(catecholate) ligand linking the capping units. H-atoms on C are not 
shown. 

The same limitation to its utility must be applied again to the more recently described 
cavity-containing complex obtained through reaction of uranyl nitrate with a dicarboxylate 
derivative of calix[4]pyrrole (cpdc2−) to give a product of composition 

Figure 1. (a) A perspective view of the octa-uranate cage present in the crystal of complex A, showing
the included triethylammonium ions and chloroform molecules but not the ester groups on the ligand;
(b) The complete ligand, with its ester group; (c) The bent O6U(O2)UO6 unit present in the complex.
H-atoms were not included in the structure. (Colour code: grey = C, blue = N, red = O, green = Cl,
yellow = U.)

Thus, the [(UO2)8(L)8(O2)4]8− cavity must be considered unsuitable for photocatalysed
oxidation reactions involving the excited UO2

2+ ion. The same conclusion must be drawn
in relation to the octanuclear uranyl cage (Figure 2), found in the complex of composition
(HNEt3)8[(UO2)8(H2bcat)4(O2)8]·22H2O, (B, CSD refcode QAGCOR) [63], obtained with a bis-catechol
ligand in its doubly deprotonated form (H2bcat2−). The origin of the peroxide ligands is presumably the
same as that of peroxide in complex A, although any loss of uranyl emission (not actually demonstrated)
here could be due to the phenoxide ligands, similar highly coloured but non-emissive complexes being
well known for the calixarenes [64]. (UO2)4(O2)4 units form two bowl-shaped entities that provide
caps to the cage. That the estimated internal volume [63] of the cage in B is less than that of the cavity
in A may explain why only water molecules are found within and the triethylammonium counter
cations are located externally, being involved in H-bonding to peroxo-O atoms.
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Figure 2. Perspective views of (a) the octanuclear cage found in the crystal of complex B, showing the
oxygen atoms of the two included water molecules (H-atoms not located) and the external location of
triethylammonium ions; (b) the capping unit of the cage formed by 4 uranyl ions bridged by 4 peroxide
ions and (c) the bis(catecholate) ligand linking the capping units. H-atoms on C are not shown.

The same limitation to its utility must be applied again to the more recently described
cavity-containing complex obtained through reaction of uranyl nitrate with a dicarboxylate derivative
of calix[4]pyrrole (cpdc2−) to give a product of composition [(UO2)4(cpdc)4(O2)2](pyH)4·4dmf, (C,
CSD refcode IDOKIY; dmf = dimethylformamide) (Figure 3) [65]. Interestingly, the capsular form of
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the [(UO2)4(cpdc)4(O2)2]4− anion present cannot here be attributed to the convergent nature of the
U(O2)U units, since these are not centred on a common point, and must instead be a consequence of
the convergent array of the carboxylate substituents of cpdc2−. While the dimensions of the cavity
in C are similar to those of that in A, with four small molecules/ions found in each cavity, in C the
occupying species are all neutral, disordered dmf, with the pyridinium counter cations being confined
to the exterior of the cavity by insertion into the calixpyrrole cups. A means of controlling the species
entering an anionic cavity, differing from that seen in complex B, is therefore evident. In this regard,
it should also be noted that the anionic capsules in C form stacks parallel to the a axis so as to define
a narrow channel, a structure which could be regarded as suitable for the insertion through several
capsules of a long molecular chain species or simply as a pathway for small molecule entry into the
cavities. Another significant aspect of the synthesis of complex C is that it appears to form via the
intermediacy of a photoactive [(UO2)2(cpdc)3]2− anion, also considered likely to be capsular, though
not characterised as such crystallographically. Such a capsule might be too small to be useful as
a molecular flask for photo-oxidation of molecules larger than water (see ahead).
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Many other “nanotubular” species (not all based on carboxylates) have since been characterised 
[47,67–76], their significance lying not only in their possible suitability as reaction vessels for the 
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The objective here would be the creation of uranyl ion-based structures analogous to those of 
zeolites and mesoporous silicas, an objective, which despite an early success [77] (discussed ahead), 
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that of the relationships between graphite, fullerenes, and carbon nanotubes, since a common 
feature of the crystal structures of anionic uranyl ion complexes of dicarboxylates is the presence of 
diperiodic honeycomb layers with a hexagonal form similar to that of graphite [42,47–49,78]. While 
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Figure 3. (a) A perspective view of the tetranuclear cage present in complex C (4 disordered dmf
molecules included are not shown) showing the opposed bending of the U(O2)U units; (b) A view down
one column of cages showing the rather constricted channel formed. (Dmf molecules, which do not
block the central region of the channel, are again not shown.); (c) perspective view of the disubstituted
calixpyrrole ligand.

