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Abstract: A typical approach of a multicomponent crystal design starts with a retrosynthetic analysis
of the target molecule followed by a one-pot reaction of all components. To develop protocols for
multicomponent crystal syntheses, controlled stepwise syntheses of a selected crystalline ternary
multicomponent system 1 involving 2-methylresorcinol (MRS), tetramethyl-pyrazine (TMP), and
1,2-bis(4-pyridyl)ethane (BPE) are presented. The obtained binary cocrystals 2 (involving MRS and
TMP) and 3 (involving MRS and BPE) as well as the final resulting ternary multicomponent system 1
were characterized by X-ray analysis.
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1. Introduction

Polymorphism and cocrystallization are tools to add or enhance desirable properties of crystalline
products [1–3]. The developments in this field in recent years have enabled more carefully tunable
properties [4]. The tunability of the properties of (co)crystalline systems is of much importance,
especially in the fields of pharmacy and medicine [5–7]. By introducing various coformers, factors
like solubility, stability, bioavailability, or tolerability of active pharmaceutical ingredients can be
influenced [8–10]. A better understanding of the driving force behind the genesis of molecular
aggregation processes in the solid state can therefore be helpful to increase the efficiency of the synthesis
of such crystalline products. Steed et al. have explained that asymmetry of crystalline structures
can be exploited to purposefully produce medically relevant cocrystals [11]. While binary cocrystals
have been focused on more commonly, less attention has been imposed on higher multicomponent
systems like ternary [12], or even quaternary and quintenary [13] structures. In contrast to a well
thought out stepwise multistage organic synthesis, a typical approach of a multicomponent crystal
design starts with a retrosynthetic analysis of the target molecule followed by a one-pot reaction
of all components in solution or solid state. To develop sophisticated and reliable protocols for
multicomponent crystal syntheses, the complex modular assembly processes must be investigated
by analysis of a hierarchy of intermolecular interactions and the molecular environment of involved
components on each aggregation step [14].

In recent years, the group of Desiraju proposed that differing structural environments in the
(n − 1)-multicomponent systems could lead to a state in which the incorporation of a new coformer
would be more favourable for the overall structure [13]. Furthermore, Nangia and Bolla have
confirmed that when using geometrically similar (in regards to size, planarity, etc.) heterosynthons,
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the formation of multicomponent crystals could simply be predicted by the strongest hydrogen bond
former interactions, showing the importance of the kinetic effect [15]. Results presented by Aakeröy
and Gunawardana also lay an emphasis on the geometric environment of (n − 1)-crystal systems as
crucial for the formation of higher component products [16].

Hence, in this contribution, in contrast to a one-pot synthesis, the controlled stepwise syntheses of
a selected crystalline ternary multicomponent system is presented. The mechanism of the formation
of multicomponent cocrystals could be figured out based on the analysis of molecular arrangement
in solid state of the selected components. The binary cocrystals as well as the final resulting ternary
multicomponent system were characterized by X-ray analysis.

For this, 2-methylresorcinol (MRS) formation capabilities in conjunction with the N-bases
tetramethylpyrazine (TMP) and 1,2-bis(4-pyridyl)ethane (BPE) (Scheme 1) were investigated, using
neat, drop-, or liquid-assisted grinding techniques. Additionally, sequential and one-pot reactions
were performed. The obtained crystalline products were characterized using Powder X-ray Diffraction
(PXRD) and single crystal structure analysis.
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Scheme 1. Selected compounds 

2. Materials and Methods 

By varying the component ratios or the solvent during the grinding experiments, it was possible 
to access cocrystals of A:2B 3 and A:C 2 as well as the ternary cocrystal 2A:2B:C 1. Modified parameters 
include the ratio of the used components; grinding conditions like neat, drop-, or liquid-assisted 
grinding; and the choice of the solvents tetrahydrofuran vs. n-hexane. Only liquid-assisted grinding 
experiments in the presence of tetrahydrofuran were successful. Modification of the grinding 
conditions or the usage of n-hexane resulted in the observation of physical component mixtures. The 
experiments were either done as one-pot reactions of three components or by adding a component to 
sequentially synthesized and characterized binary cocrystals (Scheme 2). 

