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Abstract: In nature, various specific reactions only occur in spatially controlled environments.
Cell compartment and subcompartments act as the support required to preserve the bio-specificity
and functionality of the biological content, by affording absolute segregation. Inspired by this
natural perfect behavior, bottom-up approaches are on focus to develop artificial cell-like structures,
crucial for understanding relevant bioprocesses and interactions or to produce tailored solutions
in the field of therapeutics and diagnostics. In this review, we discuss the benefits of constructing
polymer-based single and multicompartments (capsules and giant unilamellar vesicles (GUVs)),
equipped with biomolecules as to mimic cells. In this respect, we outline key examples of how such
structures have been designed from scratch, namely, starting from the application-oriented selection
and synthesis of the amphiphilic block copolymer. We then present the state-of-the-art techniques for
assembling the supramolecular structure while permitting the encapsulation of active compounds
and the incorporation of peptides/membrane proteins, essential to support in situ reactions, e.g.,
to replicate intracellular signaling cascades. Finally, we briefly discuss important features that these
compartments offer and how they could be applied to engineer the next generation of microreactors,
therapeutic solutions, and cell models.

Keywords: artificial cells; biomimicry; polymer GUVs; polymer capsules; single compartments;
multicompartments

1. Introduction

Compartmentalization produces a remarkably efficient organization of membranes and
biomolecules that is essential to cope with the complexity of metabolic reactions in cells, and
whose stability and functions are vital [1]. Inspired by natural biocompartments, significant efforts
have been made to produce compartments that mimic cells and organelles, either in terms of
their membrane properties or of the reactivity of encapsulated biomolecules [2]. Micrometer-sized
vesicles, namely giant unilamellar vesicles, GUVs for short, are preferably used in this context,
since their size and architecture can mimic cells, such as to extract information regarding reactions
in a bio-relevant confined space. In addition, they allow for real time visualization of the
membrane structure (providing information regarding membrane fluidity and integrity), and of
biochemical reactions and enzymatic crowding effects that occur within a controlled and simplified
environment, yet still preserving defined characteristics of cells. Lipid based compartments are
straightforward systems for mimicking a cell/organelle membrane, nevertheless, their mechanical
instability and the presence of membrane defects are limiting factors. One elegant way of introducing
robustness to compartments, and at the same time of expanding new membrane properties, is the
use of compartments made of copolymers. With the progress in polymer chemistry, numerous
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amphiphilic block copolymers have been synthesized with a variety of compositions, block ratios
and functions [3]. Due to a greater chemical versatility compared to lipids, block copolymers increase
the opportunities to achieve desired self-assembled morphologies made of membranes with tailored
properties and excellent biocompatibility. The architecture of such compartments—whether they are
micro- or nano-sized—offers three different regions: the inner cavity for encapsulating hydrophilic
molecules, the membrane for insertion of hydrophobic molecules, and the external membrane surface,
for attachment of specific molecules [4,5] and eventually, for immobilization onto external functional
surfaces [6,7]. From a topological point of view, nano-sized compartments, such as small layer-by-layer
(LbL) capsules [8], polymersomes [9] or liposomes [10], can be designed as to mimic organelles,
the cellular subcompartments. They have been used as nano-scale catalytic compartments, serving
as to produce various desired compounds, as artificial peroxisomes [11], acting in tandem to support
cascade reactions or as subcompartments inside GUVs to allow development of multicompartment
systems [12]. When nanocompartments are encapsulated inside polymer giants in combination
with active compounds, they are able to communicate among them to allow reactions, similarly to
intracellular organization [13]. Permeability of membranes (either in a single or in multicompartments)
favors molecular transport (enzyme substrates and products) and can be achieved in various ways,
resulting from the chemical nature of the copolymer [14], by insertion of peptides [15,16] and
membrane proteins [17,18]. A schematic of the most common compositions that polymer single
and multicompartments can attain is presented in Figure 1.

Figure 1. Schematic representation of the different types of polymer compartments (polymer giant
unilamellar vesicles (GUVs) and layer-by-layer (LbL) capsules), showing their diversity in terms of
size, arrangements and the different types of biomolecules, including their possible locations within
the assemblies.

This review presents micrometer-sized compartments either as single or as multicompartment
reaction space, as powerful tools for biomimicry, lowering the degree of complexity to enable studies
on targeted processes. We first introduce the synthesis of amphiphilic block copolymers through the
various known polymerization techniques as building blocks of such compartments and indicate
the conditions and properties required to support in situ reactions. Different methods for the
preparation of these vesicular structures and their combination with active compounds (e.g., enzymes



Chemistry 2020, 2 472

and peptides/membrane proteins) are presented together with the crucial points ensuring an efficient
compartmentalization for desired applications. Permeabilization methods will not be described in
this review, as they were already discussed extensively elsewhere [19,20]. We rather explore the
biomimetic approach of these compartments equipped with peptides/membrane proteins to render
them permeable for molecular flow and containing active compounds/subcompartments. Reactions
inside confined spaces at microscale allow studying and better understanding of natural mechanisms
of such reactions and their role inside them to support applications in various domains, as sensing,
therapeutics and catalysis.

2. Polymers as Building Blocks of Micrometer-Sized Compartments

The progress in polymer chemistry gave access to a variety of polymers with tailored properties
and excellent biocompatibility, thus serving to select specific components, where the precise role
of each leads to a well-controlled system. Two or more chemically different polymeric domains,
covalently bound together are defined as block copolymers. More specifically, amphiphilic block
copolymers are composed of both hydrophilic and hydrophobic blocks, often named as diblocks (AB),
triblocks (ABA or ABC) or multiblocks (ABCBA, ABCD, etc.). According to the required properties,
amphiphilic block copolymers are built/designed by combining specific types of hydrophilic and
hydrophobic blocks.

