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Abstract: Abiotic allosterism is most commonly observed in hetero-bimetallic supramolecular
complexes and less frequently in homo-bimetallic complexes. The use of hemilabile ligands with high
synthetic complexity enables the catalytic center by the addition or removal of allosteric effectors
and simplicity is unusually seen in these systems. Here we describe a simpler approach to achieve
kinetic regulation by the use of dimeric Schiff base copper complexes connected by a chlorido ligand
bridge. The chlorido ligand acts as a weak link between monomers, generating homo-bimetallic
self-aggregating supramolecular complexes that generate monomeric species in different reaction rates
depending on the solvent and on the radical moiety of the ligand. The ligand exchange was observed
by electron paramagnetic resonance (EPR) and conductivity measurements, indicating that complexes
with ligands bearing methoxyl (CuIIL2) and ethoxyl (CuIIL5) radicals were more prone to form
dimeric complexes in comparison to ligands bearing hydrogen (CuIIL1), methyl (CuIIL3), or t-butyl
(CuIIL4) radicals. The equilibrium between dimer and monomer afforded different reactivities of the
complexes in acetonitrile/water and methanol/water mixtures toward urea hydrolysis as a model
reaction. It was evident that the dimeric species were inactive and that by increasing the water
concentration in the reaction medium, the dimeric structures dissociated to form the active monomeric
structures. This behavior was more pronounced when methanol/water mixtures were employed
due to a slower displacement of the chlorido bridge in this medium than in the acetonitrile/water
mixtures, enabling the reaction kinetics to be evaluated. This effect was attributed to the preferential
solvation shell by the organic solvents and in essence, an upregulation behavior was observed due to
the intrinsic nature of the complexes to form dimeric structures in solution that could be dismantled
in the presence of water, indicating their possible use as water-sensors in organic solvents.
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1. Introduction

Allosterism is commonly observed in proteins that suffer conformational changes induced by
ligand binding to an orthosteric site, producing an activation, inhibition, or regulation of the enzymatic
activity [1]. Allosteric enzymes optimize the interactions between the ligand and host to tune the
populations of active and inactive states for a specific metabolic function [2]. Therefore, allosterism
control leads to a high specificity of these enzymes [3,4], which can inspire the design and development
of supramolecular devices with high selectivity toward a substrate or analyte. Therein, abiotic allosteric
catalysts have shown that metal ions can induce the control of conformation and reactivity of dinuclear
catalytic sites [5–7]. The use of redox switching [8] and anion binding affinity [9–11] has also been
explored in allosteric coordination chemistry, in which the weak-link approach (WLA) is afforded by
the employment of hemilabile ligands to obtain systems that are stimuli-responsive [10].

The WLA approach allows for reversibility in enzyme mimics, leading to allosteric responses [12]
as well as to the development of small-molecule sensors such as enzyme-linked immunosorbent
assays (ELISA) [13,14] and polymerase chain reaction (PCR) [15]. In the WLA approach, systems
with ditopic ligands are commonly used since they enable the interaction of the complex with other
molecular species such as anions and cations, causing the change in the overall conformation of the
complex [16]. This change in conformation induces an alteration in the properties of one of the metal
centers. Classical examples of systems employing WLA in an allosteric conformational manner can be
found in the literature, in which the molecular structure [17], binding specificity [18], and catalytic
activity [19,20] are modulated upon the interaction with a regulator.

Ligands based on Schiff bases are common moieties in complexes bearing allosteric
behaviors [12,21,22] and homo-bimetallic complexes have been shown to be effective in several
catalytic reactions [23–26], with special attention to the supramolecular assemblies forming dimeric
structures that exhibit significant rate acceleration when compared to the corresponding monomeric
catalyst [27,28]. However, these systems are based on coordination compounds with rather sophisticated
structures and it would be valuable to find simpler structural complexes bearing abiotic allosterism or
catalytic regulation. In this aspect, dimeric or polymeric structures can be easily achieved with chlorido
bridges [29–33], which can suffer ligand substitution reactions to form monomeric species in solution,
enabling an easy approach to obtain different reactivities of the complex in an allosteric manner.