The structure of complex C provides far from the first example of a uranyl ion complex where there
are enclosed channels which might engender porosity in the crystal, a simple early example being that
of the chiral tubes (Figure S1) defined by helical polymer chains in [UO2(dipic)(OH2)] [66] (CSD refcode
PYDCUO; dipic = dipicolinate = pyridine-2,6-dicarboxylate), although here it seems that the inner space
of the tube is too small even to include water molecules and it is unoccupied. Many other “nanotubular”
species (not all based on carboxylates) have since been characterised [47,67–76], their significance
lying not only in their possible suitability as reaction vessels for the synthesis or oxidation of long,
linear molecules but also, relating to the focus of the present discussion, as channels which might be
used to link and provide access to capsular reaction vessels. The objective here would be the creation
of uranyl ion-based structures analogous to those of zeolites and mesoporous silicas, an objective,
which despite an early success [77] (discussed ahead), has been attained in but a few instances [42–44].
An intriguing comparative consideration here is that of the relationships between graphite, fullerenes,
and carbon nanotubes, since a common feature of the crystal structures of anionic uranyl ion complexes
of dicarboxylates is the presence of diperiodic honeycomb layers with a hexagonal form similar to that
of graphite [42,47–49,78]. While the appropriate choice of ligand has certainly enabled this tendency
to be overcome, the actual outcome has proved difficult to predict, as is well illustrated by various
investigations of the dianion of camphoric acid as a ligand for uranyl ion [79–82].

(1R,3S)-Camphoric acid (H2cam) is a readily available, chiral dicarboxylic acid with the desirable
feature that it can provide two carboxylate groups oriented such that although they are too far apart to
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simply chelate a single metal ion, they can be convergently arranged so as to favour closed oligomeric
complex units. Thus, a U(camphorate)U unit can adopt a form equivalent to that of the U(O2)U
unit considered above, although the equivalence is inexact in that the carboxylate groups need not
necessarily adopt κ2O,O’ chelation and rotation about the C−CO2– bonds can occur. In the neutral (1:1
uranyl:dicarboxylate) complex [UO2(cam)(py)2]·py (py = pyridine), (D, CSD refcode PENFIY) [82],
the uranium is 8-coordinate with the pyridine ligands in trans positions and although the cam2−

ligands bind as bis(κ2O,O’) chelates and have a convergent form, they are only present in sufficient
number to link uranyl centres into chains or rings. Thus, what is found is that the complex is a 1D
zig-zag polymer (Figure 4a) rather than a metallacycle, perhaps as a consequence of the pyridine
ligands forcing the carboxylate units to be as remote as possible in the uranium coordination sphere.
With methanol as the co-ligand rather than pyridine in [UO2(cam)(CH3OH)]·CH3OH, (E, CSD refcode
PENFOE), the uranium is now 7-coordinate and the crystal contains diperiodic sheets involving fused
8- and 32-membered metallacyclic units where each cam2− binds to three uranium centres with one
carboxylate forming a κ2O,O’ chelate and the other forming a µ2-κ1O,κ1O’ bridge (Figure 4b). Since the
cam2− conformation is very similar in both complexes, it is apparent that this cannot be the only factor
controlling the structures. One obvious additional influence is the coordination mode of the carboxylate
units, as well-exemplified in the 1:1 complexes of uranyl ion with cyclobutane-1,1-dicarboxylate,
where both 4- and 6-membered chelate rings form part of a simple binuclear species (CSD refcode
PENFEU) [82], and with (2R,3R,4S,5S)-tetrahydrofurantetracarboxylate, where 7-membered chelate
rings are found in metallamacrocyclic oligomers possibly of sufficient depth to accommodate small
molecules (CSD refcodes IZOHEK and IZOHIO) [83].
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When uranyl ion and H2cam are reacted in the presence of 1,4-diazabicyclo[2.2.2]octane 
(DABCO), however, the bent arrangement does appear to have the desired effect in that in the 
crystal of [(UO2)8{(cam)12H8}]⋅12H2O, (F, CSD refcode MUNKOW), an octanuclear cage species 
(Figure 5a) with both carboxylate groups bound in the 4-membered, κ2O,O’ chelate mode, is found 
[81]. This chiral cage has quite large portals and its packing in the crystal results in facing arrays 
which define channels indicating it might well have 3-dimensional porosity, although this property 
has not been established. As a neutral species, the cage might be expected to be able to encapsulate 
neutral small molecules but the resolved water molecules of the structure are found either on the 
faces of the cages or in between cages, where H-bond acceptor sites are most abundant. That the cage 
has significant stability is indicated by the fact that it can be crystallised in its fully deprotonated 
form as Ba(II) [81] and K(I) [80] derivatives (CSD refcodes MUNKUC and LIYRAO), although here 
the channels are now blocked by the counter cations. This could mean, nonetheless, that the 
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Figure 4. (a) Section of the monoperiodic chains found in the crystal of complex D; (b) partial view of
the diperiodic sheet found in the crystal of complex E; (c) perspective view of the camphorate ligand
present in both.

