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Abstract: Antimicrobial resistance is an increasingly serious threat to global public health that requires
innovative solutions to counteract new resistance mechanisms emerging and spreading globally in
infectious pathogens. Classic organic antibiotics are rapidly exhausting the structural variations
available for an effective antimicrobial drug and new compounds emerging from the industrial
pharmaceutical pipeline will likely have a short-term and limited impact before the pathogens can
adapt. Inorganic and organometallic complexes offer the opportunity to discover and develop new
active antimicrobial agents by exploiting their wide range of three-dimensional geometries and
virtually infinite design possibilities that can affect their substitution kinetics, charge, lipophilicity,
biological targets and modes of action. This review describes recent studies on the antimicrobial
activity of transition metal complexes of groups 6–12. It focuses on the effectiveness of the metal
complexes in relation to the rich structural chemical variations of the same. The aim is to provide a
short vade mecum for the readers interested in the subject that can complement other reviews.
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1. Introduction

Antimicrobial resistance has become a global concern ultimately affecting humans’ ability to
prevent and treat an increasing number of infections caused by bacteria, parasites, viruses and fungi and
the success of surgery and cancer chemotherapy. It occurs naturally over time, usually through genetic
changes of the pathogens when exposed to antimicrobial drugs. One of the causes for the emergence of
the problem is the overuse and misuse of existing antibiotics, which fueled the evolution of pathogens
resistant to the current library of antimicrobial agents [1,2]. As a result, available medicines become
ineffective, infections persist in the body, increasing the risk to patients’ health, spreading and health
care costs. Multidrug resistant bacteria, such as Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acetinobacter baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae (“ESKAPE”) species,
are a major concern of the World Health Organization (WHO) and health authorities. These pathogens
cause a large number of victims worldwide [3–5]. As an example, methicillin-resistant Staphylococcus
aureus (MRSA) is one of the most critical causes of healthcare-related or community-related infections,
because of the multiple resistances to antibiotics and the toxins produced [6]. It is, therefore, evident
that there is an urgent need for the development of new antimicrobial agents with more effective
mechanisms of action [7].

While the problem is escalating, major pharmaceutical companies have interrupted their antibiotic
drug discovery programs, leaving academia at the forefront of the discovery of new classes of active
compounds, especially for Gram-negative bacteria [8,9]. The classical approach of medicinal chemists
based exclusively on organic molecules is poised to have a short-term limited impact because pathogens
will adapt and develop resistance to new drugs. Furthermore, as recently pointed out by Frei [10],
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only ~25% of the compounds currently in clinical development represent entirely new structural classes,
with the remaining 75% of drugs being merely derivatives and modifications of already approved
antibiotics. Thus, there is not just an urgent need for new antibiotics, but also a need for entirely new
classes of molecules for the purpose. Transition metal complexes offer this possibility. They possess a
wide range of three-dimensional geometries, virtually infinite possibilities to design their coordination
sphere in order to affect their substitution kinetics, charge, lipophilicity biological targets and modes
of action. Such complexes, however, are still (prejudicially) ignored by pharmaceutical companies
despite the fact that several of them are used in hospitals worldwide. For example, arsphenamine,
also known as Salvarsan or compound 606, is an effective drug for the treatment for syphilis; cisplatin
is a chemotherapeutic agent, administered intravenously, and used to treat a number of cancers
(e.g., testicular, ovarian, cervical, breast, bladder, head and neck, esophageal cancer); auranofin is a gold
salt approved by the WHO as an antirheumatic agent; technetium sestamibi (trade name Cardiolite) is a
pharmaceutical agent used in nuclear medicine imaging to visualize the myocardium.

In the last ten years, inorganic and organometallic transition metal medicinal chemists have
begun to develop new antimicrobial agents with great promise and remarkable success. Complexes of
virtually all ions of the transition periods have been tested. In this article, we present an overview
of antimicrobial transition metal (groups 6–12) complexes published in the scientific literature in the
last five years. We only describe inorganic and organometallic complexes of group 6–12 with a few
exceptions. Thus, e.g., silver and iron complexes are not included. Antimicrobial iron and silver
complexes and (nano)materials have been recently reviewed elsewhere [11–25]. Due to the growing
interest in the field, recent reviews and prospective on the antibacterial applications of transition metal
complexes have appeared [10,26–29]. This work aims at being complementary to those, including
some important common seminal examples but mostly species not included by the other authors.

2. Group 6

2.1. Chromium Complexes

Schiff base complexes of chromium are most commonly studied for their antimicrobial efficacy,
but the species have seldom shown high potency. Kumar et al. synthesized a new class of tetradentate
Schiff bases as ligands and their corresponding chromium(III) complexes (1, Figure 1) by using CrCl3
as the metal ion source [30]. The antimicrobial activities of the chromium(III) complexes were tested
against S. aureus (Gram-positive), E. coli and P. aeruginosa (Gram-negative) bacterial strains, but their
efficacies were lower than the standard drug, i.e., ampicillin. Rathi et al. reported the preparation
of thiophene based macrocyclic Schiff base complexes from the reaction of succinohydrazide and
thiophene-2,5-dicarbaldehyde in the presence of chromium(III) and iron(III) salts of chloride, nitrate
and acetate (2, Figure 1) [31]. The antimicrobial activities of all synthesized complexes were tested
against bacterial strains, such as B. subtilis and E. coli, and fungal strains, such as S. cerevisiae and C.
albicans. The data showed good activity of compounds against all tested microbial strains with the
MIC values in the range of 8–128 µg/mL. In 2017, Shaabani et al. prepared bridged chromium(III)
complexes, of hydrazine Schiff bases tridentate ligands and azide (3, Figure 1) [32]. The complexes,
however, were not particularly effective against tested pathogens with MIC values (~1250 µg/mL)
higher than standard drugs (MIC = 8–28 µg/mL). Kafi-Ahmadi and coworkers synthesized thiourea
derivatives as Schiff base ligands (4, Figure 1) and their chromium(III) complexes [33]. The complexes
were tested for their antibacterial activities against clinically important bacteria, such as E. coli, S. aureus,
and B. subtilis, and they showed good activities against all strains, comparable to that of streptomycin
as the standard. The mechanism of action of these complexes is unknown. The authors suggested that
chelation theory might help explain the biological activities of the metal chelates. This phenomenon
relates to a decrease in the polarity of the metal ion due to overlap metal and ligand orbitals, resulting
in partial sharing of the positive charge of the metal ion with donor groups and possibly electron
delocalization over the whole molecule [33–36].
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Figure 1. Structural formula of selected antimicrobial chromium(III) complexes and corresponding 
ligands. MIC = minimal inhibitory concentration; IZD = inhibition zone diameter at given 
concentration.  