PXRD was performed on each of the received crystalline products. Furthermore, single crystalline 
entities suitable for X-ray structure analysis of these multicomponent crystals was grown from solution 
(Table 1). 

Preparation of 2: 1mmol of A and 2mmol of B were placed in a mortar. Ten drops of 
tetrahydrofuran (THF) were added, and the resulting mixture was ground for 5 min. The resulting 
powder was characterized by PXRD. 

Preparation of 3: 1mmol of A and C, respectively, were placed in a mortar. Ten drops of THF were 
added, and the resulting mixture was ground for 5 min. The resulting powder was characterized by 
PXRD. 

Preparation of 1: 
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2. Materials and Methods

By varying the component ratios or the solvent during the grinding experiments, it was possible
to access cocrystals of A:2B 3 and A:C 2 as well as the ternary cocrystal 2A:2B:C 1. Modified parameters
include the ratio of the used components; grinding conditions like neat, drop-, or liquid-assisted
grinding; and the choice of the solvents tetrahydrofuran vs. n-hexane. Only liquid-assisted grinding
experiments in the presence of tetrahydrofuran were successful. Modification of the grinding conditions
or the usage of n-hexane resulted in the observation of physical component mixtures. The experiments
were either done as one-pot reactions of three components or by adding a component to sequentially
synthesized and characterized binary cocrystals (Scheme 2).

PXRD was performed on each of the received crystalline products. Furthermore, single crystalline
entities suitable for X-ray structure analysis of these multicomponent crystals was grown from solution
(Table 1).

Preparation of 2: 1 mmol of A and 2 mmol of B were placed in a mortar. Ten drops of
tetrahydrofuran (THF) were added, and the resulting mixture was ground for 5 min. The resulting
powder was characterized by PXRD.

Preparation of 3: 1 mmol of A and C, respectively, were placed in a mortar. Ten drops of THF
were added, and the resulting mixture was ground for 5 min. The resulting powder was characterized
by PXRD.
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Preparation of 1:

a. One-pot synthesis: 2 mmol of A, 2 mmol B, and 1 mmol C were placed in a mortar and pestle.
Ten drops of THF were added, and the resulting mixture was ground for 5 min. The resulting
powder was characterized by PXRD.

b. From 2: The latter was prepared in the previously mentioned way and identified as 2 by PXRD.
The powder of 2 was placed in a mortar, and 1 mmol of A and 1 mmol of C and 10 drops of
THF were added to the mixture. It was then ground for 5 min. The resulting powder was
characterized by PXRD.

c. From 3: The latter was prepared in the previously mentioned way and identified as 3 by PXRD.
The powder of 3 was placed in a mortar, and 1 mmol of A and 2 mmol of B and 10 drops of
THF were added to the mixture. It was then ground for 5 min. The resulting powder was
characterized by PXRD.

d. From the physical mixture of B and C: 1 mmol of each were put in a mortar. 10 drops of THF
were added, and the mixture was ground for 5 min. The resulting powder was characterized by
PXRD. Only reflections of the physical mixture (B and C) were observed in this PXRD. Thereafter,
the powder was placed in a mortar and 2 mmol of A and 1 mmol of B, and 10 drops of THF
were added. The mixture was ground for 5 min, and the resulting powder was characterized
by PXRD.

All obtained crystalline materials were characterized by powder X-ray diffraction (PXRD) (Figure 1),
measured on a Bruker D2 PHASER diffractometer in flat mode and Bragg–Brentano geometry using
filtered CuKα and CuKβ radiation.
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Figure 1. The diffractograms show the diffraction patterns of the obtained multicomponent crystals 1 
(2A:2B:C) green graph, 2 (A:2B) red graph, and 3 (A:C) blue graph. 