2.1. Amphiphilic Block Copolymers as Building Blocks for Generation of GUVs

In order to prepare amphiphilic block copolymers, controlled polymerization techniques
are commonly used: Atom transfer radical polymerization (ATRP) [21], reversible addition
fragmentation chain transfer (RAFT) [22,23], ionic polymerization and combinations thereof [3,24].
Typically, sequential chain extension can be used, in which a first block is polymerized using
the aforementioned techniques, forming the so-called macro-initiator. Immediate addition of a
second monomer leads to chain-extension, yielding a diblock copolymer. This approach allows
the adjustment of each block length by terminating the corresponding chain extension according to
the desired degree of polymerization. Tri- or multiblock copolymers can be obtained analogously
either by sequential chain extension (asymmetric ABA, ABC, ABCD, etc.) or by a bifunctional
initiator (symmetric ABA, ABCBA, etc.). Monomer conversion as well as the living character
of the polymer chain are fundamental parameters to be considered among each chain extension.
In ionic polymerizations, high monomer conversions can easily be reached by maintaining narrow
polydispersity [25]. For example, poly(ethylene oxide)-block-polybutadiene (PEO-b-PBD) has been
successfully synthesized by anionic polymerization in a two steps sequential monomer addition [26–28].
Prior to the addition of the second monomer, modifications are required as for poly(ethylene
oxide)-block-poly(ethyl ethylene) (PEO-b-PEE), in which a PBD precursor is first hydrogenated to
yield the PEE macroinitiator. Subsequently, ethylene oxide is polymerized to obtain the diblock
copolymer [29]. In another study, poly(acrylic acid)-block-polybutadiene (PAA-b-PBD) was prepared by
sequentional addition of butadiene and tert-butylacrylate, followed by hydrolysis to its acid form [28].
The combination of different polymerization techniques is another possibility. Namely, the preparation
of poly(dimethyl sulfoxide) (PDMS) by anionic polymerization was followed by activation and cationic
ring-opening polymerization of 2-methyl-2-oxazoline (MOXA) monomers to obtain poly(dimethyl
sulfoxide)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) diblock copolymers (Scheme 1) [30].
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Scheme 1. Synthesis route of PDMS-b-PMOXA combining both types of ionic polymerizations.
Reprinted with permission from [30]. Copyright c© 2014 American Chemical Society.

Ionic polymerization techniques are limited due to their high sensitivity to impurities. Hence,
the solvent choice is important and the preparation of each reactant has to be handled very carefully
to reach the desired purity grade. Controlled radical polymerization techniques (CRP), such as ATRP
or RAFT, have recently been developed and have provided interesting and more versatile alternatives
for the production of block copolymers. Both techniques require an initiator and the polymerization
is governed by an equilibrium between an active species and a dormant one. The latter is constantly
re-initiated in order to form the active species responsible for propagation through the addition of
monomers. With these techniques, it is usually recommended not to exceed monomer conversions
of 90%, above which the probability of termination is higher, risking to form dead chains unable to
continue chain-extension [22]. As an example, poly(ethylene oxide)-block-poly(4”-acryloyloxybutyl
2,5-bis(4’-butyloxybenzoyloxy)benzoate) (PEO-b-PA444) was obtained from PEO modified to a
macroinitiator for ATRP on which PA444 has been polymerized [31]. By using RAFT, a diblock
copolymer poly(pentafluorophenyl acrylate)-block-poly(n-butyl acrylate) (PFPA-b-PnBA) was firstly
prepared using the appropriate chain transfer agent (CTA), followed by modification to yield
the amphiphilic glycopolymer PNβGluEAM-b-PBA [32]. More recently, polymerization induced
self-assembly (PISA) allowed the preparation of poly(ethylene oxide)-block-poly(2-hydroxypropyl
methacrylate) (PEO-b-PHPMA). In a suitable solvent, a solution of monomer feeds the growing chain
on the PEO macroinitiator, producing an amphiphile that gradually self-assembles into structures,
while polymerization is ongoing and leading to turbidity in the medium (Figure 2) [33].

(A) (B)

Figure 2. (A) RAFT polymerization of 2-hydroxypropyl methacrylate controlled by a PEO
macroinitiator (B) Reaction mixture throughout the PISA polymerization process. Adapted with
permission from [33]. Copyright c© 2017 Springer Nature.
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Although, the possibility of combining synthetic approaches broadens the library of accessible
polymers, chemists still need to work hard on the quantitative attachment of the re-initation site for the
next polymerization, which is highly recommended to prevent purification difficulties. To circumvent
this problem, two or more homopolymers can be connected together using coupling reactions such
as Diels-Alder, copper-catalyzed azide-alkyne cycloaddition (CuAAC) or thiol-ene click chemistry,
thus offering an increased number of possibilities. To illustrate, PAA-b-PBD has been prepared by
combining poly(tert-butyl acrylate) (PtBA) and PBD homopolymers, both synthesized beforehand.
A hydrolysis step leads to the final diblock [34]. Poly(dimethylsiloxane)-block-poly(ethylene
oxide) (PDMS-b-PEO) diblock copolymers were synthesized using ring-opening polymerization of
hexamethylcyclotrisiloxane to obtain PDMS-N3 and further coupling with PEO-Alkyne chains via click
chemistry [35]. However, some reactive conditions can require high temperatures or metal catalysts,
which might not be suitable for biomedical applications [36,37]. Moreover, complete end-group
functionalization and equimolar ratios of both homopolymers are required, preventing the challenging
removal of unreacted homopolymers. Increasing the number of blocks introduces more challenges,
especially in re-initiation, purification and finding suitable solvent for all the blocks.