In this work, a simple coordination system was designed to achieve allosteric behavior by the
regulation of the equilibrium between monomeric and dimeric species. For this purpose, Schiff
base ligands based on L-proline were designed and coordinated to CuII, as shown in Figure 1.
The equilibrium between monomeric and dimeric species was dependent on the solvent mixture used
in the reaction, enabling their use in a model reaction. As a proof-of-concept, urea hydrolysis was
performed by these complexes, and water was shown to act as an allosteric regulator, since it induced
the formation of active monomeric structures. Hence, we demonstrate that coordination systems with
less complexity can also be used in regulatory reactions, serving as an inspiration to the development
of cheaper sensors.
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2. Materials and Instruments

The reagents were of analytical grade and were used without prior purification. Thionylchloride
(SOCl2(l)) used in the esterification of L-proline, as described in the literature, was previously distilled
under argon. The solvents used in the synthesis and experiments were previously distilled. High
Resolution Mass Spectra (HRMS) were obtained with a MICROTOF–Bruker Daltonics (Billerica, MA,
USA) in the positive mode. Nebulizer: 0.3 bar, Dry gas: 4 mL/min, temperature: 180 ◦C, High
Voltage: 4500 V. Nuclear Magnetic Resonance (NMR) spectra were recorded on a BRUKER DRX
400 MHz using CDCl3 as the solvent. X-ray diffraction data were obtained on a Rigaku XtaLAB
Mini diffractometer (Rigaku, Tokio, Japan) with an X-ray generator operating at 50 kV and 12 mA
with a graphite monochromatic Mo-K (λ = 0.71073 Å) using the Olex2 program (version Olex2 v1.3©
OlexSys Ltd. 2004–2020, Chemistry Department, Durkham University, Durkham, UK). EPR spectra
were obtained on a Varian E109 EPR X-Band (Varian, Palo Alto, CA, USA) using the rectangular cavity
field modulation at 100 kMz. Parameters: microwave power of 20 mW, modulation amplitude of
0.4 mT peak to peak, gain adjustable for each sample, field scan of 160 mT, time constant of 0.064 s,
scan time of 3 min. For the measurements of liquid, N2 was used in the Dewar immersion method.
An EPR standard was used to calibrate the magnetic field (MgO crystal: CrIII g = 1.9797) and the
resonance frequency was measured with a microwave frequency meter. FTIR spectra were recorded
on a Bomen-Michelson FT model MB-102 spectrometer (ABB BOMEM, Quebec, QC, Canada) in the
4000–200 cm−1 region. In situ FTIR were recorded on a Nicolet 6700 FTIR spectrometer equipped
with a Mercury-Cadmium-Telluride (MCT) detector using p-polarized light and employed a 60 CaF2

prism located in the bottom of a gas cell in the configuration described. Each spectrum consisted
of 32 interferograms, recorded with a spectral resolution of 4 cm−1. UV–Vis spectra were recorded
on a HP-Hewlett Packard 8452 A spectrophotometer (Hewlett Packard, Palo Alto, CA, USA) in the
190–800 nm range.

2.1. Synthesis of Ligands (L1–L5)

The ligands were synthesized starting from L-proline. Five synthetic steps are necessary, according
to the method reported in the literature [34–36] for the synthesis of L1. Some minor modifications were
performed. Essentially, 205 mg (0.60 mmol) of ((S)-1-benzylpirrolidin-2-yl)diphenylmethanamine (6)
was added in a reaction flask containing 2.0 mL anhydrous methanol. Then, 1.05 eq of the
salicylaldehyde derivative was added (63.94 µL (0.63 mmol) of 2-hydroxybenzaldehyde (L1),
96.00 mg (0.63 mmol) of 2-hydroxy-3-methoxybenzaldehyde (L2), 76.58 µL (0.63 mmol) of
2-hydroxy-3-methylbenzaldehyde (L3), 107.60 µL (0.63 mmol) of 3-tert-butyl-2-hydroxybenzaldehyde
(L4), and 105.00 mg (0.63 mmol) of 3-ethoxy-2-hydroxybenzaldehyde (L5)), in addition to 20.00 mg
(0.23 eq) of anhydrous Na2SO4(s). The reactions were left under stirring at 40 ◦C and followed by
thin layer chromatography until no change in reagent consumption was observed. L1, L2, and L3
were filtered after 20 h of reaction and washed extensively with methanol to obtain yellowish solids.
The solids were dissolved in dichloromethane and methanol was added to obtain yellowish crystals
by slow evaporation for 24 h. L4 and L5 were left in reaction for 48 and 10 h, respectively, with the
formation of a viscous yellowish solid. The solid was purified by column chromatography on silica gel
with ethyl acetate/hexane (5:95) and (20:80) mixture as the eluent, respectively, for ligands L4 and L5.