In 2018, Liu et al. introduced a Schiff base ligand, 1-ferrocenyl-3-(2-furyl) propenone diamino 
(thio) urea, and coordinated it to a range of metal ions (e.g., Pb(II), Bi(III), Cu(II), Cr(III), Ba(III), Cd(II), 
Fe(II), Ni(II), Sn(II) and Nd(II), 5, Figure 1) [37]. All compounds were screened for their antimicrobial 
activities against bacteria, such as E. coli, S. aureus and MRSA, also fungi, such as C. albicans and A. 
flavus. The complexes were not particularly effective. The zones of inhibition (mm) were found in a 
range between 11 and 24 mm (3 mg/mL concentrations) with the chromium(III) complex being 
amongst the least effective compounds. In 2018, tridentate triazole based ligands of chromium(III) 
complexes were reported by Murcia et al. (6a and 6b, Figure 1) [38]. The antimicrobial activities of 
both ligands and complexes were tested against a wide range of bacterial and fungal strains of clinical 
relevance. The results indicated that the chromium(III) complexes were more potent than free ligands 
and more effective against fungi than bacteria. The complexes 6a and 6b showed MIC values in the 
range of 7.8 to 15.6 µg/mL. A study on azomethine chelates of Cu(II), Pd(II), Zn(II) and Cr(III) with 
tridentate dianionic azomethine OVAP ligand (where OVAP = 2-[(2-hydroxyphenylimino)methyl]-
6-methoxyphenol), was carried out by Abu-Dief et al. (7, Figure 1) [39]. All OVAP metal complexes 
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In 2018, Liu et al. introduced a Schiff base ligand, 1-ferrocenyl-3-(2-furyl) propenone diamino
(thio) urea, and coordinated it to a range of metal ions (e.g., Pb(II), Bi(III), Cu(II), Cr(III), Ba(III), Cd(II),
Fe(II), Ni(II), Sn(II) and Nd(II), 5, Figure 1) [37]. All compounds were screened for their antimicrobial
activities against bacteria, such as E. coli, S. aureus and MRSA, also fungi, such as C. albicans and
A. flavus. The complexes were not particularly effective. The zones of inhibition (mm) were found in a
range between 11 and 24 mm (3 mg/mL concentrations) with the chromium(III) complex being amongst
the least effective compounds. In 2018, tridentate triazole based ligands of chromium(III) complexes
were reported by Murcia et al. (6a and 6b, Figure 1) [38]. The antimicrobial activities of both ligands
and complexes were tested against a wide range of bacterial and fungal strains of clinical relevance.
The results indicated that the chromium(III) complexes were more potent than free ligands and more
effective against fungi than bacteria. The complexes 6a and 6b showed MIC values in the range of 7.8 to
15.6 µg/mL. A study on azomethine chelates of Cu(II), Pd(II), Zn(II) and Cr(III) with tridentate dianionic
azomethine OVAP ligand (where OVAP = 2-[(2-hydroxyphenylimino)methyl]-6-methoxyphenol),
was carried out by Abu-Dief et al. (7, Figure 1) [39]. All OVAP metal complexes were screened against
a broad-spectrum of antimicrobial strains (bacterial strains: M. luteus, E. coli and S. marcescence; fungal
strains: A. flavus, G. candidum and F. oxysporum) and showed MIC values between 4.25 and 7.50 µg/mL.
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The investigated azomethine metal chelates revealed significantly enhanced antimicrobial activities in
comparison to the free ligand (MIC = 9.0–10.75 µg/mL) and showed comparable activities to ofloxacin
and fluconazol. Very recently, copper(II), nickel(II), cobalt(II), manganese(II), iron(III), chromium(III),
bismuth(III), and zinc(II) complexes of the guanidine Schiff bases 8 (Figure 1) were reported [40].
Compounds were screened against S. aureus (Gram-positive), P. aeruginosa (Gram-negative) and
the fungi strains, such as C. albicans and A. niger. In general, metal complexes were found to be
more toxic than ligand 8 and showed greater activity than neomycin and the naturally occurring
fungicide cycloheximide. Several other chromium metal complexes have been recently tested for their
antimicrobial efficacy but were not found to be active [41–45].

2.2. Molybdenum Complexes

In comparison to chromium complexes, only a few studies on the antimicrobial potential of
molybdenum metal complexes have appeared over the last decade in the literature, while we are not
aware of tungsten species having been reported lately. A series of cis-dichloro/dibromodioxidobis
(2-amino-6-substitutedbenzothiazole) molybdenum(VI) complexes (9, Figure 2) were reported by
Saraswat et al. in 2013 [46]. The complexes of dihalodioxidomolybdenum(VI) have played a special
role in the higher valent molybdenum enzymes such as sulfite oxidase, nitrate reductase, xanthine
oxidase and xanthine dehydrogenase during biological processes [47,48]. The authors reported the
antibacterial activities of the species against P. aeruginosa, S aureus and K. pneumoniae and antifungal
activities against A. flavus and A. niger. The results showed that derivatives of 9 were generally as
active as ampicillin against bacteria strains, and most effective against P. aeruginosa and K. pneumonia,
while their antifungal MIC values were in the range of 10–20 µg/mL.
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Figure 2. Structural formula of selected antimicrobial molybdenum(VI) complexes and corresponding
ligands.

In 2015, Biswal et al. reported isostructural 4,4′-azopyridine (4,4’-azpy) pillared binuclear
dioxomolybdenum(VI) complexes of formula [(MoO2L1)2(4,4’-azpy)], [(MoO2L2)2(4,4’-azpy)] and
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[(MoO2L3)2(4,4’-azpy)] (where L# = Schiff base ligand, 10, Figure 2) [49]. The ligands and molybdenum(VI)
complexes were tested against B. cerus and L. monocytogenes (Gram-positive), E. coli and S. aureus
(Gram-negative) bacteria by the disc diffusion method. The compounds exhibited different degrees of
antimicrobial activities at a concentration of 10 µg per disc against the pathogens with antimicrobial
activities comparable with those of common antibiotics ampicillin and tetracycline (as standard
drugs). Schiff base ligands also showed moderate to good antimicrobial activities against all test
microorganisms and were more active than their corresponding complexes. In 2019, Çelen et
al. synthesized a group of thiosemicarbazonato-based ligands (2-hydroxy-3-methoxy/3,5-dibromo
benzaldehyde 4-phenyl/ethyl-S-methyl/butyl thiosemicarbazones), and then coordinated the ligands
through the ONN set to the molybdenum(VI) ion center to prepare cis-dioxomolybdenum(VI) complexes
(11, Figure 2) [50]. All ligands and the complexes were tested (10 mg/mL) against C. albicans, E. coli,
P. aeruginosa and S. aureus. The results confirmed the antimicrobial activities of all thiosemicarbazones
and their dioxomolybdenum(VI) complexes and MIC values were in the range of 62.5–500 µg/mL.
In 2020, Sang et al. reported the synthesis and the antimicrobial properties of a dioxidomolybdenum(VI)
complex of N’-(2-hydroxy-4-methoxybenzylidene)isonicotinohydrazide (12, Figure 2) [51]. The free
ligand showed modest antibacterial activity against S. aureus and E. coli (MIC = ~5 mmol/L), however,
the molybdenum complex showed higher antibacterial activity against E. coli with MIC value of
0.62 ± 0.04 mmol/L. Finally, a report on two cationic cluster complexes based on the {Mo6I8}4+ core
with (4-carboxybutyl)triphenylphosphonium and 4-carboxy-1-methylpyridinium as apical ligands,
indicated no antimicrobial activities of the species [52].