When uranyl ion and H2cam are reacted in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO),
however, the bent arrangement does appear to have the desired effect in that in the crystal of
[(UO2)8{(cam)12H8}]·12H2O, (F, CSD refcode MUNKOW), an octanuclear cage species (Figure 5a) with
both carboxylate groups bound in the 4-membered, κ2O,O’ chelate mode, is found [81]. This chiral
cage has quite large portals and its packing in the crystal results in facing arrays which define channels
indicating it might well have 3-dimensional porosity, although this property has not been established.
As a neutral species, the cage might be expected to be able to encapsulate neutral small molecules but
the resolved water molecules of the structure are found either on the faces of the cages or in between
cages, where H-bond acceptor sites are most abundant. That the cage has significant stability is
indicated by the fact that it can be crystallised in its fully deprotonated form as Ba(II) [81] and K(I) [80]
derivatives (CSD refcodes MUNKUC and LIYRAO), although here the channels are now blocked by
the counter cations. This could mean, nonetheless, that the complexes might be used as ion-exchange
materials but the fact that in the presence of NH4

+ and CH3PPh3
+ cations, camphoric acid and uranyl

ion react [79] to give crystals of composition [CH3PPh3]3[NH4]3[(UO2)6(cam)9], (G) (CSD refcode
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JIVBOI), containing a hexanuclear cage complex (Figure 5b) in which a phosphonium cation occupies
the cage, indicates that any such capacity would be limited. It also must be noted that although
luminescence measurements have not been made on all these complexes, where they have [79,80],
uranyl ion emission appears to be largely, if not completely quenched, indicating a limited potential
for photo-oxidation catalysis. In some instances, while uranyl ion emission is not observed or is
weak, broad-band emission of obscure origin is observed, providing yet another indication that the
photophysics of uranyl ion complexes in the solid state is yet to be fully understood [61,84,85].
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Structural characterisation [86–89] of uranyl ion complexes of dicarboxylate ligands rather 
closely related to camphorate, adamantane-1,3-dicarboxylate (adc2−) and adamantane-1,3-diacetate 
(ada2−) has further exposed the variety of influences determining their nature in the solid state. Thus, 
the ligand with the closer similarity to camphorate, adc2–, reacts with uranyl ion in a 1.5:1 
(ligand:metal) ratio to give not a closed, cage complex but a triperiodic network, of composition 
[H2NMe2]2[(UO2)2(adc)3]·1.5H2O, (H, CSD refcode ZOZCIC), in which channels (Figure S2) are 
occupied by dimethylammonium cations (formed by hydrolysis of the dimethylformamide 
cosolvent), even though the ligand is again bound in a bis(κ2O,O’) mode [89]. When Cu(II) replaces 
the dimethylammonium cations, a triperiodic network is again formed but it is one involving 
diperiodic polymers of [(UO2)2(adc)3]2− units linked by Cu(II) bridges involving Cu–O(carboxylate) 
bonding which disrupts the uranyl-carboxylate interactions, so that the ligands function only as 
bis(κ1O) donors to uranium (CSD refcode ZOZDID). The effects of other metal ions on 
uranyl-carboxylate complex structures are so varied as to require separate analysis but one 
untoward effect which must be noted here is that it is common to find that the presence of the 
hetero-metal ion leads to quenching of uranyl ion emission [61,85,90,91], as in fact is complete in the 
present instance probably because of the close proximity of the Cu and U centres. With ada2−, a 
complex of similar stoichiometry to H, of composition [H2NMe2]2[(UO2)2(ada)3]·1.5H2O, (I, CSD 
refcode IHOGIX) [88], can be isolated in which sheets of rather convoluted diperiodic polymer 
(Figure S3) are present, with the conformational freedom resulting from the presence of the 
CH2–CO2– bonds seemingly allowing the carboxylate units of one ligand unit to adopt more 
divergent relative orientations than those in the adc2− units of H, even though the ligand is bound as 
a bis(κ2O,O’) species. In the complex [H2NMe2][PPh3Me][(UO2)2(ada)3]·H2O, (J, CSD refcode 
YEXDIR) [87], where methyltriphenylphosphonium has replaced one dimethylammonium cation of 
I, one of the 3 inequivalent units adopts a completely divergent arrangement of its carboxylate 