(E)-2-((((1-benzylpyrrolidin-2-yl)diphenylmethyl)imino)methyl)phenol (L1). Yield: 75%. 1HNMR
(400 MHz, CDCl3, 298 K): δ 14.71 (s, 1H), 7.97 (d, 2H), 7.33–7.20 (m, 7H), 7.18–7.01 (m, 8H), 6.96
(d, 1H), 6.75 (t, 1H), 3.96 (dd, 1H), 3.34 (d, 1H), 3.10 (d, 1H), 2.75–2.63 (m, 1H), 2.18–2.02 (m, 2H),
1.72–1.62 (m, 1H), 1.43–1.32 (m, 1H), 0.84–0.72 (m, 1H) ppm. 13C NMR (400 MHz, CDCl3, 298 K):
δ 164.55, 162.06, 144.55, 142.85, 140.44, 132.60, 132.09, 130.19, 129.10, 128.48, 128.12, 127.98, 127.83,
127.18, 126.86, 126.44, 118.87, 118.22, 117.51, 77.76, 71.96, 62.03, 55.10, 30.72, 24.00 ppm. HRMS (ESI+,
CH3OH) m/z calculated for C31H31N2O 447.2436 [M+H]+; found 447.2413. IR (KBr): 3347 (ν OH), 3056
(ν Csp2H), 2969 (v Csp3H), 2818 (v Csp3H), 1620 (ν C=N), 1490 (ν C=C), 1280 (ν C–O) cm−1. UV–Vis
ε(L mol−1 cm−1) in CH2Cl2: 240 (8104), 260 (9513), 320 (3729), and 414 (540) nm.
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(E)-2-((((1-benzylpyrrolidin-2-yl)diphenylmethyl)imino)methyl)-6-methoxyphenol (L2) Yield:
69%. 1HNMR (400 MHz, CDCl3, 298 K): δ 15.23 (s, 1H), 7.91 (s, 1H), 7.45–7.40 (m, 2H), 7.32–7.20
(m, 6H), 7.17–7.00 (m, 7H), 6.82 (dd, 1H), 6.65–6.58 (m, 2H), 3.96 (dd, 1H), 3.31 (d, 1H), 3.08 (d, 1H),
2.76–2.69 (m, 1H), 2.18–2.06 (m, 2H), 1.72–1.63 (m, 1H), 1.39 (dd, 1H), 1.09 (dd, 1H) ppm. 13C NMR
(400 MHz, CDCl3, 298 K): δ 164.31, 155.95, 149.95, 144.01, 142.30, 139.91, 130.05, 128.87, 128.58, 128.30,
128.00, 127.95, 127.43, 127.00, 126.53, 123.74, 117.63, 116.63, 113.61, 77.22, 71.75, 62.00, 55.05, 30.70, 24.03
ppm. HRMS (ESI+, CH3OH) m/z calculated 477.2542 [M+H]+; found 477.2518. IR (KBr): 3417 (ν OH),
3020 (ν Csp2H), 2966 (ν Csp3H), 2805 (ν Csp3H), 1623 (ν C=N), 1491 (ν C=C), 1253 (ν C–O) cm−1.
UV–Vis (L mol−1 cm−1) in CH2Cl2: 232 (27,271), 266 (15,775), 324 (3046), and 432 (872) nm.

(E)-2-((((1-benzylpyrrolidin-2-yl)diphenylmethyl)imino)methyl)-6-methylphenol (L3). Yield: 72%.
1H NMR (400 MHz, CDCl3, 298 K): δ 14.63 (s, 1H), 7.95 (s, 1H), 7.44 (dt, 2H), 7.32–7.02 (m, 14H),
6.87 (dd, 1H), 6.65 (t, 1H), 3.98 (dd, 1H), 3.49 (d, 1H), 3.15 (d, 1H), 2.64 (m, 1H), 2.26 (s, 3H), 2.15 (m,
1H), 2.07 (m, 1H), 1.72 (m, 1H), 1.35 (m, 1H), 0.97 (m, 1H) ppm. 13C NMR (400 MHz, CDCl3, 298 K):
δ 165.42, 160.18, 144.30, 143.29, 140.51, 133.45, 130.11, 129.78, 129.38, 128.57, 128.01, 127.73, 127.05,
126.79, 126.41, 126.28, 118.16, 117.74, 77.64, 72.13, 62.08, 54.98, 30.61, 23.89, 15.66 ppm. HRMS (ESI+,
CH3OH) m/z calculated for C32H33N2O461.2592 [M+H]+; found 461.2569. IR (KBr): 3412 (ν OH), 3052
(ν Csp2H), 2976 (ν Csp3H), 2813 (ν Csp3H), 1619 (ν C=N), 1491 (ν C=C), 1264 (ν C–O) cm−1. UV–Vis
ε(L mol−1 cm−1) in CH2Cl2: 232 (24,009), 262 (18,426), 326 (5085), and 420 (358) nm.