3. Group 7

3.1. Manganese Complexes

Several manganese complexes have been reported in the field, including photoactivatable
CO-releasing molecules, which are described separately in the following section. In 2013,
Zampakou et al. prepared [KMn(oxo)3(MeOH)3] and [Mn(erx)2(phen)] complexes by reacting MnCl2
with the quinolone antibacterial drug oxolinic acid (Hoxo), enrofloxacin (Herx) and the N,N′-donor
heterocyclic ligand 1,10-phenanthroline (phen), respectively (13, Figure 3) [53]. Complexes were
found significantly active against three Gram-positive (B. subtilis, B. cereus and S. aureus) and two
Gram-negative (X. campestris and E. coli) bacterial strains with half-minimum inhibitory concentration
(MIC) between 1.2 and 44 µg/mL. In 2018, Barmpa et al. reported similar types of manganese(II)
complexes by using the quinolone antimicrobial agent sparfloxacin (Hsf) and flumequine (Hflmq) with
or without nitrogen-donor heterocyclic ligands 1,10–phenanthroline (phen), 2,2’–bipyridine (bipy),
2,2’–bipyridylamine (bipyam) or pyridine (py) (14, Figure 3) [54]. The in vitro antimicrobial tests gave
MIC values for the complexes in the range of, or slightly better than free Hsf. Against bacterial strains,
such as E. coli, B. subtilis, and S. aureus, MICs were significantly low ranging from 0.0625–1.000 and
0.5–19 µg/mL. In 2015, P. Arthi and coworkers reported a series of pendant-armed Schiff base hexaaza
macrocycles manganese(II) complexes by the condensation of equimolar amounts of terephthalaldehyde
and N,N-bis(2-aminoethyl)benzamide derivatives in the presence of Mn(ClO4)2·6H2O as a templating
agent (15, Figure 3) [55]. In comparison to the standard drug, ciprofloxacin, the complexes showed
good activities against both Gram-negative (K. pneumoniae, P. aeruginosa, V. alginolyticus, V. cholerae
and V. harveyi) and Gram-positive (S. aureus and S. mutans) bacterial strains. The mean zone of
inhibition values of the complexes and the standard were in the range of 4–21 and 20–25 mm
(100 µg/mL), respectively. Also in 2015, Simpson et al. described the antibacterial and antiparasitic
activities of manganese(I) tricarbonyl complexes with ketoconazole, miconazole, and clotrimazole
ligands [56]. The molecules were tested against eight different bacterial strains: Gram-positive,
such as S. aureus, S. epidermidis, E. faekalis, and E. faecium, and Gram-negative, such as E. coli,
P. aeruginosa, Y. pseudotuberculosa, and Y. pestis. Only the miconazole complex (MIC values of
10−20 µM on E. coli, Y. pseudotuberculosa, and Y. pestis) was active against Gram-negative bacteria
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and showed higher activity than miconazole alone. Conversely, all species were active against
Gram-positive bacteria at submicromolar concentrations (MIC = 0.625 to 2.5 µM), particularly against
staphylococci. The complexation of luteolin to manganese(II) was carried out to prepare manganese(IV)
complex 16, (Figure 3) [57]. The ligand and complex were screened against different microbial
strains (e.g., E. coli, S. aureus, L. monocytogenes and P. aeruginosa) and 16 was found ~x1.5 more
active than the ligand alone. A study on a series of manganese(I) tricarbonyl complexes bearing
bis(2-pyridinylmethyl)(2-quinolinylmethyl)amine, bis(2-quinolinylmethyl)(2-pyridinylmethyl)amine,
tris(2-quinolinylmethyl)amine, and tris(2-pyridinylmethyl)amine ligands (17, Figure 3), was reported
recently by Güntzel and coworkers [58]. The compounds were examined against 14 different
multidrug-resistant clinical isolates of A. baumannii and P. aeruginosa showing MIC values in
the range of 0.2–0.8 mM. Finally, Kottelat et al. described a series of carbonyl complexes of
manganese bearing isocyanide ligands of formula fac-[Mn(CO)3(CNR)2Br] and found that for
CNR = (1-isocyanoethyl)benzene, the complex showed a MIC of 128 µg/mL against E. coli [59]. Several
other manganese metal complexes have been recently tested for their antimicrobial efficacy but were
not found to be active [60–63].
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3.2. Manganese Photoactivatable CO-Releasing Molecules (PhotoCORMs)

PhotoCORMs are a special class of manganese-based antimicrobial complexes (Figure 4).
The molecules are able to release carbon monoxide when activated with light. Carbon monoxide
then acts in concert with the metal fragment to impart antimicrobial efficacy to the species.
The [Mn(CO)3(tpa-k3N)]Br complex (18, Figure 4) was the first one reported in the literature and it
remains the most extensively studied [64–67]. It was active against several E. coli strains (K12 derivative
MG1655, EC958, APEC), if photo-activated and perturbs the growth of multidrug-resistant isolates of
Avian Pathogenic E. coli (APEC) (both in vitro and in vivo) without the need of light activation. In vivo
(G. mellonella wax moth model), 18 showed no toxicity at double the concentration required in the
treatment assay. The complex 19 (known as Trypto-CORM), was described in 2014 by Ward et al. [68,69].
The compound was not toxic to eukaryotic RAW264.7 cells but showed a strong antibacterial effect
against E. coli strain W3110, N. gonorrhoeae and S. aureus. It completely inhibited E. coli growth
following irradiation, leading to a loss of >99.9% of cell viability. Trypto-CORM was similarly toxic
to N. gonorrhoeae, in the dark resulting in a loss of >99% cellular viability (half maximal inhibitory
concentration (IC50) value of 22 µM). Furthermore, complex 19 exhibited a cytostatic effect in the
dark and cytotoxic effect if exposed to light against S. aureus. Mann et al. introduced molecule 20
and studied the broad-spectrum antimicrobial potential of the molecules [70,71]. The complex 20
inhibited growth of E. coli and several antibiotic resistant clinical isolates of pathogenic bacteria in a
concentration-dependent manner. It extensively concentrated in E. coli cells, reaching concentrations of
~3.5 mM after 80 min of incubation. Significantly, 20 was effective against several pathogens isolated
from clinical infections and causes in vitro a complete growth arrest of the multidrug-resistant E. coli
EC958 clinical pathogen, K. pneumoniae, S. flexneri, S. kedougou and E. hormaechei, but it was ineffective
against growth of P. aeruginosa, C. koseri, and A. baumannii.
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3.3. Rhenium Complexes

In 2014, Noor et al. described a family of bioconjugated tridentate pyridyl-1,2,3-triazole
macrocycles and the corresponding rhenium(I) complexes (21, Figure 5), which were screened
for antimicrobial activities in vitro against both Gram-positive (S. aureus) and Gram-negative (E. coli)
bacterial strains [72]. The minimum inhibitory concentrations for the compounds, however, showed
values >256 µg/mL. At the same time Partra and coworkers introduced an interesting trimetallic
complex (22, Figure 5) containing a ferrocenyl (Fc), a cymantrene and a [(dpa)Re(CO)s] residue
(dpa = N,N-bis(pyridine-2-ylmethyl)prop-2-yn-1-amine) as the main biological active moiety of the
construct [73]. A systematic structure–activity relationship (SAR) study against various Gram-positive
pathogenic bacteria, including methicillin-resistant S. aureus (MRSA) strains proved that [(dpa)Re(CO)3]
moiety was the essential part for the antibacterial activity of the trimetallic complex. The other two
metallic units (Fc and cymantrene) could be replaced by organic compounds without affecting the
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antibacterial activities of the construct. The MIC values of the compounds against Gram-positive
bacterial strains, such as B. subtilis, S. aureus DSM 20231 and S. aureus ATCC43300 (MRSA) were found
in the range of 1.4–21 µM. In 2016, Kumar et al. [74] reported a group of mono- and bis-fac-rhenium
tricarbonyl 2-pyridyl-1,2,3-triazole complexes with different aliphatic and aromatic substituents (23,
Figure 5) which were tested for antimicrobial activities in vitro against both Gram-positive (S. aureus)
and Gram-negative (E. coli) bacterial strains. The MICs for all the complexes were measured between
16 and 1024 µg/mL. In 2017, a family of N-heterocyclic carbene (NHC) fac-[Re(I)(CO)3] complexes
containing unsubstituted benzimidazol-2-ylidene and bisimine ligands (NˆN) ligands (24, Figure 5),
were reported by Siegmund et al. [75]. The antimicrobial tests gave MIC values of the complexes
between 0.7–2 µg/mL against Gram-positive strains, such as B. subtilits and S. aureus. However,
the same complexes were inactive against Gram-negative strains, such as E. coli, A. baumannii and
P. aeruginosa. Recently, Frei et al. reported the synthesis and antibacterial profiling of three rhenium
bisquinoline complexes (25, Figure 5) [76]. The complexes displayed light-induced activities against
drug-resistant S. aureus and E. coli showed MICs under photo-irradiation between 4- to 16-fold lower
than in the dark. Other rhenium metal complexes have been tested for their antimicrobial efficacy but
were inactive [77–80].
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4. Group 8

4.1. Ruthenium Complexes

As stated in the introduction, iron complexes are not treated in this review; however, before
discussing Ru species, the helicates-chiral assemblies reported by Howson et al. in 2012 deserves
a special mention for their unique structure [81]. The species (26, Figure 6) were prepared by
alkylation of 2 equiv. of (R)-2-phenylglycinol with 1 equiv. of α,α′-dibromo-p-xylene followed by
reaction with 2-pyridinecarboxaldehyde and Fe(ClO4)2·6H2O in the proportions 3:6:2. Single bimetallic
diastereomerically pure flexicates ∆Fe,RC-[Fe2L3][ClO4]4 were isolated following heating of the mixture
at 85 ◦C for 24 h. These flexicates showed good antibacterial activities against MRSA and E. coli with
MIC values in the 4–8 µg/mL range.