The self-assembly of amphiphilic block copolymers in solution leads to the formation of
many different assemblies including spherical, cylindrical, gyroidal and lamellar structures [38].
These assemblies are directly influenced by intrinsic molecular parameters of the amphiphilic block
copolymers and the conditions in which the self-assembly process takes place (concentration of the
copolymer, presence of solvents, temperature, etc). In this respect, the hydrophilic to the total mass
ratio (f ) calculated as the ratio of the molar mass of the hydrophilic block to the total molar mass
of the copolymer is an important parameter, which governs the resulting supramolecular assembly.
Vesicular structures are typically obtained for f values ranging from 0.20 to 0.40. Another molecular
parameter influencing the self-assembly into different assemblies is the packing parameter (p = v/a0lc;
v = volume of the hydrophobic part, a0 = contact area of the head group, lc = length of the hydrophobic
part) that describes the degree of curvature from the membrane. For low packing parameter values
(0 < p < 0.5), the curvature gradually decreases from high to medium, resulting in the formation of
spherical or cylindrical micelles, respectively. For higher values (0.5 < p < 1), the curvature of the
membrane is considerably low, which is more favorable for vesicular structures. The dispersity, D,
of the copolymer is affecting the size distribution of the formed vesicles: a narrow dispersity typically
leads to uniform-sized polymersomes, whilst on the opposite, a more polydisperse population of
vesicles is obtained [39–41].

2.2. Polymers as Building Blocks for Generation of Polymer Capsules

There are a few works that produced polymer capsules via methods originating from the LbL
deposition, e.g., single-step polymer adsorption, surface polymerization and ultrasonic assembly [42].
However the vast majority have employed purely the LbL assembly technique [43], where different
polymer segments are alternately deposited and adsorbed. These layers are typically formed by
homopolymers. The wide range of polymers provides capsules with a variety of walls, as a result
of adjusting important parameters, such as composition, permeability and surface functionality of
the capsules [44]. Nevertheless, such polymers must have functional groups capable of providing
electrostatic interactions or hydrogen bonds. For electrostatic interactions, polyelectrolytes having
anionic or cationic groups in their side chains are used, poly(styrene sulfonate (PSS) or poly(allylamine
hydrochloride) (PAH), respectively [45,46]. In the case of polymers forming hydrogen bonds, the side
chains are composed of functional groups called “hydrogen-bond receptors”, which have at least
one lone pair (carbonyl, ether, hydroxyl, amino, imino, and nitrile groups), like polyvinylpyrrolidone
(PVP), or “hydrogen-bond donors” represented by the presence of a hydrogen atom covalently bound
to a more electronegative atom (hydroxyl, amino, and imino groups), like poly(methacrylic acid)
(PMAA). These interactions are fundamental for the formation and maintenance of the layers during
the LbL deposition.
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3. Technologies for Engineering Polymer Single and Multicompartments in Combination
with Biomolecules

Important features of supramolecular assemblies, designed as functional single or multicompartments
to accommodate active compounds, are highly dependent on the preparation methods. Aiming at
obtaining the desired structures with optimized characteristics as, size and size distribution, membrane
composition and specific functionalities, biomolecular content inside cavities, etc., appropriate
procedures need to be selected [47].

3.1. Polymer GUVs

A wide selection of methods to generate polymer vesicular structures are available; ranging from
the fairly established bulk techniques, as electroformation and film rehydration, to more automated
and high-throughput ones as microfluidcs, currently still underused in the domain of cell mimicry.

3.1.1. Bulk Techniques

Electroformation

Electroformation, the most common method to obtain GUVs, involves the swelling of the
amphiphilic polymer film in the presence of an electric field. The dry copolymer film is deposited
on conductive indium tin oxide (ITO) coated glass slides and is subjected to an alternating
sin-wave electric current while it is rehydrated in aqueous solution. The former contains the
desired biomolecules to be encapsulated or incorporated inside the GUVs core or membrane,
respectively. The electric field induces a periodic electroosmotic movement of the water in
between the individual bilayer lamellae in the film, causing the vesicle detachment from the
substrate surface [47] as represented in Figure 3B. This method was successfully employed in many
different occasions [14,16,48,49]. In particular, Itel et al. [14] formed giants consisting of diblocks
(PMOXA-b-PDMS) or triblocks (PMOXA-b-PDMS-b-PMOXA), yielding membranes with thicknesses
ranging from 5–30 nm, which can represent 2–10 times that of the phospholipids. Albeit this
feature can contribute to a hydrophobic mismatch between membrane thickness and the size of
the proteins of more than 5 times, (PMOXA-b-PDMS) offered enough flexibility and fluidity to
facilitate the membrane protein insertion [50]. To enable reactions, Lomora et al. [51] produced
GUVs of different poly(2-methyloxazoline)-b-poly(dimethylsiloxane)-b-poly(2-methyloxazoline)
(PMOXAx-PDMSy-PMOXAx) triblock copolymers. These were equipped with a peptide (Gramicidine,
gA) for inducing a selective monovalent ion permeability. Another example was the formation of
GUVs with PEO-12 dimethicone, in which permeability was induced by the addition of calcimycin,
an ionophore that enabled the transport of Ca2+ selectively, serving for the in situ mineralization
of calcium carbonate [52]. Nevertheless, this method is not recommended for charged amphiphilic
copolymers due to electrostatic interactions, which might affect the self-assembly process [40].