(E)-2-((((1-benzylpyrrolidin-2-yl)diphenylmethyl)imino)methyl)-6-(tert-butyl)phenol (L4). Yield:
45%. 1H NMR (400 MHz, CDCl3, 298 K): δ 15.13 (s, 1H), 7.96 (s, 1H), 7.43 (dd, 2H), 7.35–7.06 (m, 14H),
6.88 (dd, 1H), 6.67 (dd, 1H), 3.96 (dd, 1H), 3.49 (d, 1H), 3.16 (d, 1H), 2.65 (ddd, 1H), 2.16–2.03 (m, 2H),
1.75–1.66 (m, 1H), 1.39 (s, 9H), 0.92–0.85 (m, 2H) ppm. 13C NMR (400 MHz, CDCl3, 298 K): δ 165.45,
161.15, 144.44, 143.08, 140.63, 137.75, 130.28, 130.23, 129.40, 128.47, 127.89, 127.77, 126.99, 126.81, 126.33,
118.80, 117.30, 77.66, 72.23, 62.04, 54.97, 34.93, 30.64, 29.33, 23.81 ppm. HRMS (ESI+, CH3OH) m/z
calculated for C35H39N2O 503.3062 [M+H]+; found 503.3035. IR (KBr): 3413 (ν OH), 3058 (ν Csp2H),
2954 (ν Csp3H), 1619 (νC=N), 1264 (ν C–O) cm−1. UV–Vis ε(L mol−1 cm−1) in CH2Cl2: 232 (22,025),
264 (16,192), 330 (5320), and 400 (269) nm.

(E)-2-((((1-benzylpyrrolidin-2-yl)diphenylmethyl)imino)methyl)-6 ethoxy phenol (L5). Yield: 38%.
1H NMR (400 MHz, CDCl3, 298 K): δ 14.92 (s, 1H), 7.93 (s, 1H), 7.44 (dd, 2H), 7.32–7.05 (m, 13H), 7.01
(dd, 2H), 6.84 (t, 1H), 6.63 (d, 2H), 4.08 (q, 2H), 3.99 (dd, 1H), 3.42 (d, 1H), 3.12 (d, 1H), 2.66 (m, 1H), 2.10
(m, 2H), 1.70 (m, 1H), 1.45 (t, 3H), 1.35 (m, 1H), 1.03 (m, 1H) ppm. 13C NMR (400 MHz, CDCl3, 298 K):
δ 165.11, 154.02, 148.19, 144.16, 143.05, 140.33, 132.44, 130.08, 130.00, 129.19, 128.59, 128.15, 127.96,
127.79, 127.18, 126.85, 126.45, 123.76, 118.48, 117.15, 115.08, 77.50, 71.86, 64.38, 62.06, 54.99, 30.63, 23.95,
14.88 ppm. HRMS (ESI+, CH3OH) m/z calculated for C32H33N2O2 477.2537 [M+H]+; found 477.2503.
IR (KBr): 3421 (νOH), 3055 (νCsp2H), 2965 (ν Csp3H), 1621 (ν C=N), 1492 (ν C=C), 1272 (ν C–O) cm−1.
UV–Vis ε (L mol−1 cm−1) in CH2Cl2: 232 (15,984), 264 (9288), 332 (2716), and 430 (622) nm.