Ruthenium, as the second member of group 8 transition metals, has appeared in many reports
as the central metal ion of new potential antimicrobial agents [82–93]. Here we describe the latest
examples, but a recent perspective offers more details on the subject [10]. In 2016, Kumar and coworkers
reported a series of tris(homoleptic) ruthenium(II) complexes with 2-(1-R-1H-1,2,3-triazol-4-yl)pyridine
ligands (R-pytri) containing different aliphatic and aromatic substituents (27, Figure 7) [94]. The in vitro
antimicrobial activities of R-pytri ligands and their mer- and fac-[Ru(R-pytri)3]2+ complexes were
screened against both Gram-positive (S. aureus, S. pyogenes and MRSA) and Gram-negative
(A. calcoaceticus) bacterial strains. The experiments resulted in the good activity of two [Ru(R-pytri)3]2+

complexes (where R = hexyl or octyl) against Gram-positive bacteria with MIC values between 1 and
8 µg/mL (depending on the strain), but lower activity was seen against Gram-negative A. calcoaceticus
(MIC = 16–128 µg/mL). More importantly, both complexes showed stronger antibacterial effects
(MIC = 4–8 µg/mL) than gentamicin as the control (MIC = 16 µg/mL) against two strains of MRSA
(MR 4393 and MR 4549). Liao et al. have reported a study involving octahedral ruthenium(II)
complexes as antimicrobial agents against the mycobacterium M. smegmatis [95]. The complex 28
(Figure 7) selectively inhibited M. smegmatis growth with MIC of 2 µg/mL comparable to those of
norfloxacin and rifampicin (MIC of 2 and 1 µg/mL, respectively). All complexes, however, were found
to be inactive against S. aureus (MSSA), P. aeruginosa, E. coli, C. albicans and C. neoformans.
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In a study published in 2016 [96], Li et al. introduced a series of non-symmetric dinuclear
polypyridylruthenium(II) complexes (29, Figure 7), and tested the same as antimicrobial agents.
These complexes contained one inert metal center and one coordinatively-labile metal center, linked
via the bis[4(4’-methyl-2,2’-bipyridyl)]-1,n-alkane ligand. The ruthenium(II) complexes were tested
against four strains of bacteria, S. aureus and MRSA (Gram-positive), and E. coli and P. aeruginosa
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(Gram-negative). In most cases, the compounds showed good MIC values (0.6–0.7 µM, comparable
to gentamicin) against MRSA, they were less effective against E. coli and nearly inactive against
P. aeruginosa. More recently, Srivastava et al. reported ruthenium(II) polypyridyl complexes [97]
coordinated to curcumin, [Ru(NN)2(cur)](PF6) [NN = bpy, phen], (30, Figure 7) and tested them against
a panel of ESKAPE pathogens, including the drug resistant S. aureus ATCC. The results revealed a good
inhibitory effect of the complexes against the latter pathogen and a remarkably high selectivity index
(MIC = 1 µg/mL vs 0.25 for levofloxacin, SI = 80). Also in 2019, ruthenium(II) complexes of bidentate
chelators 1-(1-benzyl-1,2,3-triazol-4-yl)isoquinoline and 3-(1-benzyl-1,2,3-triazol-4-yl)isoquinoline
(31, Figure 7) were reported by Kreofsky et al. [98]. The complexes were screened against Gram-
positive bacteria (e.g., B. subtilis and S. epidermidis), and revealed a very low MIC value of 0.4 µM.
In the same year, van Hilst et al. described mono and dinuclear ruthenium(II) complexes of
2,6-bis(1-R-1,2,3-triazol-4-yl)pyridine ligands (32 and 33, Figure 7), bearing aliphatic substituents [99].
The antibacterial activities of the complexes were evaluated by in vitro tests against S. aureus, and E. coli
strains. The MIC values for the most active mononuclear complex, [Ru(hexyltripy)(heptyltripy)]2+

(i.e., 33 with n = 7 in Figure 7), were 2 µg/mL and 8 µg/mL, against S. aureus and E. coli, respectively.
[Ru(hexyltripy)(heptyltripy)]2+ and [Ru2(dihexylditripy)(hexyltripy)2]4+ also showed good activities
against the Gram positive and Gram negative methicillin resistant S. aureus strains (MICs = 4–8 µg/mL
and 8–16 µg/mL, respectively). Finally, linear (34) and non-linear (35) tetranuclear ruthenium(II)
complexes were reported by Sun and coworkers [100], as having MIC values against six strains of
bacteria (Gram-positive S. aureus and MRSA; Gram-negative, E. coli strains MG1655, APEC, UPEC and
P. aeruginosa) in the range between 2 and 32 µg/mL.

4.2. Osmium Complexes

There are only a few reports that have appeared lately detailing antimicrobial studies of
osmium complexes. In 2015, a series of enantiopure (S,S)-iPr-pybox and {(S,S)-iPr-pybox = 2,6-
bis[4(S)-isopropyloxazolin-2-yl]pyridine} osmium(II) complexes (36, Figure 8), were prepared by
Menéndez-Pedregal and coworkers [101]. The complexes were screened against M. luteus, B. subtilis,
E. coli, S. coelicolor, S. antibioticus, and P. aeruginosa bacteria. The results showed inhibition halos
(mm) of the complexes in the range of 6–20 mm at concentrations between 99 and 500 µg/mL.
Gichumbi and coworkers reported a class of osmium(II)-arene complexes with bidentate N,N′-ligands
(37, Figure 8) [102]. A panel of antimicrobial-susceptible and -resistant Gram-negative (E. coli,
K. pneumonia and P. aeruginosa) and Gram-positive (B. subtilis, E. faecalis, S. aureus, S. aureus,
S. saprophyticus and M. smegmatis) bacterial strains were used to examine the antimicrobial activities
of the synthesized complexes. The results showed promising anti-mycobacterial activity against
M. smegmatis, and bactericidal activity against drug-resistant E. faecalis and methicillin-resistant
S. aureus ATCC 43300.
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5. Group 9

5.1. Cobalt Complexes

In 2010, Zhu et al. reported azide bridged Schiff bases 5-methoxy-2-[(2-morpholin-4-ylethylimino)
methyl]phenol and 2-ethoxy-6-[(2-isopropylaminoethylimino)methyl]phenol cobalt(III) complexes
(38 and 39, Figure 9) [103], and tested them against a panel of pathogens. The complexes 38 and 39
were active against B. subtilis, E. coli and S. aureus with the MIC values in the range of 4–18.5 µg/mL,
but less active against P. fluorescens with MIC values of 21.7 and 37.3 µg/mL, respectively. The authors
explained the bactericidal mechanism of action of the metal complexes by Overtone’s concept [104]
and Tweedy’s chelation theory [105]. Coordination to the metal ion of the chelating Schiff bases results
in the overlap of the ligand orbital and partial sharing of the positive charge of the ion with donor
groups, which gives rise to a decrease in the polarity of the metal ion. As a result, the delocalization
of π-electrons over the whole chelate ring increases and, consequently, enhances the lipophilicity of
the complex. The main effect of increased lipophilicity is that of improving complexes penetration
through lipid membranes, and finally, deactivation of the binding sites on enzymes of microorganisms.