Film-Rehydration

A more suitable technique to circumvent the problem of electrostatic interactions is the direct
rehydration of a thin polymer film to form the GUVs. For example, this method succeeded in
forming GUVs made of a mixture of PMOXA5-b-PDMS58-b-PMOXA5 and the negatively charged
PDMS65-b-heparin copolymers as a mimic for heparan sulfate, known to be exposed on the plasma
membrane of most cell types [12]. In the film rehydration method, the block copolymers are first
dissolved in an appropriate organic solvent, followed by evaporation either with a stream of nitrogen
or by applying vacuum in a rotary evaporator. Rehydration takes place by pouring aqueous solution
to the dried film, resulting in the detachment of the GUVs from the substrate surface, (Figure 3A).
In general, the desired hydrophilic biomolecular content is encapsulated into the GUVs cavity by
mixing it to the rehydration buffer solution. Whereas, as shown by Belluati et al. [15], the hydrophobic
ion channels can be inserted in different steps of the hydration processes, e.g.: (i) blended and co-dried
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with the copolymer film, (ii) added to the rehydration buffer or (iii) added to the pre-formed GUVs
suspension (ex post). Moreover, aiming at obtaining functional compartments and to follow a reaction
in situ, Garni et al. [18] simultaneously encapsulated a model enzyme horseradish peroxidase (HRP)
inside the polymer GUVs and inserted a channel porin, Outer membrane protein F double mutant
(OmpF-M), by adding these biomolecules to the rehydration buffer during the formation process.
Self-assembly process of GUVs by film-rehydration and electroformation does not produce GUVs with
homogeneous sizes, instead a mixture of GUVs in the size range of 1 to 40 µm is formed. In case smaller
sizes and narrower size distribution are required, the polymer giants suspension can be subjected
to additional processes [53], as freeze-thawing, sonication or extrusion through a polycarbonate
membrane [16,51]. Dialysis and size exclusion chromatography are alternative steps to obtaining a
relatively monodisperse population.

Solvent Switch/Exchange

With the solvent switch method, the supramolecular assembly is induced by adding water
drop-wise into a dissolved and molecularly dispersed polymer organic solution, thus, gradually
exchanging the organic solvent with water. The turbid solution that is formed is immediately quenched
by being poured slowly into an excess of water under continuous stirring. Finally, the organic solvent is
removed from the solution via dialysis [54]; an important step especially when envisaging biomimetic
applications [55]. However, due to the possible denaturation and degradation caused by traces
of organic solvents, such a method may be incompatible with sensitive molecules, limiting their
use in biomedical applications [40]. As it has been demonstrated by Daubian et al. [56], depending
on the chemical nature of the amphiphile, the solvent switch method may perform faster than the
film-rehydration, especially when many metastable phases of the block copolymer can be formed,
leading mostly to less aggregates. [57]. With this technique, GUVs are assembled via nucleation and
growth of unimers [58,59]. Due to the solvent exchange, the great number of unimers formed deplete
the unimers in solution reaching rapidly phase equilibrium, and thus are prevented to grow to larger
sizes. GUVs produced hence are the smallest (≈1 µm), and can be tuned to form polymersomes on the
nanoscale [57].

3.1.2. Microfluidics

Double Emulsion Method

Microfluidic techniques allow for the production of defined polymer stabilized water-oil-water
(w/o/w) double emulsions, which are used as templates for generating GUVs. Double emulsion
formation proceeds when the inner aqueous phase, containing the biological solution is enveloped
by the organic phase, typically consisting of the diblock copolymer dissolved in a volatile and
water-immiscible solvent, which breaks up into double emulsions, due to shear caused by the external
aqueous phase (Figure 3B) [60–62]. These GUVs have narrow size distributions, with mean sizes
ranging from 10–100 µm, which are highly dependent on the microdevice channel sizes and junctions
(where generally droplets are formed) [63,64]. To form GUVs from double emulsions, the amphiphile
chains are brought together by evaporating the volatile solvent, forming the bilayer membrane.
While the complete removal of the organic phase might not be trivial and implies a limitation,
this method allows for efficient encapsulation of large amounts of water soluble biomolecules [64].
Thus, its employment is vastly recommended when high-efficiency encapsulation is required, e.g.,
for loading enzymes and pore-forming proteins within GUVs for mimicking cells. Despite essential
contribution on the development of such compartments has been made, there exists only one example
where biological machinery (i.e., an aqueous mixture containing E. coli ribosomal extract and MreB
DNA plasmid) was encapsulated into semi-permeable poly(ethylene oxide)-block-poly(lactic acid)
(PEO-b-PLA) GUVs for carrying out protein expression [65].
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(A) Film Rehydration

Bulk Methods

(C) LbL Capsules

(B) Double Emulsions (D) Double Emulsion Templated Capsules

Microfluidic Methods

Figure 3. Engineering strategies for constructing polymeric single and multi-compartments, capsules
and polymer-based giant unilamellar vesicles (GUVs). (A) Mechanism of polymer GUV detachment
from the substrate surface by the film-rehydration method. Adapted with permission from
Thamboo et al. [12]. Copyright c© 2019 Wiley-VCH. (B) Double emulsion droplets formed in a
microfluidic capillary device, which serve as templates for producing GUVs. Adapted with permission
from do Nascimento et al. [64]. Copyright c© 2016 American Chemical Society. (C) Polymer
microcapsules produced via layer-by-layer (LbL) deposition onto hard colloidal sacrificial templates.
Mechanism using Silica particles, adapted with permission from Yan et al. [66]. Copyright c© 2012
Wiley-VCH. Mechanism using CaCO3 particles, adapted with permission from Postma et al. [67].
Copyright c© 2009 American Chemical Society. (D) Polymer microcapsules produced via double
emulsion technique, followed by UV polymerization. Adapted with permission from Xie et al. [68].
Copyright c© 2017 American Chemical Society.