Figure 5. Perspective views of (a) the octanuclear cage found in the crystal of complex F, with the
oxygen atoms of water molecules (H-atoms not located) associated with a cage portal shown as violet
spheres); (b) the hexanuclear cage, with associated [MePPh3]+ cations, found in the crystal of complex
G (P atoms in violet; carbon atoms of the included cation are shown in black).

Structural characterisation [86–89] of uranyl ion complexes of dicarboxylate ligands rather closely
related to camphorate, adamantane-1,3-dicarboxylate (adc2−) and adamantane-1,3-diacetate (ada2−) has
further exposed the variety of influences determining their nature in the solid state. Thus, the ligand with
the closer similarity to camphorate, adc2–, reacts with uranyl ion in a 1.5:1 (ligand:metal) ratio to give
not a closed, cage complex but a triperiodic network, of composition [H2NMe2]2[(UO2)2(adc)3]·1.5H2O,
(H, CSD refcode ZOZCIC), in which channels (Figure S2) are occupied by dimethylammonium cations
(formed by hydrolysis of the dimethylformamide cosolvent), even though the ligand is again bound in
a bis(κ2O,O’) mode [89]. When Cu(II) replaces the dimethylammonium cations, a triperiodic network
is again formed but it is one involving diperiodic polymers of [(UO2)2(adc)3]2− units linked by Cu(II)
bridges involving Cu–O(carboxylate) bonding which disrupts the uranyl-carboxylate interactions,
so that the ligands function only as bis(κ1O) donors to uranium (CSD refcode ZOZDID). The effects
of other metal ions on uranyl-carboxylate complex structures are so varied as to require separate
analysis but one untoward effect which must be noted here is that it is common to find that the
presence of the hetero-metal ion leads to quenching of uranyl ion emission [61,85,90,91], as in fact
is complete in the present instance probably because of the close proximity of the Cu and U centres.
With ada2−, a complex of similar stoichiometry to H, of composition [H2NMe2]2[(UO2)2(ada)3]·1.5H2O,
(I, CSD refcode IHOGIX) [88], can be isolated in which sheets of rather convoluted diperiodic
polymer (Figure S3) are present, with the conformational freedom resulting from the presence of
the CH2–CO2– bonds seemingly allowing the carboxylate units of one ligand unit to adopt more
divergent relative orientations than those in the adc2− units of H, even though the ligand is bound
as a bis(κ2O,O’) species. In the complex [H2NMe2][PPh3Me][(UO2)2(ada)3]·H2O, (J, CSD refcode
YEXDIR) [87], where methyltriphenylphosphonium has replaced one dimethylammonium cation
of I, one of the 3 inequivalent units adopts a completely divergent arrangement of its carboxylate
groups and diperiodic polymer sheets with a distorted honeycomb topology (Figure S4) are formed,
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all three ligand units still being bound in the bis(κ2O,O’) mode. When the (formal) ion exchange
is complete for the 1:1.5 U:adc system as in [NH4]2[PPh4]2[(UO2)4(ada)6]·H2O, (K, CSD refcode
YEXDAJ), and [NH4]2[PPh3Me]2[(UO2)4(ada)6]·H2O, (L, CSD refcode YEXDEN), an essentially identical
tetranuclear, metallatricyclic cage species is now found in both (Figure 6). Of the six ada2− ligands
in a cage, four have a convergent array of carboxylates and two a divergent array, although all six
behave as bis(κ2O,O’) chelates. While the ammonium ions are H-bonded to the exterior of the cage,
the phosphonium cations and particularly the [PPh3Me]+ species partly occupy the interior through
CH···O interactions and it is not evident that the cage could accommodate other molecules or that any
exchange could occur without transformation of the cage. The dependence of the structure of complexes
based on 1:1.5 uranyl:ligand units on the counter cation is further illustrated in the structures [86] of
[PPh4]2[(UO2)2(adc)3]·2H2O, (M) (CSD refcode GOTPAJ), and [PPh4]2[(UO2)2(ada)3], (N) (CSD refcode
GOTPIR), where very similar 1D, trough-like polymers (Figure S5) are present. The cavities defined by
these troughs are occupied by the counter cations, so that once again, although these complexes are like
other monometallic uranyl complexes of both adc2− and ada2− in showing uranyl ion luminescence,
they do not offer any obvious prospect of being useful for photo-oxidation catalysis.
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Figure 6. The near identical macrotricyclic, tetranuclear cages, along with their nearest phosphonium 
cations, found in the crystals of (a) complex K and (b) complex L; (c) one conformation of the adc2− 
ligand found in these complexes. 