Single-crystal X-ray diffraction measurements of 2, 3 were carried out on a Rigaku Synergy 
diffractometer using monochromated Mo Kα radiation (λ = 0.71073). Single-crystal X-ray diffraction 
measurement of 1 was carried out on a Rigaku Supernova using monochromated Cu Kα radiation (λ = 
1.54184). Structures were solved by direct methods, and all nonhydrogen atoms were refined 
anisotropically on F2 (program SHELXTL-97, G.M. Sheldrick, University of Göttingen, Göttingen, 
Germany). Crystallographic crystal data and processing parameters are shown in Table 1. CIF-files 
giving X-ray data with details of refinement procedures for 1, 2, and 3 CCDC Nr. 1981507-1981509 
are available free of charge via the Internet at http://pubs.acs.org. 

Figure 1. The diffractograms show the diffraction patterns of the obtained multicomponent crystals 1
(2A:2B:C) green graph, 2 (A:2B) red graph, and 3 (A:C) blue graph.

Single-crystal X-ray diffraction measurements of 2, 3 were carried out on a Rigaku Synergy
diffractometer using monochromated Mo Kα radiation (λ = 0.71073). Single-crystal X-ray diffraction
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measurement of 1 was carried out on a Rigaku Supernova using monochromated Cu Kα radiation
(λ = 1.54184). Structures were solved by direct methods, and all nonhydrogen atoms were refined
anisotropically on F2 (program SHELXTL-97, G.M. Sheldrick, University of Göttingen, Göttingen,
Germany). Crystallographic crystal data and processing parameters are shown in Table 1. CIF-files
giving X-ray data with details of refinement procedures for 1, 2, and 3 CCDC Nr. 1981507-1981509 are
available free of charge via the Internet at http://pubs.acs.org.

The UNI Force Field Calculations of Mercury crystallography package were used to calculate
inter-molecular potentials of the crystal structure 2 with normalized hydrogens (kJ/mol).

Table 1. Summary of crystal data, data collection, and refinement parameters for 1, 2, and 3.

1
2A:2B:C

2
A:2B

3
A:C

formula
2(C7H8O2):
2(C8H12N2):
C12H12N2

C7H8O2:
2(C8H12N2)

C7H8O2:
C12H12N2

formula weight 704.90 396.53 308.37
temperature [K] 173 173 173
crystal system triclinic monoclinic monoclinic
space group P-1 P21/c P21/c

a 7.5145(2) 7.2801(2) 8.7006(9)
b 8.6750(2) 24.9768(8) 12.026(1)
c 15.0243(4) 12.0692(4) 17.180(2)
α 100.440(2) 90 90
β 101.969(2) 102.504(3) 103.78(1)
γ 92.396(2) 90 90

V [Å3] 939.04(4) 2142.5(1) 1745.9(3)
Z 1 4 4

F (000) 378 856 656
no. of rflns. measured 16,811 16,224 23,798

no. of unique rflns. 3699 5440 3074
µ [mm−1] 0.646 0.080 0.077

parameters 242 270 291
S (F2) 1.035 1.086 1.022

R1 [I > 2σ(I)] 0.0547 0.0440 0.0545
wR2 (all rflns.) 0.1363 0.1280 0.1713
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Scheme 2. Performed synthesis routes for the multicomponent crystal 1 (2A:2B:C). 

3. Results 

The crystalline product obtained by liquid-assisted grinding of a mixture of A, B, and C in the 
presence of THF shows reflections in the PXRD that cannot be attributed to the educts. The crystalline 
product was dissolved in nitromethane, and by cooling crystallization a single crystal was obtained 
(Table 1). The X-ray structure analysis confirms the successful crystallization of a ternary 2:2:1 A:B:C 
multicomponent system 1 (Figure 2). 
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3. Results

The crystalline product obtained by liquid-assisted grinding of a mixture of A, B, and C in the
presence of THF shows reflections in the PXRD that cannot be attributed to the educts. The crystalline
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product was dissolved in nitromethane, and by cooling crystallization a single crystal was obtained
(Table 1). The X-ray structure analysis confirms the successful crystallization of a ternary 2:2:1 A:B:C
multicomponent system 1 (Figure 2).
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hypothesis and to gain a deeper understanding of the formation of the multicomponent system, the 
cocrystals involving A and B as well A and C were crystallized and the crystal packing analyzed. 