Irgi et al. reported in 2015 a study of the antimicrobial potential of cobalt(II) complexes
featuring coordination to the quinolone oxolinic acid drug (Hoxo), and 2,2’-bipyridine (bipy), 2,2’-
bipyridylamine (bipyam), 1,10-phenanthroline (phen), pyridine (py) or 4-benzylpyridine (4bzpy)
ligands (40, Figure 9) [106]. The antimicrobial activities of Hoxo and its complexes were screened
against Gram-negative (E. coli NCTC 29212 and X. campestris ATCC 1395), and Gram-positive (S. aureus
ATCC 6538 and B. subtilis ATCC 6633) bacterial species. Oxolinic acid and its cobalt(II) complexes
showed inhibitory action against all the microorganisms tested, with MIC values in the 1–2 µg/mL
range for most of the complexes. Similar cobalt(II) complexes, based on a series of coordinated
quinolone sparfloxacin and nitrogen-donor heterocyclic ligands bipy, phen or 2,2′-bipyridylamine
(bipyam) (41, Figure 9), were introduced in 2016 by Kouris et al. [107]. The ligand and complexes
showed remarkable antimicrobial activities against bacteria strains, such as X. campestris, S. aureus,
B. subtilis and E. coli with MICs of 0.031–0.500 µg/mL. The authors suggested that the chelate effect and
the presence of sparfloxacinato and N-donor ligands, as well as the generation of the quinolone ligand,
could be the prevailing factors contributing to the antimicrobial activities of the complexes.

A class of [CoCl2(dap)2]Cl (dap = 1,3-diaminopropane) and [CoCl2(en)2]Cl (en = ethylenediamine)
were recently reported by Turecka et al. [108], and tested against a broad spectrum of reference
and clinical fungal strains of Candida. The complexes showed MICs of ~16 µg/mL on the selected
species (e.g., C. glabrata ATCC 2001) but were not as effective as amphotericin B and ketoconazole.
A series of zinc(II), copper(II) and cobalt(II) metallophthalocyanine (Pc) compounds derivatized with
four 2-methoxy-4-{(Z)-[(4-morpholin-4-ylphenyl)imino]methyl}phenol at the peripheral positions (42,
Figure 9) were reported by Unluer et al. [109]. According to the in vitro studies, cobalt(II)Pc and
copper(II)Pc complexes, in particular, showed antibacterial activities against S. typhimurium and E. coli.
Recently, a series of 2-formylpyridine 4-allyl-S-methylisothiosemicarbazone of zinc(II), copper(II),
nickel(II) and cobalt(III) complexes were reported [110]. The in vitro tests showed that cobalt(III)
complexes (43, Figure 9) were more active against Gram-positive bacteria (e.g., S. aureus) and fungal
strains (C. albicans) with MIC values of 0.7–3 and 7–250 µg/mL, respectively, and less active against
Gram-negative strains, such as E. coli and K. pneumoniae. Several other types of cobalt metal complexes
have been tested for their antimicrobial efficacy, however, their activities were not found remarkably
high [111–121].
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5.2. Rhodium and Iridium Complexes

Rhodium and iridium complexes hold great potential as metal-based antimicrobial agents.
In 2015, Lu et al. tested a series of cyclometallated rhodium(III) and iridium(III) complexes for their
antimicrobial activities [122]. The in vitro tests revealed that complex 44 (Figure 10) had a selective
inhibitory effect against S. aureus growth with MIC and MBC values of 3.60 and 7.19 µM, respectively.
The complex was the first example of a substitutionally-inert, group 9 organometallic compound
utilized as a direct inhibitor of S. aureus. In 2017, Fiorini et al. [123] reported methylation of iridium(III)
tetrazolato complexes as an effective route to modulate the emission outputs and to switch the
antimicrobial properties of the species. Transformation of neutral iridium(III) tetrazolato complexes 45
to the equivalent methylated cations 46 (Figure 10), was accompanied by a remarkable change in the
antimicrobial activities of the complexes. Compounds of general structure 45 were inactive against
Gram-negative (E. coli) and Gram-positive (D. radiodurans) microorganisms. However, by converting
them to methylated cationic derivatives 46, the MIC values of the latter dropped to 1–4 µg/mL against
the D. radiodurans bacterial strain. The same year, Kumar et al. prepared an iridium(III) complex
of formula [Ir(cod)(dmtu)2]Cl (where cod = 1,5-cyclooctadiene and dmtu = N,N’-dimethylthiourea,
47 in Figure 10), from the reaction of dmtu with the [Ir(cod)(Cl)]2 dimer [124]. The antimicrobial
activity of the complex was investigated against E. coli, S. aureus and P. aeruginosa, and it showed
good activity against the two latter strains. In 2018, DuChane and coworkers reported a series of
~40 rhodium(III) and iridium(III) half-sandwich complexes of formula [(η5-Cp*R)M(β-diketonato)Cl]
(M = Rh(III), Ir(III), 48 in Figure 10) [125] and tested them against M. smegmatis. The rhodium(III)
complexes were found consistently more active than the iridium analogs with MIC values in the range
of 2–16 µM and 15–69 µM for the two ions, respectively. The most active rhodium(III) complex was the
one bearing pentamethylcyclopentadiene (η5-Cp*R where R = -CH3) and dipivaloylmethane as the
β-diketonato chelate.

Recently, Lapasam and coworkers have reported a family of mononuclear metal complexes
containing hydrazone ligands (L) of the type [(arene)MLCl]+ (M = Ru(II), Rh(III) and Ir(III), 49 in
Figure 10) [126]. The antibacterial efficacies of the complexes were evaluated against four pathogenic
bacteria, such as S. aureus, E. coli, B. thuringiensis and P. aeruginosa. All the complexes behaved
selectively against P. aeruginosa and B. thuringiensis with comparable activities to gentamycin but
were inactive against E. coli and S. aureus. In a report in 2019, the same author described related
ruthenium(II), rhodium(III) and iridium(III) arene complexes bearing pyridyl azine Schiff base ligands
(50 and 51, Figure 10) showing potent antibacterial activities against S. aureus, E. coli and K. pneumonia
with the zone of inhibition (at conc. 2.0 mg/mL) greater than that of ciprofloxacin [127]. A class of
neutral heteroleptic cyclometalated iridium(III) complexes linked to boron dipyrromethene (BODIPY)
substituted N-heterocyclic carbene (NHC) ligands was characterized by Liu et al. in 2019 [128].
The antimicrobial photo-biological properties of 52 and 53 (Figure 10) were evaluated against S. aureus
bacteria growing as planktonic cultures. The results revealed good activity of 53 against the pathogen
upon visible light activation, with a phototherapeutic index >15 and the half-maximal effective
concentration (EC50) value of 6.67 µM.