Where conformational restrictions are somewhat diminished compared to camphor or 
adamantane derivatives in the cis and trans isomers of 1,2-cyclohexane dicarboxylates ccdc2− and 
tcdc2−), tetrahedral cage species based on UO2(κ2O,O’-carboxylate)3 apices have been obtained for the 
trans isomer and an octanuclear cage for the cis (complexes O and P, Figure 7, CSD refcodes 
WANKAA and LICNIX, respectively) [92–94]. Broader investigations [95–97] of the uranyl ion 
complexes of these ligands have shown that these particular results are due to the choice of counter 
cation for the anionic oligomers, although the range is quite wide for the tetranuclear cages from the 
trans isomer and it has been suggested that the cage may be the favoured form for the stoichiometry 
1:1.5 U:ligand [92]. These tetranuclear cages are luminescent and uranyl-O atoms, potentially sites 
for photoreaction [21], are directed towards the interior, but the internal space of the cage is too 
small to accommodate any molecule of real interest. The octanuclear cage derived from the cis 
isomer has a near-cubic array of U centres with one oxygen on each directed towards the interior 
and four involved in H-bonds to an encapsulated ammonium ion, and could be expected to be 
suitable for the inclusion of small molecules, although unfortunately it shows very weak 
luminescence. 

Figure 6. The near identical macrotricyclic, tetranuclear cages, along with their nearest phosphonium
cations, found in the crystals of (a) complex K and (b) complex L; (c) one conformation of the adc2−

ligand found in these complexes.

Where conformational restrictions are somewhat diminished compared to camphor or adamantane
derivatives in the cis and trans isomers of 1,2-cyclohexane dicarboxylates ccdc2− and tcdc2−), tetrahedral
cage species based on UO2(κ2O,O’-carboxylate)3 apices have been obtained for the trans isomer and
an octanuclear cage for the cis (complexes O and P, Figure 7, CSD refcodes WANKAA and LICNIX,
respectively) [92–94]. Broader investigations [95–97] of the uranyl ion complexes of these ligands
have shown that these particular results are due to the choice of counter cation for the anionic
oligomers, although the range is quite wide for the tetranuclear cages from the trans isomer and it
has been suggested that the cage may be the favoured form for the stoichiometry 1:1.5 U:ligand [92].
These tetranuclear cages are luminescent and uranyl-O atoms, potentially sites for photoreaction [21],
are directed towards the interior, but the internal space of the cage is too small to accommodate any
molecule of real interest. The octanuclear cage derived from the cis isomer has a near-cubic array
of U centres with one oxygen on each directed towards the interior and four involved in H-bonds
to an encapsulated ammonium ion, and could be expected to be suitable for the inclusion of small
molecules, although unfortunately it shows very weak luminescence.
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Figure 7. Views (a) of the tetranuclear, tetrahedral cluster found in the structure of 
[NH4]4[(UO2)4(tcdc)6], O and (b) the octanuclear, near-cubic cage found in the structure of 
[NH4][PPh4][(UO2)8(ccdc)9(H2O)6]·3H2O, P. 