3.2. Polymer Capsules

Differently from GUVs, polymer capsules require the employment of either a soft or a hard
template. They have operated as delivery vehicles, since they also allow for the selective diffusion of
reagents/reaction products; yet their use as microreactors for mimicking cells has been limited.

Layer-by-layer Microcapsules

Fabrication of polymer microcapsules involves multiple synthetic steps and compositional
complexity for the particular application. The LbL technique requires the use of a colloidal particle
as a sacrificial template, which plays a pivotal role, since it determines the capsule size and
shape, and most importantly the biomolecular encapsulation method. Soft sacrificial templates
have been employed, including the commercial ones: poly(methyl methacrylate) (PMMA) and
polystyrene (PS), however they do not allow for the pre-loading of the active components, hampering
the microcapsules application for therapeutics, due to low reproducibility of the diffusion process
involved in the post-loading method [69]. Instead, when employing hard sacrificial templates, e.g.,
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calcium carbonate [66] or silica [67], encapsulation of enzymes and sensitive dyes is reached via their
concurrent precipitation with the template, ensuring a high loading efficiency [70,71]. Decomposition of
these templates is then induced for the creation of the inner cavity loaded with the specific biomolecule
(Figure 3C). With respect to the outer shell, two polymers interacting by electrostatic forces or hydrogen
bonding are deposited alternately on the template before it is dissolved to obtain the hollow sphere.
Typically, PVP and PMAA which interact via hydrogen bonding at pH values below the pKa of
PMAA are used for this technique. Using PMAA, the stability of these capsules can be extended
to physiologically relevant pH by crosslinking. The resulting pure PMAA hydrogel capsules are
biodegradable, nontoxic, semipermeable and thus well suited for biomedical applications. More recent
studies replace the labour intense LbL assembly of PMAA/PVP capsules by polydopamine shells that
are deposited on the template in a single step [72].

Double Emulsion Templated Microcapsules

Opposite to the conventional fabrication methods, where multiple laborious synthetic steps must
be satisfied, microfluidics offers an alternative technique for a rapid, with low polydispersity and highly
reproducible production of polymer microcapsules. To this aim, double emulsion droplets, formed
following the same procedure aforementioned, serve as non-sacrificial templates [73]. For generating
polymer microcapsules, flowing droplets are subjected to UV irradiation and thus continuously
and rapidly polymerize (Figure 3D). Here, the oil phase contains a photocurable polymer and
a photoinitiatior dissolved in a water miscible organic solvent [69]. For biomedical applications,
poly(ethylene glycol) diacrylate (PEGDA) microcapsules of around 15 µm were produced and allowed
for the diffusion of molecules as large as heparin labeled with Fluorescein isothiocyanate (FITC)
(MW ≈ 10 kD) [68]. These results demonstrate the biosensing ability and the promising versatility of
microfluidics for the preparation of microreactors.

3.3. Building Multicompartments

Multicompartments are considered as an advance towards functional models for eukaryotic
cells and their cellular organelles, which are able to perform multiple, chemically incompatible,
enzymatic reactions simultaneously by separating them in subcompartments. Multicompartment
vesicles were pioneered when the so called vesosomes (liposomes encapsulated inside larger
liposomes) were first developed [74]. This process was promptly transferred to synthetic polymeric
assemblies, such as polymeric vesicles or LbL capsules, resulting in all conceivable combinations.
Multicompartments consist mainly of bigger outer compartments that can be loaded with different
kinds of subcompartments, as subsequently detailed.

3.3.1. Loading Polymeric GUVS with Subcompartments

The encapsulation of subcompartments as, small polymersomes, micelles or liposomes, but also
nanoparticles, is usually attained during the polymer GUV self-assembly. Each subcompartment can
be previously equipped with biomolecules and/or the biomolecules can be encapsulated together with
the mixture of empty subcompartments. For example, GUVs of polystyrene-b-poly(L-isocyanoalanine
(2-thiophen-3-yl-ethyl) amide) (PS-b-PIAT) were prepared by the solvent switch method, using as
aqueous phase, a mixture of the cyanine-5 conjugated immunoglobulin G proteins (Cy5-IgG) and
a suspension of smaller polymersomes made of PMOXA-b-PDMS-b-PMOXA, previously generated
by film rehydration and equipped with green fluorescent protein (GFP) [75]. Co-localized red
and green fluorescence emission measurements were used to compute that only 45% of the
supramolecular assemblies resulted in multicompartments. Marguet et al. [76] also demonstrated the
generation of polymer multicompartments based on the emulsion-centrifugation method. The inner
polymersomes were formed by nanoprecipitation of poly(trimethylene carbonate)-b-poly(L-glutamic
acid) (PTMC-b-PGA), and subsequently loaded in GUVs made of polybutadiene-b-poly(ethylene
oxide) (PBD-b-PEO) by emulsion–centrifugation. By using such technique, yet for formation of giant
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liposomes, the loading efficiency reached up to 98% [49]. Regardless of the method used, the obtained
structures will always consist of a combination of single and multicompartments. Double emulsion
microfluidics has also been used to form multicompartments made of PEO-b-PLA diblock-copolymers
for both the inner and the outer membranes [77]. Despite promised control over the number of the
inner polymersomes by solely adjusting the flow rates, no loading efficiency was reported.