2.2. General Procedure of Synthesis of CuII Chlorido Complexes

In a reaction flask, 50.00 mg of CuCl2 (0.37 mmol, 1.1 eq) wasadded to 3.0 mL of anhydrous
methanol. The methanolic solution was heated at reflux temperature for 10 min, followed by the
addition of 1.0 eq of the ligands (150.00 mg (0.33 mmol) of HL1, 157.00 mg (0.33 mmol) of HL2,
152.00 mg (0.33 mmol) of HL3, 166.00 mg (0.33 mmol) of HL4 and 162.00 mg (0.33 mmol) of HL5).
After 4 h, the reaction mixture was cooled to room temperature and filtered. The filtrate was evaporated
to dryness and suspended in dichloromethane. The mixture was centrifuged and the supernatant
was removed. The complexes were obtained after removal of the solvents by rotatory evaporation
under vacuum.

Spectroscopic data of CuIIL1. Dark green powder, yield 75%. HRMS (ESI+, CH2Cl2/CH3CN)
m/z 566.1162 calculated for [M+Na]+, found 566.1122; IR (KBr): 3546, 3472, 3412 (ν OH), 3080, 3057
(ν Csp2H), 3026 (νN=Csp2H), 2959, 2922, 2851 (ν Csp3H), 1654, 1637, 1617(ν C=N), 1598, 1580 (ν C=C),
1455, 1445 (δCH2), 1317, 1276, 1261 (νC–O), 1089, 1074, 1028 (νC–N), 760, 704 (γCsp2H), 638 (νCu–O),
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474 (ν Cu–N) cm−1. UV–Vis Vis ε L mol−1 cm−1 (CH2Cl2): 248 (18,246), 276 (16,002), 380 (4383), 636
(265) nm. C31.5H30.5Cl1.5CuN2O1.25[Cu(L1)Cl]·(0.25CH3OH)·(0.25CH2Cl2) calculated C, 65.93; H, 5.36;
N, 4.88. Found: C, 65.95; H, 5.23; N, 4.95.

Spectroscopic data of CuIIL2. Dark brown powder, yield 91%. HRMS (ESI+, CH2Cl2/CH3CN)
m/z calculated for [M–Cl]+ 538.1676, found 538.1669; HRMS (ESI+, CH2Cl2/CH3OH) m/z calculated
1169.2638 for [2M + Na+]+, found m/z 1169.2410; IR (KBr): 3458, 3410 (ν OH), 3055 (ν Csp2H), 3026 (ν
N=Csp2H), 2959, 2926 (ν Csp3H), 1619 (ν C=N), 1577, 1544 (ν C=C), 1469, 1444 (δ CH2), 1316, 1276
(ν C–O), 1245, 1218 (ν C–O–C), 1081, 1004 (ν C–N), 748, 704 (γ Csp2H), 638 (ν Cu–O), 557 (ν C–N)
cm−1. UV–Vis Vis ε(L mol−1 cm−1) in CH2Cl2: 234 (15,660), 284 (13,953), 362 (2479), ~600 (–) nm.
C32.6H32.2Cl2.2CuN2O2[Cu(L2)Cl]·(0.66CH2Cl2) calculated C, 62.16; H, 5.16; N, 4.44. Found: C, 62.14;
H, 4.82; N, 4.71

Spectroscopic data of CuIIL3. Green brownish powder, yield 91%. HRMS (ESI+, CH2Cl2/CH3OH)
m/z calculated for [M–HCl]+ 522.1727, found 522.1691. IR (KBr): 3549, 3450, 3410 (ν OH), 3082, 3057
(ν Csp2H), 3026 (ν N=Csp2H), 2949, 2920 (ν Csp3H), 1654, 1615 (ν C=N), 1600, 1577, 1544 (ν C=C),
1467, 1446, 1421 (δ CH2), 1317, 1276 (ν C–O), 1087, 1028 (ν C–N), 748, 704 (γ Csp2H), 638 (ν Cu–O), 567
(νCu–N) cm−1. UV–Vis Vis ε(L mol−1 cm−1) in CH2Cl2:252 (19,765), 280 (12,308), 378 (3053), 600–700
(–) nm. C33H34Cl2CuN2O1.5 [Cu(L3)Cl]·(0.5CH3OH)·(0.5CH2Cl2) calculated C, 64.23; H, 5.55; N, 4.54.
Found: C, 64.00; H, 5.78; N, 4.48.