Although the examples given above show that conformational restrictions in dicarboxylate 
ligands do have some influence on the structure of their uranyl ion complexes, it is worthy of note 
that even conformationally highly flexible aliphatic α,ω-dicarboxylates [98,99], which typically give 
diperiodic coordination polymers [98], can be induced to form anionic cage oligomers of helical form 
(helicates) in the presence of particular counter cations [99]. Thus, in the presence of [Co(bipy)3]2+ or 
[Ni(bipy)3]2+ (bipy = 2,2’-bipyridine), uranyl ion and 1,7-heptanedicarboxylic acid (H2C9) react to 
give isomorphous crystals of composition [M(bipy)3][(UO2)2(C9)3] (M = Co and Ni, CSD refcodes 
DACGIA and DACGOG, respectively), while with [Mn(phen)3]2+ or [Co(phen)3]2+ (phen = 
1,10-phenanthroline) and 1,10-decanedicarboxylic acid (H2C12), isomorphous 
[M(phen)3][(UO2)2(C12)3] crystals result (Q, CSD refcodes DACGUM and DACHAT for Mn and Co, 
respectively). The anionic capsules present (Figure 8) are small, with an internal space partly 
occupied by the aza-aromatic ligands on the counter cations and with little space for any guest. As 
the U⋅⋅⋅U separations (~7.5 Å) in these species are very close to that in complex C described above, 
this is taken as an indication that the supposed [(UO2)2(cpdc)3]2− precursor to C would also lack the 
capacity to act as a reaction vessel. 
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[NH4]4[(UO2)4(tcdc)6], O and (b) the octanuclear, near-cubic cage found in the structure of
[NH4][PPh4][(UO2)8(ccdc)9(H2O)6]·3H2O, P.

Although the examples given above show that conformational restrictions in dicarboxylate
ligands do have some influence on the structure of their uranyl ion complexes, it is worthy of note
that even conformationally highly flexible aliphatic α,ω-dicarboxylates [98,99], which typically give
diperiodic coordination polymers [98], can be induced to form anionic cage oligomers of helical form
(helicates) in the presence of particular counter cations [99]. Thus, in the presence of [Co(bipy)3]2+ or
[Ni(bipy)3]2+ (bipy = 2,2’-bipyridine), uranyl ion and 1,7-heptanedicarboxylic acid (H2C9) react to give
isomorphous crystals of composition [M(bipy)3][(UO2)2(C9)3] (M = Co and Ni, CSD refcodes DACGIA
and DACGOG, respectively), while with [Mn(phen)3]2+ or [Co(phen)3]2+ (phen = 1,10-phenanthroline)
and 1,10-decanedicarboxylic acid (H2C12), isomorphous [M(phen)3][(UO2)2(C12)3] crystals result (Q,
CSD refcodes DACGUM and DACHAT for Mn and Co, respectively). The anionic capsules present
(Figure 8) are small, with an internal space partly occupied by the aza-aromatic ligands on the counter
cations and with little space for any guest. As the U···U separations (~7.5 Å) in these species are
very close to that in complex C described above, this is taken as an indication that the supposed
[(UO2)2(cpdc)3]2− precursor to C would also lack the capacity to act as a reaction vessel.

Recognition of the fact that four carboxylate groups disposed on a scaffold such that they are
tetrahedrally oriented provide two orthogonal, bent dicarboxylate entities leads to the expectation
that an appropriate such ligand could be used to provide linked cavities within a triperiodic
framework polymer. This expectation was first realised (fortuitously) in the synthesis of the
uranyl ion complex of the trans,trans,trans isomer of 1,2,3,4-cyclobutanetetracarboxylate (cbtc4−)
formed from its cis,trans,cis isomer under solvothermal conditions [77]. Thus, the structure of
the complex [H3O]2[(UO2)5(cbtc)3(H2O)6], (R, CSD refcode GOJFAN), contains octanuclear boxes
(Figure 9), where each uranyl centre is bound by three κ2O,O’ carboxylate units, linked by tetranuclear
metallacycles where each uranyl centre is bound to two κ2O,O’ carboxylate units and two water
molecules (in trans positions). Neither the luminescence nor porosity of complex R, nor of the more
recently isolated framework complex [H2NMe2]4[(UO2)4(cbtc)3] (similar but of a different topological
type, CSD refcode TOJJAG) [100], have yet been studied but certainly the porosity of the uranyl ion
complexes of tetrakis(4-carboxyphenyl)methane, where a single atom is the source of the tetrahedral
orientation, has been demonstrated [42]. It is of course not essential that dicarboxylate units be
orthogonally directed in order to generate triperiodic structures of linked cavities, as is seen in
the formation of such structures with cis,trans,cis-cyclobutanetetracarboxylate [77] and in the more
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recently studied structures of uranyl ion complexes of porphyrin-derived tetracarboxylates [39] (where
photoreactivity is associated with the porphyrin centres).
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Figure 8. Perspective view of the binuclear, triple-stranded, anionic helicate and associated cations
found in the crystal of [Mn(phen)3][(UO2)2(C12)3], one of the isomorphous complexes Q. (Violet =