3.3.2. Layer-by-Layer Multicompartments

LbL multicompartments are constructed with either one smaller LbL capsule as single
subcompartment (shell-in-shell structure) [78] or thousands of subcompartments that are deposited
onto the template during the preparation of the micron-sized outer capsule. In this regard,
the subcompartments may comprise small LbL capsules, polymersomes [9] or liposomes [10], with the
former being used for the majority of the LbL multicompartments. The LbL deposition offers the
control over the spatial positioning of the subcompartments. Depending on the polymers used for the
precursor or separation layer, they either stay attached to the inner walls of the LbL capsule or become
“free-floating” after template removal [79]. If only one hemisphere of the template is exposed to the
subunit deposition, Janus type multicompartments can also be prepared by the LbL approach [80].
As for single compartments, it is possible to encapsulate the biological content inside the subunits or the
lumen of the main compartment, in addition, it can be also found within or outside of the membranes.
Replacement of the liposomal subcompartments with polymersomes offers the possibility to address
challenges, as prolonged stability of the subcompartments to sustain activity of the encapsulated
enzyme. However, examples for polymersome subunits in LbL capsules remain scarce [9].

4. Vesicular Compartments for In Situ Reactions

Biomimicry offers strategies for the creation of vesicular compartments with incorporated
peptides/membrane proteins and encapsulated active compounds providing an approach for various
applications. Polymeric compartments with encapsulated cargo have been employed in imaging,
sensing, therapeutics, as artificial cells, etc. So far, such compartments were almost solely assembled
by film rehydration, electroformation, and LbL.

4.1. Reactions inside Single Compartments

4.1.1. GUVs

Reconstruction of biological structures and processes can be achieved with a bottom-up
approach using GUVs. Encapsulation of enzymes inside the cavities of GUVs is an emerging
way to fabricate artificial environments that mimic the complexity of cells by introducing similar
functionalities. The resulting GUVs serve as platforms to visualize biological processes in real
time, contributing to our understanding of human cells, which in turn promotes new developments
of biomedical applications [81,82]. Since the permeability of polymeric GUVs is essential for in
situ reactions, one biomimicry approach is to equip them with peptides/membrane proteins to
allow molecular transport through the membrane. Up to now, there are only few examples of
polymeric GUVs with incorporated membrane proteins/peptides and they are primarily based on
PMOXA-b-PDMS-b-PMOXA triblock copolymer membranes. For example, the permeability of GUVs,
to selectively transport Ca2+ ions, was attained by inserting several ionophores: calcimycin [52],
Lasalocid A, and N,N-dicyclohexyl-N’,N”-dioctadecyl-3-oxapentane-1,5-diamide [83]. Furthermore,
Gramicidine (gA) allowed Na+ and K+ ions to specifically pass the membranes of GUVs [16].
The hydrophobic mismatch of pore length and membrane represented a barrier to membranes thicker
than 12.1 nm, whereas thinner membranes facilitated successful gA insertion. The bee venom melittin
was inserted into various PMOXA-b-PDMS-b-PMOXA membranes. The insertion process and the
resulting functionality of the peptide have been related to the membrane curvature [15]. Besides, the
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membrane protein OmpF was successfully reconstituted in membranes of GUVs allowing an enzymatic
reaction inside the cavity, which was monitored in real time with a confocal microscope (Figure 4) [18].

(A) (B)

Figure 4. Reaction inside single polymer GUVs. (A) Schematic representation of a polymeric GUV
equipped with the membrane protein OmpF. Substrates and products diffuse through the membrane,
thus enabling an enzymatic reaction. (B) Fluorescence micrographs of a single GUV recorded at
several time points after addition of the substrates showing the difference of GUVs with and without
reconstituted OmpF. Adapted with permission from Garni et al. [18]. Copyright c© 2018 American
Chemical Society.

4.1.2. Layer-by-Layer Microcapsules

LbL capsules with an encapsulated enzyme offer various possibilities in sensing and imaging [84].
The preparation of (PSS/PAH)4/PSS shell structures, the co-encapsulation of urease and the pH
sensitive fluorophore enabled the quantification of urea on a single capsule level [70]. Continuing
with this approach Kazakova et al. [71] managed to encapsulate lactate oxidase, peroxidase, or glucose
oxidase, with respective sensitive dyes to detect lactate, oxygen, and glucose levels [71]. In another
(PSS/PAH)4 system the detection of oxaloacetic acid with NADH as cofactor was possible. Thus,
the efficacy of an enzyme fluorophore coupled system was demonstrated (Figure 5) [85]. Magnetic
polydopamine capsules enhanced the activity after reusing and the long-term stability of the
encapsulated Candida Rugosa Lipase compared to the free enzyme [86]. Reuse is a key factor for
potential application in industry. Moreover, further attempts are required to validate the performance
of these systems in vitro and in vivo. Another application of LbL capsules is therapeutics: e.g.,
microcapsules with encapsulated L-Asparaginase in poly-L-arginine and dextran sulfate layers
were tested in vitro on leukemic cell lines resulting in a decreased proliferation [87]. LbL enables
convenient encapsulation of enzymes in one single particle. However, their semi-permeable membrane
allowing unspecific transport of small molecules is rather a deficiency, that needs to be overcome for
future applications.