In 2018, a series of organoiridium(III) antimicrobial complexes containing biguanides derivatives
as chelated ligands were reported by Chen et al. (54, Figure 10) [129]. The compounds have remarkable
activities against both Gram-negative and Gram-positive bacteria, including MRSA with MICs as low as
0.125 µg/mL. The complexes also exhibited a high fungicidal effect toward C. albicans and C. neoformans
with MIC values of 0.25 µg/mL (0.34 µM), and generally, low cytotoxicity toward mammalian cells.
In 2019, DuChane et al. evaluated a series of piano-stool iridium complexes with 1,2-diaminoethane
ligands against bacterial strains of S. aureus, including various isolates of methicillin-resistant strains
(MRSA) [130]. The in vitro tests indicated an interesting difference between stereoisomers of the species
with complex 55 (cis isomer, Figure 10) being the most effective compound with MIC values of 5 and
7.5 µg/mL against S. aureus and MRSA, respectively. Recently, Lapasam et al. introduced a series
of ruthenium(II), rhodium(III) and iridium(III) complexes with 4-phenyl-1-(pyridin-4yl)methylene
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thiosemicarbazide and 4-phenyl-1-(pyridin-4yl)ethylidene thiosemicarbazide ligands (56, Figure 10)
with comparable antibacterial properties to that of ciprofloxacin [131]. The MIC values of the complexes
were as low as 0.015 mg/mL (MIC of ciprofloxacin = 0.031–0.062 mg/mL) against S. aureus, E. Coli and
K. pneumonia.
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6. Group 10

6.1. Nickel Complexes

Group 10 antimicrobial complexes are not as active as metal complexes of other groups and
generally show relatively high MICs when compared to other transition metal species. Nickel is no
exception. Therefore, only two selected cases will be given in the current section. In 2017, Raj et al.
described Schiff base (57, Figure 11) nickel(II) complexes with MIC values against S. aureus (15–30µg/mL)
comparable to the standard drug, ciprofloxacin [132]. The complexes, whose structures remained
undefined, also showed good MICs against methicillin resistant S. aureus (MRSA, 20–50 µg/mL),
but were inactive against other tested pathogens (e.g., S. flexneri MTCC-1457, P. aeruginosa MTCC-741,
and E. coli MTCC-119) and several fungal strains. The complexes exert their antimicrobial action
by disintegrating the bacterial cell membrane. Recently, Ibrahim et al. [133] presented nickel(II)
complexes of NNS tridentate thiosemicarbazone based ligands (58, Figure 11) and evaluated them
against several bacterial (e.g., E. coli, P. aeruginosa, B. cereus, S. aureus, M. luteus and S. marcescens)
and fungal (e.g., F. oxysporum, C. albicans, G. candidum, A. flavus, S. brevicaulis and T. rubrum) strains.
The complexes all showed similar and comparable effects as the standard antibacterial chloramphenicol
drug. The results varied in terms of the antifungal potency of complexes 58, but the active ones showed
greater inhibition than clotrimazole (the standard drug).
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6.2. Palladium and Platinum Complexes

Several palladium and platinum complexes have been tested for their antimicrobial potencies
and a few species showed significant effects. In general, the reported complexes of the two metal
ions were not as effective as those of other metals and palladium compounds were more active
than the platinum ones. It is, however, instructive to also overview some of the latest reported
examples not showing antimicrobial potential. By varying reaction conditions and stoichiometry of
reagents, Juribašić et al. [134] prepared a series of quinolinylaminophosphonate palladium(II) halide
complexes (59–61, Figure 12) and tested them on a wide spectrum of bacterial and fungal strains.
None of the species was active. Similarly, the methylpyrazole-4-carboxaldehyde thiosemicarbazone and
the 2-((6-allylidene-2-hydroxycyclohexa-1,3-dienylmethylene)amino)benzoic acid complexes (62 and
63, Figure 12) were inactive [135]. Radić et al. introduced S-alkyl thiosalicylic acid derivatives of
palladium(II) (64, Figure 12) and investigated the antimicrobial potential of the ligands and complexes
on a wide panel of 26 microorganism species [136]. The palladium(II) complexes were inactive against
nearly all pathogens with the exception of fungal strains (e.g., A. fumigatus and A. flavus) with MICs
<7.8 µg/mL.
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In 2018, Boubakri et al., reported the synthesis and antibacterial properties of triphenylphosphine
(PPh3) N-heterocycle carbene (NHC) complexes of palladium(II) (65, Figure 12) [137]. The complexes
were prepared by combining the NHC benzimidazolium salts with, PdCl2, K2CO3 in pyridine at
80 ◦C, followed by reaction with triphenylphosphine. The in vitro tests of palladium(II)-NHC-PPh3

complexes against Gram-positive (M. luteus LB 14110, S. aureus ATCC 6538 and L. monocytogenes ATCC
19117) and Gram-negative (S. typhimurium ATCC14028 and P. aeruginosa ATCC 49189) pathogens
showed moderate to significant activities of the complexes against the different bacterial strains.
The MIC values against M. luteus, L. monocytogenes and S. typhimurium were in the range of 0.0197–0.625,
0.078–1.25, and 1.25–5 mg/mL, respectively. A remarkable example of active palladium(II) complexes
was obtained by Abu-Dief et al. [138]. The authors prepared a series of metal complexes bearing
the 1-(pyridin-3-yliminomethyl)-naphthalen-2-ol ligand and tested the silver(I), palladium(II) and
vanadium(II) oxide derivatives against different strains of bacteria and fungi (S. Marcescens, E. coli,
M. Luteus F. oxysporum, G. candidum and A. flavus). The palladium(II) complex (66, Figure 12) showed
MIC values against all tested strains between 1.50 and 3.00 µg/mL, close to the standard drugs
(ofloxacin and fluconazole). Recently, Nyawade et al. reported new 2-pyrral amino acid Schiff
base palladium(II) complexes [139] and investigated their antibacterial effects against six species
(Gram-positive, such as S. aureus, MRSA, S. epidermidis, S. pyogenes, and Gram-negative, such as
P. aeruginosa and K. pneumonia). Of the series of compounds, complex 67 (Figure 12) was the most active
showing comparable antimicrobial potency to ampicillin against MRSA, S. epidermidis and S. pyogenes.

Solmaz and coworkers synthesized N,N-Di-(R)-N’-(4-chlorobenzoyl)thiourea platinum(II)
complexes (68, Figure 12) and carried out antimicrobial tests against S. aureus, S. pneumonia, E. coli,
P. aeruginosa, A. baumannii, C. albicans and C. glabrata [140]. The compounds were particularly
effective against S. pneumonia, P. aeruginosa, and A. baumannii (MIC value of 3.90 µg/mL) and
moderately active against S. aureus, E. coli and C. albicans (MIC value of 15.62 µg/mL). More recently,
Gaber et al. reported palladium(II) and platinum(II) chalcone complexes of the bidentate ligand,
(E)-3-(4-(dimethylamino)phenyl)-1-(pyridin-2-yl)prop-2-en-1-one (69, Figure 12) [141]. The platinum(II)
complex showed low IC50 values but virtually no antimicrobial potency (MIC value of ~30 mg/mL)
against C. albicans, A. flavus, E. coli or S. aureus. Palladium(II) and platinum(II) complexes with good
antifungal activities against C. albicans and C. neoformans (MIC values of 32 and 16 µg/mL, respectively
for the two species) were those bearing a derivatized N,N-bidentate pyridyl benzimidazole ligand (70,
Figure 12) reported by Mansour et al. [142]. In 2018, Lunagariya et al. tested square planar mononuclear
platinum(II) complexes bearing 5-quinoline 1,3,5-tri-substituted pyrazole scaffolds against S. Aureus,
B. subtilis, S. marcescens, P. aeruginosa and E. coli [143]. Within the series, compound 71 (Figure 12)
showed good activity against the pathogens with MIC values between 25 and 35 µg/mL. Finally, in 2019,
Gao and coworkers published a bacterial membrane intercalation-enhanced photodynamic inactivation
(PDI) system, of discrete organoplatinum(II) metallacycles (72, Figure 12) [144]. The compound acted
as a photosensitizer with aggregation-induced emission. It self-assembled with a transacting activator
of the transduction (TAT) peptide-decorated virus coat protein. The resulting aggregate intercalated in
the bacterial cell membrane and decreased the survival rate of Gram-negative E. coli to nearly zero and
that of Gram-positive S. aureus to ∼30% upon light irradiation. Several other complexes of these ions
have been tested for their antimicrobial efficacy, however, their activities were not found remarkably
high [145–169].