Mn; C12 = 1,10-dodecanedicarboxylate; H-atoms and partial disorder of the polymethylene chains are
not shown.)
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Figure 9. (a) Perspective view of the box-like unit, defined by the uranium atoms shown in yellow, 
and linked to others through tetranuclear metallacyclic units (not shown) involving the uranium 
atoms shown in green, found in the crystal of complex R. Water molecule oxygen atoms within the 
box are shown in violet; (b) the tetrahedral array produced by the trans,trans,trans conformation of 
the ligand. 

That convergent polycarboxylates can be used as well to generate capsular structures is 
beautifully demonstrated by the structures of the complexes formed by calix[4]- and calix[5]-arene 
carboxylates (e.g., structures S, Figure 10, CSD refcodes YANGUR and YANHAY, respectively) 

Figure 9. (a) Perspective view of the box-like unit, defined by the uranium atoms shown in yellow,
and linked to others through tetranuclear metallacyclic units (not shown) involving the uranium atoms
shown in green, found in the crystal of complex R. Water molecule oxygen atoms within the box are
shown in violet; (b) the tetrahedral array produced by the trans,trans,trans conformation of the ligand.

That convergent polycarboxylates can be used as well to generate capsular structures is
beautifully demonstrated by the structures of the complexes formed by calix[4]- and calix[5]-arene
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carboxylates (e.g., structures S, Figure 10, CSD refcodes YANGUR and YANHAY, respectively) [101].
The cavities formed here are large and can accommodate species as big as tetraprotonated cyclen
(1,4,7,10-tetra-azacyclododecane) in the case of the calix[4]arene tetracarboxylate or several pyridinium
and pyridine species in the calix[5]arene pentacarboxylate derivative, where the estimated effective
volume of the cavity is 7000 Å3. Luminescence measurements are not available for these complexes
and a concern is that the presence of the calixarene units may lead to quenching (see above). Since the
capsules are anionic, it is unsurprising that they include cations but this may be a barrier to the
inclusion of neutral potential substrate molecules.
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Figure 10. The (a) octanuclear (S1) and (b) icosanuclear (S2) cages formed from complexation of uranyl
ion by calix[4]arene tetracarboxylate and calix[5]arene pentacarboxylate, respectively. (Figures shown
with depth fading of the atoms.).

Just as bent dicarboxylate units can be seen as possible struts to a uranyl ion capsule, tripodal
tricarboxylates can be seen as possible caps and an obvious candidate for this role is the trianion
of Kemp’s triacid, cis,cis-1,3,5-trimethyl-1,3,5-cyclohexane tricarboxylic acid (H3kta) [102], in its
chair conformation where all three carboxylate groups are axially disposed. In the complex
[Ni(bipy)(OH2)4][(UO2)8(kta)6(OH2)6], (T, CSD refcode POGZIW) [103], the kta3− ligands do indeed
sit upon the six faces of a near-cubic octanuclear anion, bridging four uranium centres as a result of
two carboxylates forming κ1O,κ1O’ bridges and one forming a κ2O,O’ chelate. Once again, the internal
volume of the cage is not great and but a single water molecule, H-bonded to uranyl-O appears to
be encapsulated (Figure 11). Luminescence measurements were not reported but the presence of
Ni(II) in the counter cation raises the possibility that uranyl emission would be quenched, as would
be expected in the case of several heterometallic compounds, some involving the same cage as
just described and other larger aggregates (described in detail elsewhere [47]), characterised [104]
in extension of the initial study. In a further extension [105], however, where luminescence (but
not quantum yield) measurements were conducted on some similar heterometallic complexes of
cis,cis-1,3,5-cyclohexanetricarboxylate (ctc2−), quenching there was clearly not complete, although
a factor here may have been an apparent preference for the triequatorial disposition of the carboxylates
leading to the predominant formation of honeycomb-like diperiodic polymer sheets, just as indeed
observed for kta3− complexes involving counter cations other than [Ni(bipy)(OH2)4]2+ [104,105].
Both ligands have been shown to form tubular species, with all carboxylate groups axial and additional
Ni(II) cations in the case of Kemp’s triacid, and with all carboxylate groups equatorial in the case
of Hctc−, the latter exemplifying the introduction of curvature into a honeycomb sheet precursor
(CSD refcodes POHPEJ and RORROH, respectively). The trianion (kta3−) is even found in a boat
conformation in M[UO2(kta)] complexes (M = H2NMe2 (CSD refcode QUKLAL) or Cs) [106,107],
rendering the synthesis of complexes of its triaxial chair form more a matter of chance rather than
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design. Nonetheless, that a tricarboxylate constrained to a discoidal form with all carboxylates oriented
so as to favour a planar form of their complex does not necessarily generate diperiodic honeycomb
species and in fact gives a triperiodic complex with multiple large, linked cavities is seen in the
remarkable structure of the uranyl ion complex of 1,3,5-trimethyl-2,4,6-tris(4’-carboxyphenyl)benzene
(CSD refcode UNUNEY) [43,44].
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3. Conclusions