4.2. Reactions inside Multicompartmentalized Structures

4.2.1. GUV Multicompartments

In biological cells, evolution has developed the system of subcompartmentalization (cellular
organelles) within individual cells in order to allow specific reactions to take place in a spatially defined
manner. This is an efficient solution, as many reactions (e.g., protein lysis, electron transport) require
very specific conditions (e.g., low pH, proton gradient) to occur. Careful application of biomimicry
principles allows integral cell mimics as combining nano- and microstructures with biomolecules.
In this respect, biomolecule equipped polymersomes have previously been shown to be functional as
artificial organelles both in vitro and in vivo where they supported the natural cellular metabolism,
and have even been shown to function “on demand” in a life-like manner [11,88]. Artificial cell mimics
have been designed by constructing synthetic multicompartmentalized systems. The most significant
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examples were found when using a larger polymer-based GUV loaded either with smaller nano-sized
liposomes or smaller nano-sized polymersomes [89]. Synthetic GUVs based on (PBD46-b-PEO30)
loaded with hydrophilic dyes, liposomes (DPPC), and polymersomes (PBD23-b-PEO14) allowed
fast, selectively triggered release due to a light-induced increase in osmotic pressure, resulting
in rupture of the GUVs [90]. Examples of polymeric GUVs acting as artificial cell-mimics are
still scarce, but more complex multicompartmentalized GUVs exist. Namely, where enzymes and
membrane protein equipped polymersomes coexisted in the GUVs inner cavity [12]. By applying the
principle of multicompartmentalization, an artificial cell mimic is created with subcompartmentalized
polymersomes acting as artificial organelles. This allows cascade reactions to occur successively due to
the segregation of enzymes in different subcompartments. The proximity among subcompartments
provided by larger GUVs, facilitates the diffusion of reagents and reaction products, while confining
the enzymes to their individual subcompartments. PBD-b-PEO polymer GUVs can mimic structural
and functional eukaryotic cells by encapsulating enzyme-filled intrinsically semi-permeable PS-b-PIAT
polymer nanoreactors together with free enzymes and substrates to fulfill a three-enzyme cascade
reaction inside the multicompartmentalized structures [13]. Although this study represents an
important step towards artificial cells, it only reports the fluorescent product of the reaction, without
providing detailed information about localization of the enzymes. In addition, such examples lack
the complexity of cells because they are mainly developed with only few functional elements and by
using buffer medium. For the creation of an artificial cell mimic by multicompartmentalization,
there are requirements still not fulfilled. The selective permeabilization of every membrane of
the involved compartments, which allows for a higher control of the diffusion of substrates and
products across the membranes and a more complex medium mimicking the cytoplasm represent
advancements not yet provided. Systems addressing this question are multicompartmentalized
GUVs with stimuli-responsive and non-responsive subcompartments (Figure 6). With an external
signaling molecule passively diffusing through the GUV’s membrane, inducing the disassembly of the
stimuli-responsive nanoparticle and the release of the entrapped cargo (peptides or enzyme substrates).
These molecules allowed a selective ion flux through the GUV’s membrane or an enzymatic reaction
inside the GUV [12].

(A) (B)

Figure 5. Reaction inside single polymer microcapsules. (A) Schematic illustration of an oxaloacetic
acid (OAA) or nicotinamide adenine dinucleotide (NADH) sensing microcapsule. The encapsulated
pH-sensitive fluorescent dye ( seminaphtharhodafluor (SNARF-1)-dextran) responds to a decrease
in local proton concentration caused by the enzymatic reaction. (B) Reaction kinetics demonstrating
NADH as the limiting factor. The first dose of substrate is added at (*) and then added gradually,
after the plateau was reached, from (**)-(****). The corresponding micrographs on the right hand side
represent the reaction of one capsule (red (R), yellow (Y), transmission (TM), and the false-colored ratio
Ir/Iy (R/G)). Adapted from Harimech et al. [85] under the terms of CC BY 3.0.

More and more experimental successes in combination with vesicle engineering techniques are
leading into a new era of complexity in artificial cells. These have attracted increasing attention as
substituents for living cells. Polymer GUVs and polymersomes offer an ideal platform to engineer
cell mimics, allowing reactions to take place in compartmentalized spaces. Meanwhile, they remain
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stable for longer periods compared to their lipid-based counterparts. With the beforehand mentioned
functionalization with membrane proteins and peptides, a life-like functionalization of membranes
is approved.

Figure 6. Multicompartmentalized GUV with reduction sensitive and ion channel recruiting modular
subcompartments (A–D). Dithiothreitol was used as a triggering signal (red arrow). Reprinted With
permission from Thamboo et al. [12]. Copyright c© 2019 Wiley-VCH.

4.2.2. Layer-by-Layer Polymer Capsules as Multicompartments

Multicompartmentalization allows for separation in preparation and modularity in formulation
to increase also functionality in theranostics [91,92]. LbL assembled capsules prepared of
polyvinylpyrrolidone (PVP) and thiolated poly(methacrylic acid) (PMAA) containing smaller
crosslinked capsules showed possibilities in catalysis and drug delivery [8]. PVP and tannic acid (TA)
LbL capsules filled with POEGMA26-b-PDPA50 polymersomes loaded with pDNA could release the
cargo in response to pH changes [9]. Microfluidics have been improving the development of such
attractive microreactor systems with increased complexity and modularity. Encapsulation of glucose
oxidase (GOx) conjugated on quantum dots or on gold nanorods (NR) into PEO-based microreactors
acting as glucose biosensor, while amine functionalized NRs were employed as heparin sensors.
GOx oxidized glucose to gluconic acid and H2O2 leading to fluorescence quenching by the quantum
dots providing a sensitivity in the range of glucose sensors for diabetes diagnostics [68]. However,
most capsules only work in defined pH-ranges and do not resist enormous local pH-changes, which
would be necessary for in vivo applications [84].

5. Conclusions and Outlook

Biological systems as cells are highly compartmentalized across several length scales. Their precise
features, as biomolecule compartmentalization through attachment to membranes and cytoskeleton
scaffolds, lateral organization on membrane rafts, as well as compartmentalization in membrane-bound
or protein-based organelles, are current subject of study. Understanding their underlying mechanisms
opens exciting avenues in many application fields, notably in material science, biotechnology and
medicine. As we have seen, efforts at achieving this are accelerating and synthetic approaches to mimic
increasingly intricate biological structures are being developed.
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This review demonstrates the relevance of polymer-based systems with special focus on polymer
GUVs and capsules, for addressing the challenge of eukaryotic cell biomimicry. We only reviewed
examples of supramolecular structures, whose membrane is equipped with peptides and membrane
proteins since they genuinely represent bioinspired catalytic compartments where the membranes are
mimicking biomembranes.