7. Group 11

7.1. Copper Complexes

In the last five years, hundreds of scientific publications have reported antimicrobial properties
of copper complexes. As for iron and the other members of this group, the complexes of the metal
ion would be best reviewed alone, but for completeness, a few recent selected examples will be
mentioned in this section. In 2019, Kaushal et al. described the synthesis and characterization of
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several 2-acetylpyridine-N-substituted thiosemicarbazonates of copper(II) species (73, Figure 13) with
remarkable antimicrobial activities against methicillin resistant S. aureus (MRSA), K. pneumoniae and
C. albicans [170]. The complexes showed MICs values between 0.5 and 5 µg/mL and often equated the
potency of amphotericin and gentamicin. The authors attempted a structure–activity relationship of
the variation of antimicrobial bioactivity with variations of R substituents and halogens (X).

In general, for all pathogens, the halogens did not provide any preferential trend but
variations occurred due to the substituents R, with ethyl/methyl substituents showing high activity.
Oladipo et al. reported a synthetic and structural study of copper(II) N,N′-diarylformamidine
dithiocarbamate complexes (74, Figure 13), showing excellent antibacterial activities against
Gram-negative, S. typhimurium, P. aeruginosa, E. coli and K. pneumoniae and Gram-positive, S. aureus
bacteria, including MRSA [171]. The MIC values of complexes were in the order of 6.25 ng /mL to
0.8 µg/mL, surpassing in many cases the potency of ciprofloxacin. Krishnegowda and coworkers
prepared 1-phenyl-1,3-butanedione copper(II) complexes (75, Figure 13), showing activity against
B. cereus, Bacillus substilis, methicillin-resistant S. aureus, E. coli, P. aerogenes and K. pneumonia (MICs in
the range of 10.4–16.5 µg/mL) similar to ampicillin [172].
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7.2. Gold Complexes

Gold complexes have been investigated in a wide range of therapeutic applications
(e.g., as antiarthritic agents for the treatment of rheumatoid arthritis and a variety of rheumatic
diseases, including psoriatic arthritis, juvenile arthritis, palindromic rheumatism and discoid lupus
erythematosus [173]), and continue to attract the attention of many organometallic chemists [174].
They also have great potential as antimicrobial agents. In this section, we have selected only a few
examples, but a recent perspective offers more details on the subject [10].

In 2016, Savić et al. reported a series of aromatic nitrogen-containing heterocycles gold(III)
species (76, Figure 14) in a comparative antimicrobial and toxicological study of gold and silver
complexes of the same [175]. All square-planar gold complexes were evaluated in vitro against
P. aeruginosa, E. coli, S. aureus, L. monocytogenes and C. albicans. They revealed good antibacterial
activity with the MIC values in the 2.5 to 100 µg/mL range but were not as effective as the silver
analogues. Hikisz et al. studied the antibacterial activities of the gold(I) alkynyl chromone complexes
(77, Figure 14) against E. coli and Gram-positive methicillin-sensitive (MSSA) and methicillin-resistant
(MRSA) S. aureus including clinical isolates [176]. In vitro tests of the complexes showed high activities
against S. aureus pathogens with MICs between 2 and 32 µg/mL, but they were not active against
E. coli. Glišić et al. prepared dinuclear gold(III) complexes with bridging aromatic nitrogen-containing
heterocyclic ligands (78, Figure 14) and studied their antimicrobial activities in relation to the complex
nuclearity [174]. In most cases, complexes showed higher antibacterial activity than K[AuCl4] with
MICs in the range of 3.9–62.5 µg/mL. The complexes 78 were particularly effective against M. luteus
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being ~3x more potent than kanamycin. In 2017, Schmidt and co-workers evaluated a series of gold(I)
bis-N-heterocyclic carbene complexes (79, Figure 14) [177] for their effects against pathogenic bacteria
E. faecium, E. coli, P. aeruginosa, A. baumannii, K. pneumonia and methicillin-resistant S. aureus strains
(MRSA). The complexes showed good activity against MRSA (for R = Phe, MIC = 1.7–2.3 µM) but were
not as effective as auranofin or standard antibiotics. These biscarbene gold complexes act by inhibiting
bacterial thioredoxin reductase (TrxRs) with moderate potency. Finally, Pöthig et al. recently described
structurally interesting gold pillarplexes [178]. The compounds (80, Figure 14), however, showed little
or no activity against B. subtilis, S. aureus, E. coli, P. aeruginosa or C. albicans.Chemistry 2020, 2, x 20 
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8. Group 12

8.1. Zinc Complexes

Zinc, the first element in group 12, is the only metal that appears in all enzyme classes [179–182].
Complexes of the element have been the topic of many studies, including antibacterial and antiviral
activities [183]. In the last five years, more than 100 scientific publications on the antimicrobial
properties of zinc complexes have been reported. As mentioned in Section 7, it is beyond the scope of
this short review to detail all these studies. We have selected, therefore, only a few cases as interesting
examples from the structural and chemical point of view.

In 2015, Zaltariov et al. reported zinc(II) complexes of trimethylsilyl-propyl-p-aminobenzoate
(81, Figure 15) with remarkable antimicrobial properties [184]. The compounds showed the MIC
values as low as 16 ng/mL against A. fumigatus, P. chrysogenum and Fusarium, and 0.38 µg/mL
against Bacillus sp. and Pseudomonas sp., being more active than the standards, i.e., caspofungin and
kanamycin. Abu Ali et al. investigated ibuprofen zinc(II) complexes in combination with mono and
bidentate ligands such as 2-aminopyridine, 2-aminomethylpyridine and 2,2’-bipyridine (82 and 83,
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Figure 15) [185]. Compounds were screened against three Gram-positive (M. luteus, S. aureus and
B. subtilis) and three Gram-negative (E. coli, K. pneumonia and P. mirabilis) bacterial strains. The complex
containing ibuprofen and 2,2′-bipy (83, Figure 15) was the most potent compound against all bacteria
with MICs of ~1.5–3 mg/mL. In 2018, Boughougal et al. reported a series of zinc(II) complexes
coordinated to sulfadiazine and enrofloxacin (84, Figure 15) [186].Chemistry 2020, 2, x 21 
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In all complexes, enrofloxacin acted as a bidentate ligand via the pyridinone and carboxylate
oxygens. Free ligands and complexes showed good antibacterial activity against E. Coli, S. Aureus
and E. Faecalis with MICs lower than 0.5 mg/L. A series of zinc(II) compounds of aryl-substituted
diazosalicylato- and pyridine ligands, was recently described by Basu Baul et al. (85, Figure 15) and
tested along with copper and cadmium analogs against B. subtilis, S. aureus and K. pneumonia and
C. albicans [187]. The zinc(II) complexes showed comparable activity to the standard chloramphenicol
and fluconazole antimicrobial drugs. In 2019, Stataneva et al. described a new bioactive zinc(II)
complex with a fluorescent symmetrical benzanthrone tripod for applications in antibacterial
textiles (86, Figure 15) [188]. Tested against different pathogens, the complex showed the highest
activity against B. cereus with a MIC of 450 µg/mL. Recently, Noruzi et al. reported the biological
activities of metal complexes of a multidentate calix[4]arene ligand doubly functionalized by
2-hydroxybenzeledene-thiosemicarbazone (87, Figure 15) [189]. Both the calix[4]arene ligand and its
zinc(II) complex showed activity against B. subtilis, E. coli and P. aeruginosa with MICs of 31 µg/mL.