Cocrystals of 2 (A:2B) and 3 (A:C) could be obtained by grinding a 1:2 ratio (2) and 1:1 ratio (3). 
After that, suitable single crystals for XRD were formed after recrystallization of the crystalline 
powder from THF (2) and nitromethane (3). In contrast to the known crystal structure of the A:B 
cocrystal [8], the crystal structure of 2 represents a 2:1 cocrystal with one A and two B molecules 
(Figure 3). Due to the fact that the two molecules of B in 2 show explicit different structural 
environments, the description A:B:B’ seems more appropriate for this system. The central A unit 
forms chains via hydrogen bonds (O1...N1 2.84 Å, O2...N2 2.85 Å) to two neighbouring B molecules. 
While the D distances of the hydrogen bonds are practically identical, the dihedral angles between 
the planes of the arene ring of A and the neighboring pyrazine rings of B show slight variations 
(62°/68°). Additionally, present B’ molecules form columns with B by π-π stacking interactions. A 
comparison of the intermolecular potentials in the molecular arrangement of 2 pointed out the 
dominating role of the π-π stacking motif (−42 and −43 kJ/mol) in contrast to the described hydrogen 
bonds (−32 and −33 kJ/mol). 

Figure 2. Packing view of ternary 2A:2B:C multicomponent system 1.

The central 1,2-bis(4-pyridyl)ethane building block C forms hydrogen bonds via its two aromatic
nitrogen centers to hydroxy groups from each of the two neighbouring 2-methylresorcinol molecules
A. The remaining hydroxy groups of A coordinate via hydrogen bonds to one nitrogen center
each of the two terminal tetramethylprazine molecules. Surprisingly, the second nitrogen centers
of B are not involved in any further intermolecular interactions. Consequently, the 2:2:1 A:B:C
multicomponent system 1 does not form infinite chains. This behavior is observed for B in only
few selected multicomponent systems. Examples are cocrystalline systems with Br-C6F4-OH12 or
Br-C6F4-COOH12 [16]. The analysis of the coordination behavior of A shows that the hydrogen bonds
from A to B, in comparison to A to C, have no significant differences in the distances O . . . N 2750 Å
and O . . . N 2755 Å as well as in the angles of the ring planes A:B 75◦ and A:C 69◦.

As mentioned, the geometric environment of the involved building blocks and their intermolecular
interactions are crucial parameters for the formation of higher multicomponent crystals. The one-pot
reaction of all components (A, B, and C) leads to the ternary 2A:2B:C system 1. The 2A:2B:C motif is
discretely isolated by the unusual coordination behavior of the tailored B molecules. The hypothesis is
that the geometric molecular environment is responsible in each aggregation step in the design of 1.
Based on differing structural environments in the crystalline products obtained by first aggregation
steps, A with B and A with C, the crystal packing of 2A:2B:C—starting from A—can be built up
by successive substitution of B by C or C by B. To investigate this hypothesis and to gain a deeper
understanding of the formation of the multicomponent system, the cocrystals involving A and B as
well A and C were crystallized and the crystal packing analyzed.

Cocrystals of 2 (A:2B) and 3 (A:C) could be obtained by grinding a 1:2 ratio (2) and 1:1 ratio (3).
After that, suitable single crystals for XRD were formed after recrystallization of the crystalline powder
from THF (2) and nitromethane (3). In contrast to the known crystal structure of the A:B cocrystal [8],
the crystal structure of 2 represents a 2:1 cocrystal with one A and two B molecules (Figure 3). Due to
the fact that the two molecules of B in 2 show explicit different structural environments, the description
A:B:B’ seems more appropriate for this system. The central A unit forms chains via hydrogen bonds
(O1 . . . N1 2.84 Å, O2 . . . N2 2.85 Å) to two neighbouring B molecules. While the D distances of the
hydrogen bonds are practically identical, the dihedral angles between the planes of the arene ring of
A and the neighboring pyrazine rings of B show slight variations (62◦/68◦). Additionally, present B’
molecules form columns with B by π-π stacking interactions. A comparison of the intermolecular
potentials in the molecular arrangement of 2 pointed out the dominating role of the π-π stacking motif
(−42 and −43 kJ/mol) in contrast to the described hydrogen bonds (−32 and −33 kJ/mol).
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Å, O2…N2 2.743 Å, and O2-H2…N2 171°. 