While the lack of complete luminescence and porosity measurements for known capsular oligomers
of uranyl carboxylates creates some uncertainty as to their potential value as photo-oxidation catalysts,
there seems little likelihood that any would be selective due to their capacity to encapsulate substrates
of moderate molecular size. Practical aspects of application, such as stability under reaction conditions
are also completely unexplored. Geometrical analysis analogous to that applied to other metallacapsule
design [108,109] could of course be used along with the “extended ligand” approach [110] to prepare
ligands suited to the formation of larger cavities, although this involves the danger of generating
interpenetration in the structures, already seen in numerous uranyl coordination polymers [111].
Another potential drawback with most known capsules is that they are anionic and thus favour
interaction with cations, so that one objective of continuing efforts of synthesis would be to couple
a neutral bridging ligand, such as a bis(naphthyridine), with two carboxylate units on every uranium.
The focus of this brief review has been on solid materials containing capsular species, in part because
known examples are all solids of low solubility in any solvent and in part because product separation is
more straightforward with heterogeneous catalysis but soluble capsular species would also be of interest.
The attraction of a capsular species as a reaction vessel is that any selectivity depends on the structure
of the capsule itself and not upon the environment in which it is found and capsular species which
align in crystals so as to define channels, as found in various instances described herein, could offer
heterogeneous catalysts of this type. Here, tubular complexes as found with selenates [71,72] and
phosphonates [52–55] as well as with polycarboxylates such as tricarballylate [112], iminodiacetate [69]
and phenylenediacetates [68], would also be of interest, especially if a better understanding of metal
ion quenching of uranyl ion luminescence in solids could be attained, since many tubular systems are
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those involving heterometallic species [47]. As solvothermal synthesis [113,114] is widely applied for
the isolation of crystalline uranyl ion complexes, another need is for more data concerning kinetics
and equilibria of complex formation under conditions of high temperature and pressure, particularly
in mixed solvents. Finally, it is essential to note that the crystal structures of known uranyl ion
complexes are frequently seen [115–118] to be sensitive to a wide range of weak interactions, so that the
supramolecular behaviour of a bound ligand is a crucial aspect of its design but one yet to be mastered.

Supplementary Materials: The following are available online at http://www.mdpi.com/2624-8549/2/1/7/s1,
Figure S1: Perspective view of one helical tube within the crystal of [UO2(dipic)(OH2); Figure S2: Views, down a,
of the triperiodic structure of [H2NMe2]2[(UO2)2(adc)3]·1.5H2O; Figure S3: Views of one of the diperiodic
sheets found in the crystal of [H2NMe2]2[(UO2)2(ada)3]·1.5H2O; Figure S4: Views of the diperiodic anionic
polymer sheets (counter cations not shown) in the crystal of [H2NMe2][PPh3Me][(UO2)2(ada)3]·H2O; Figure S5:
Views of the trough-like anionic monoperiodic polymers and their closest cations found in the crystals of (a)
[PPh4]2[(UO2)2(adc)3]·2H2O and (b) [PPh4]2[(UO2)2(ada)3].
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