8.2. Cadmium and Mercury Complexes

Several studies have described the antimicrobial properties of cadmium and mercury complexes
since 2015. Despite the harmful nature of the metal ions and their complexes, they can still be remarkably
useful for antimicrobial applications and they should not be neglected. However, given the inherent high
toxicity associated with the metal ions, we decided to select only studies of complexes showing MICs
in the low µg/mL/µM range and (where possible) with activities comparable to tested standard drugs.
These stringent requirements considerably reduced the number of studies that we could consider here.
Montazerozohori et al. have reported cadmium(II) and mercury(II) complexes of the bidentate Schiff
base ligand 4-(3-(2-(4-(dimethyl aminophenyl alylidene aminopropylimino)prop-1-ethyl)-N,N-dimethyl
benzene (88, Figure 16) and tested the molecules against two Gram-positive (B. substilis and S. aureus),
and two Gram-negative (P. aeruginosa and E. coli) bacterial strains [190]. Mercury complexes with X = I
and SCN showed minimum bactericidal concentration (MBC) of 3.7 and 7.5 µg/mL, respectively, against
S. aureus and P. aeruginosa (SCN complex only). The cadmium complexes were less toxic, with the
most active species (X = SCN) showing a MIC of 25 µg/mL against P. aeruginosa. In 2016, Agertt et al.
evaluated sulfonamide metal complexes of Au, Ag, Cd, Cu and Hg for their antimycobacterial activities
against M. abscessus, M. fortuitum and M. massiliense [191]. Cadmium and mercury complexes showed
MICs of 4.9 µg/mL against M. fortuitum and M. massiliense and of 19.5 and 9.8 µg/mL, respectively,
against M. abscessus. It should be noted that the study did not report a full characterization of
cadmium(II) and mercury(II) complexes and their structures are unknown. In a study published in
2019, Matiadis et al. investigated the antimicrobial properties of cadmium(II) metal complexes of the
N-acetyl-3-acetyl-5-benzylidenetetramic acid (89, Figure 16) [192]. The in vitro tests against five key
“ESKAPE” pathogens (E. coli, MRSA, K. pneumoniae, A. baumannii and P. aeruginosa) and two fungi
(C. neoformans and C. albicans) revealed that 89 was active only against C. neoformans (MIC = 8 µg/mL).

In 2017 and 2018, Mandal et al. reported the synthesis, characterization and antimicrobial
activities of cadmium(II) and mercury(II) complexes of 5-methyl pyrazole-3yl-N-(2′-methylthiophenyl)
methyleneimine [193] and pyrazol-3-yl-N-(2-methoxyphenyl) methanimine [194] (90–93, Figure 16)
against a panel of pathogens. In comparison to amoxicillin, cadmium(II) and mercury(II) complexes
90 and 92 showed very good antimicrobial activity against P. vulgaris and S. aureus with MICs
of 35 and 25 µg/mL and 5 and 2 µg/mL, respectively (MICs of amoxicillin = 129 and 85 µg/mL,
respectively). Furthermore, 92 was 8-fold more effective than amoxicillin against E. aerogenes (MIC
of 92 = 35 µg/mL) [193]. The complex 91 was inactive while 93 showed a MIC value of 10 µg/mL
against different V. cholerae strains, P. aeruginosa and M. luteus [194]. Lam et al. have reported a
series of bis-(alkynyl)mercury(II) complexes with oligothiophene and bithiazole linking units (94 and
95, Figure 16) with remarkable antimicrobial activity against MRSA and C. albicans [195]. Complex
94 showed the strongest bactericidal activity against MRSA with MIC and MBC values 0.2 µg/mL,
and fungicidal effect against C. albicans with MIC and MBC values 0.4 µg/mL. Finally, Weng et al.
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reported cadmium(II) supramolecular Kandinsky circles (96, Figure 16) with high antibacterial activity
against Gram-positive methicillin-resistant S. aureus (MRSA) [196]. The MIC values of the different
supramolecular were between 0.5 and 3 µg/mL. The compounds 96a–96c were not active against E. coli
and showed negligible toxicity to eukaryotic cells.
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9. Conclusions

In the last ten years, inorganic and organometallic transition metal medicinal chemists have
begun to develop new antimicrobial agents with great promise and noteworthy success. Complexes
of virtually all ions of the transition periods have been tested. In this review, we have detailed in
particular recent studies on the antimicrobial activities and potential of transition metal complexes
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of groups 6–12. Several species show remarkable prospective as candidates for the development of
new classes of highly active antimicrobial agents. The majority of compounds still need validation
in vivo but the unique properties of the complexes offer the possibility of fine-tuning in the future
their properties, reactivity and toxicological profiles. Metal complexes operate via specific modes of
actions unknown to carbon-based drugs and yet unexperienced by infectious pathogens. This will
likely translate into long-term new strategies in this urgent global fight.
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Lankoff, A.; Arabski, M. Selective cytotoxicity and antifungal properties of copper(II) and cobalt(II) complexes
with imidazole-4-acetate anion or 1-allylimidazole. Sci. Rep. 2019, 9, 9777. [CrossRef] [PubMed]

115. Orojloo, M.; Zolgharnein, P.; Solimannejad, M.; Amani, S. Synthesis and characterization of cobalt(II),
nickel(II), copper(II) and zinc(II) complexes derived from two Schiff base ligands: Spectroscopic, thermal,
magnetic moment, electrochemical and antimicrobial studies. Inorg. Chim. Acta 2017, 467, 227–237. [CrossRef]

116. Palmucci, J.; Mahmudov, K.T.; Guedes da Silva, M.F.C.; Marchetti, F.; Pettinari, C.; Petrelli, D.; Vitali, L.A.;
Quassinti, L.; Bramucci, M.; Lupidi, G.; et al. DNA and BSA binding, anticancer and antimicrobial properties
of Co(II), Co(II/III), Cu(II) and Ag(I) complexes of arylhydrazones of barbituric acid. RSC Adv. 2016, 6,
4237–4249. [CrossRef]

117. Sadhu, M.H.; Kumar, S.B.; Saini, J.K.; Purani, S.S.; Khanna, T.R. Mononuclear copper(II) and binuclear
cobalt(II) complexes with halides and tetradentate nitrogen coordinate ligand: Synthesis, structures and
bioactivities. Inorg. Chim. Acta 2017, 466, 219–227. [CrossRef]

118. Saha, M.; Biswas, J.K.; Mondal, M.; Ghosh, D.; Mandal, S.; Cordes, D.B.; Slawin, A.M.Z.; Mandal, T.K.;
Saha, N.C. Synthesis, characterization and antimicrobial activities of Co(III) and Ni(II) complexes with
5-methyl-3-formylpyrazole-N(4)-dihexylthiosemicarbazone (HMPzNHex2): X-ray crystallography and DFT
calculations of [Co(MPzNHex2)2]ClO4·1.5H2O (I) and [Ni(HMPzNHex2)2]Cl2·2H2O (II). Inorg. Chim. Acta
2018, 483, 271–283. [CrossRef]

119. Saha, S.; Sasmal, A.; Roy Choudhury, C.; Pilet, G.; Bauzá, A.; Frontera, A.; Chakraborty, S.; Mitra, S. Synthesis,
crystal structure, antimicrobial screening and density functional theory calculation of nickel(II), cobalt(II)
and zinc(II) mononuclear Schiff base complexes. Inorg. Chim. Acta 2015, 425, 211–220. [CrossRef]

120. Vasdev, R.A.; Preston, D.; Scottwell, S.O.; Brooks, H.J.; Crowley, J.D.; Schramm, M.P. Oxidatively Locked
[Co(2)L(3)]6+ Cylinders Derived from Bis(bidentate) 2-Pyridyl-1,2,3-triazole “Click” Ligands: Synthesis,
Stability, and Antimicrobial Studies. Molecules 2016, 21, 1548. [CrossRef]
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