4. Discussion 

If the formation of the described ternary multicomponent crystal 1 in a one-pot-synthesis is due 
to the different environments during the molecular recognition of A, B, and C in the crystallization 
process, 1 should also be synthesizable from the cocrystals 2 and 3. In both cocrystals (2 and 3), the 
building block A shows significant differences in the molecular environment (Figure 5). In order to 
verify the assumption, appropriate crystallization experiments were carried out. Cocrystal 2 was 
grinded with C, and cocrystal 3 was grinded with B. Additionally, a physical mixture of B and C was 
grinded with A. The powder diffractograms of all three crystallization experiments show exclusively 
the reflections of the expected ternary multicomponent system 1. It seems, when attempting to design 
a multicomponent crystal of nth degree, it is helpful to take a closer look at the (n – 1)th degree 
predecessors. 

Figure 3. Packing view of (a) 2 (A:2B) O1-H1: 0.900 Å, O1 . . . N3 2.84 Å, O1-H1 . . . N3 161◦, O2-H2:
0.883 Å, O2 . . . N2 2.85 Å, and O2-H2 . . . N4 167◦.

The crystal structure 3 is built up by chains of linked 1:1 A:C cocrystals (Figure 4). Both hydroxyl
groups of the central A molecule form hydrogen bonds to nitrogen centers of the two neighbouring C
molecules. A comparison of both hydrogen bonds that indicates slight differences is be remarkable.
In contrast to the hydrogen bond O1-H1 . . . N1, O2-H2 . . . N2 shows enlarged covalent O1-H2 and
O2 . . . N2 hydrogen bonds. Besides the slightly different hydrogen bonds to 2, differences in dihedral
angles between the planes of the arene ring of A and the neighboring pyridyl rings of B are observed
(68◦/75◦).
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1.041 Å, O2 . . . N2 2.743 Å, and O2-H2 . . . N2 171◦.

4. Discussion

If the formation of the described ternary multicomponent crystal 1 in a one-pot-synthesis is due to
the different environments during the molecular recognition of A, B, and C in the crystallization process,
1 should also be synthesizable from the cocrystals 2 and 3. In both cocrystals (2 and 3), the building
block A shows significant differences in the molecular environment (Figure 5). In order to verify the
assumption, appropriate crystallization experiments were carried out. Cocrystal 2 was grinded with C,
and cocrystal 3 was grinded with B. Additionally, a physical mixture of B and C was grinded with A.
The powder diffractograms of all three crystallization experiments show exclusively the reflections of
the expected ternary multicomponent system 1. It seems, when attempting to design a multicomponent
crystal of nth degree, it is helpful to take a closer look at the (n − 1)th degree predecessors.



Chemistry 2020, 2 99
Chemistry 2020, 2 99 

 

 
Figure 5. General proposed formation process of a ternary multicomponent crystal. 
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The hypothesis that differences in the molecular environment during the molecular recognition
in the crystallization process are responsible for the formation of multicomponent crystal has been
demonstrated in this study by using the building blocks 2-methylresorcinol (A), tetramethylpyrazine B
and 1,2-bis(4- pyridyl)ethane C. The carefully designed cocrystals 2 (A:2B) and 3 (A:C) with differences
in their molecular environment are suitable starting materials for successfully synthesizing the ternary
multicomponent crystal 1 (2A:2B:C). Furthermore, the results indicate that Ostwald’s rule of stages can
be applied to solid state synthesis just as well as it can be applied to crystallization from solution.
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