Spectroscopic data of CuIIL4. Dark green, yield 72%. HRMS (ESI+, CH2Cl2/CH3OH) m/z
calculated for [M–HCl]+ 564.2196, found 564.2168. IR (KBr): 3545, 3472, 3412 (νOH), 3084, 3054
(ν Csp2H), 3026 (ν N=Csp2H), 2949, 2920 (ν Csp3H), 1654, 1615 (ν C=N), 1596, 1534, 1492 (ν C=C),
1465, 1443, 1415 (δ CH2), 1336, 1326 (ν C–O), 1143, 1085 (ν C–N), 748, 702 (γ Csp2H), 567 (ν Cu–N)
cm−1. UV–Vis Vis ε(L mol−1 cm−1) in CH2Cl2:250 (18,922), 278 (12,694), 332 (3959), 388 (4499) e 650
(294) nm. C36H39.8Cl2.2CuN2O1.4[Cu(L4)Cl]·(0.4CH3OH)·(0.6CH2Cl2) calculated C, 65.07; H, 6.04; N,
4.22. Found: C, 64.84; H, 5.97; N, 4.71.

Spectroscopic data of CuIIL5. Dark brown, yield 96%. HRMS (ESI+, CH2Cl2/CH3OH) m/z
calculated for [M–HCl]+ 552.1833, found 552.1784; [M–CH4–HCl]+ 536.1519, found 536.1691. IR (KBr):
3458, 3414(ν OH), 3080, 3057 (ν Csp2H), 3026 (ν N=Csp2H), 2974, 2924, 2853 (ν Csp3H), 1654, 1615
(ν C=N), 1602, 1577, 1560 (ν C=C), 1465, 1448 (δ CH2), 1317, 1278 (ν C–O), 1245, 1216 (ν C–O–C), 1073,
1028 (ν C–N), 763, 740, 704 (γ Csp2H), 638 (ν Cu–O) cm−1. UV–Vis Vis ε(L mol−1 cm−1) in CH2Cl2: 236
(10,803), 252 (15,770) 356 (2348), ~600 (n.d.) nm. C34.1H35.7Cl2.7CuN2O2.25 [2Cu(L5)Cl]·(1.6CH2Cl2)
calculated C, 61.57; H, 5.21; N, 4.31. Found: C, 61.64; H, 4.87; N, 4.44.

2.3. Synthesis of CuI IPerchlorate Complex

The perchlorate complex was synthesized similarly to the chlorido complex, but using the
precursor Cu(ClO4)·6H2O. After 4 h of reaction, cold distilled water was added and the obtained solid
was centrifuged, filtered, and washed with cold distilled water. The solid was left in a desiccator at
high vacuum. Dark green. Yield: 89%. HRMS (ESI+, CH2Cl2/CH3OH) m/z calculated for [2M–ClO4

−]+

1175.2848, found 1175.2834. IR (KBr): 3530, 3446, 3317 (ν OH), 3060 (ν Csp2H), 3033 (ν N=Csp2H),
2967, 2841 (ν Csp3H), 1655, 1623 (ν C=N), 1606, 1577, 1545 (ν C=C), 1493, 1470, 1440 (δ CH2), 1319,
1279 (ν C–O), 1246, 1220 (ν C–O–C), 1120, 1108, 1087 (ν3 ClO4

−), 1005 (ν C–N), 943, 921 (ν4 ClO4
−)

748, 706 (γ Csp2H), 638, 624 (ν Cu–O), 556, 522 (ν Cu–N)cm−1. UV–Vis (CH2Cl2): 244, 286, 392, 592
nm. C65.3H66.6Cl2.6Cu2N4O13 [2CuIIL2ClO4·(CH3OH)](0.3CH2Cl2) calculated C, 58.76; H, 5.03; N, 4.20.
Found: C, 58.87; H, 5.15; N, 4.16. Conductivity: 13 µS cm−1 in dichloromethane.

2.4. Catalysis Protocol

For the catalytic assays, fresh solutions of urea (60 mM in water) and of the complexes (1.6 mM in
dichloromethane (DCM)) were prepared.

The catalytic assays were performed by diluting 50 µL of the solution containing the complex
into 850 µL of the reaction solvent (methanol, acetonitrile, and dimethylsulfoxide, tetrahydrofuran,
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and ethanol). The reaction typically started by the addition of the urea solution (100 µL). Vigorous
stirring was maintained over the course of the reaction. Aliquots of 100 µL of the reaction were taken
after 5, 10, 20, 30, 40, 60, 120, 240 and 480 s of reaction. These aliquots were analyzed by the Berthelot
method to quantify the ammonia content. The reaction temperature was kept at 36 ◦C. All reactions
were performed in triplicate.

For each of the catalytic protocols, a control experiment was also performed without the complexes
and the blank was subtracted from the catalytic measurements.