The progress in polymer chemistry gave access to a variety of polymers with tailored properties as
biodegradability and non-toxicity that leads to enhanced structural properties and with the significant
fluidity, necessary to cope with the insertion of peptides and membrane proteins. Due to their large
variety of chemical composition and functionalization, a greater versatility for further improvement
of their properties concerning the desired application can be achieved, regarding stability, loading
efficiency, intervesicular interaction, and selective permeability for specific substrates. Besides the
polymer, the selection of an appropriate preparation method for engineering the supramolecular
structures in single and multicompartments to conform biochemical reactions, is detrimental. Although
electroformation and film rehydration are the most commonly used techniques, both of them do not
produce homogeneous sizes of GUVs. Alternatively, microfluidics became a serious candidate, showing
great potential to generate polymer GUVs with narrow size distribution and controlled biomolecular
content at high-throughput.

GUVs loaded with enzymes inside their cavities and equipped with peptides/membrane proteins
acting as “gates” for the diffusion of molecules through the synthetic membrane, constitute complex
reaction spaces. Careful application of biomimicry principles allows integral cell mimics as combining
nano- and microstructures with biomolecules. The inner compartments (the organelle mimics) that
are loaded in the outer one (the cell membrane mimic) do not necessarily need to encapsulate the
same content, where the various contents can even be incompatible or act synergistically. As a
result, combinatory drug delivery becomes possible in one single vector. Such systems serve
multifold purposes. Besides the aforementioned design of an artificial cell, allowing systematic
studies of biological phenomena in simplified environments, they are explored as (compartmentalized)
microreactors, where segregation of the catalytic steps in separated compartments allows distinct
chemical environment (e.g., different pH, redox states, presence of cofactors, etc.) to couple enzymatic
reaction steps that would otherwise inhibit one another. Because of the GUV cell-size, real time
imaging of the fluorescence activity of model enzymes can be monitored and used for enhancing
diagnosis capabilities. Lastly, polymer capsules have been aimed for use in therapeutic applications,
by encapsulating hydrophilic molecules in the aqueous core for enzyme therapy and controlled drug
release. In addition, such structures can improve the therapeutic index of drugs by influencing drug
absorption and metabolism, and can extent drug half-life as well as reduce toxicity. Although an effort
at outlining a roadmap for the field had been made, there will surely be many new developments
that will take this research area to unforeseen directions. From a material perspective, the advanced
control in polymer synthesis and self-assembly that is available nowadays would certainly bring a real
breakthrough in this cell biomimicry field. Hence, it is expected a growing interest in such biomimetic
approaches to soon offer many new opportunities in drug delivery, cell-sized reactors, biosensors and
imaging for therapeutics, which will offer better communication and interaction with living systems.
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List of Abbreviation

ATRP Atom transfer radical polymerization
CRP Controlled radical polymerization
CTA Chain transfer agent
CuAAC Copper-catalyzed azide-alkyne cycloaddition
Cy5-IgG Cyanine-5 conjugated immunoglobulin G proteins
DNA Deoxyribonucleic acid
DPPC Dipalmitoylphosphatidylcholine
E. coli Escherichia coli
FITC Fluorescein isothiocyanate
gA Gramicidine
GFP Green fluorescent protein
GOx Glucose oxidase
GUV Giant unilamellar vesicle
HRP Horseradish peroxidase
ITO Indium tin oxide
LbL Layer-by-layer
MOXA 2-methyl-2-oxazoline
NAD Nicotinamide adenine dinucleotide
NADH Nicotinamide adenine dinucleotide (reduced)
n-BuLi n-butyllithium
NR Nanorod
OAA Oxaloacetic acid
OmpF Outer membrane protein F
OmpF-M Outer membrane protein double mutant
PA444 Poly(4”-acryloyloxybutyl 2,5-bis(4’-butyloxybenzoyloxy)benzoate)
PAA Poly(acrylic acid)
PAH Poly(allylamine hydrochloride)
PBD Polybutadiene
PDA Polydopamine
PDEAEMA Poly(2-(diethylamino)ethyl methacrylate)
PDMS Poly(dimethyl sulfoxide)
PDPA Poly(2-(diisopropylamino)-ethyl methacrylate)
PEE Poly(ethyl ethylene)
PEG/PEO Poly(ethylene glycol)/poly(ethylene oxide)
PEGDA Poly(ethylene glycol) diacrylate
PFPA Poly(pentafluorophenyl acrylate)
PGA Poly(L-glutamic acid)
PHPMA Poly(2-hydroxypropyl methacrylate)
PIAT Poly(L-isocyanoalanine(2-thiophen-3-yl-ethyl)amide)
PISA Polymerization induced self-assembly
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PLA Poly(lactic acid)
PMA Poly(methyl acrylate)
PMAA Poly(methacrylic acid)
PMOXA Poly(2-methyl-2-oxazoline)
PnBA Poly(n-butyl acrylate)
PNIPAM Poly(N-isopropylacrylamide)
POEGMA Poly(oligo(ethylene glycol) methacrylate)
PPS Poly(propylene sulfide)
PS Polystyrene
PSBA Poly(styrene boronic acid)
PSS Poly(styrene sulfonate)
PtBA Poly(tert-butyl acrylate)
PTMC Poly(trimethylene carbonate)
PVP Polyvinylpyrrolidone
RAFT Reversible addition fragmentation chain transfer
SNARF-1 Seminaphtharhodafluor
TA Tannic acid
THF Tetrahydrofuran
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