The amount of water in the medium, when increasing amount of urea concentrations were
employed, were 10, 20, 30 and 40%, respectively, to the urea concentrations of 5.2, 10.4, 15.6 and
20.4 mM (except in acetonitrile, in which urea 20.4 mM was also employed).

2.5. Ammonia Quantification

Fresh solutions of sodium hypochlorite (2.5% in water), sodium citrate (0.38 mM in 0.46 mM
aqueous solution of NaOH), and sodium salicylate (2.75 mM in water containing 9.39 µmol of sodium
nitroprussiate) were prepared prior to the ammonia quantification. To a microtube containing 250 µL of
the hypochlorite solution and 250 µL of citrate/NaOH solution, the 100 µL aliquot from the reaction was
added, followed by the addition of 300 µL of the sodium salicylate solution. After mixing, the reaction
was allowed to proceed for 15 min at room temperature. The reaction was analyzed by UV–Vis
spectroscopy at 654 nm. Quantification of ammonia was performed by using a calibration curve with
seven measurements and R2 = 0.99, using ammonium chloride as standard.

2.6. Computer Simulations

Geometries for the CuIIL1 monomer and the dimer were optimized at the semi-empirical GFN1-xTB
level in vacuum using the xtb software [37–39], with convergence criteria for the self-consistent charge
(SCC) iterations of 2·10−7 Ehfor the energy change and 4·10−6 for the charge change between cycles
and for the geometry optimization of 1·10−6 Eh for the energy change between steps and a maximum
gradient of 8·10−4 Eh/α. All calculations were performed with an electronic temperature of 500 K to
allow some degree of Fermi smearing of nearly-degenerate energy levels and to take static correlation
into account. All model systems were considered neutral with each Cu(II) cation in the Ar[3d9]
configuration, yielding a doublet state for the monomer. Regarding the dimer, both singlet and triplet
states were considered for the sake of completeness. The same protocols were applied to acetonitrile,
water, and methanol molecules in vacuum. After full geometry optimization of the monomer and
the two spin states of the dimer, further geometric relaxation was performed by means of 10 ps-long
molecular dynamics simulations performed in the canonical, constant-NVT ensemble (meaning amount
of substance (N), volume (V) and temperature (T) are conserved), using the Berendsen weak-coupling
scheme to control the temperature around 300 K. Equations of motion were integrated using a 0.5 fs
time step, and recording structures and energies each of 0.5 ps. The last structure for each system
was subjected to further geometry optimization and these optimized structures were considered as
the lowest lying reference states for the thermochemical analyses. The next step of the modeling
consisted of searching the thermodynamically most probable position and relative orientation of each
solvent around each complex, as described in detail in the Supplementary Materials. This systematic
search amounted toca. 1 million quantum chemical calculations and the most probable solvent-CuIIL1
structures were subjected to further geometry optimization as described above.

3. Results and Discussion

3.1. Probing Copper Coordination

Amine 6 was obtained after a series of reactions starting from L-proline (Figure 2). The reaction
between amine 6 with the corresponding aldehyde afforded ligands L1–L5. After purification,
these compounds were characterized by 1H NMR, 13C NMR, 2D NMR, mass spectrometry, infrared
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spectroscopy, and X-ray diffractometry (see support information). The coordination of L1–L5 to
CuCl2 in methanol resulted in the formation of complexes CuIIL1–L5 in high yields (71–91%). All
complexes were characterized by proper microanalysis, EPR, infrared spectroscopy, mass spectrometry,
cyclic voltammetry, and electronic spectroscopy at the UV–Vis region (Supplementary Materials).
Some features of the characterization of the complexes deserve to be described since they indicate
the coordination mode and the extent of dimerization. For instance, through FTIR spectroscopy
(Figures S25–S29), it was evident that the coordination occurred via the nitrogen of azomethine [40,41],
since the νC=N vibration mode was red shifted by 4–7 cm−1. An increase of the νC–O energy indicated
that the coordination was also occurring via a phenolate [34]. Hence, the presence of a band in the
640–470 cm−1 range corroborated that coordination occurred through oxygen and nitrogen, consistent
with the νM–O and M–N modes [42].
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Corroborating to the FTIR spectroscopy, a bathocromic shift was observed for the π→π* bands 
of azomethine in the electronic spectroscopy, characterizing the coordination through this moiety 
[43]. In addition, the disappearance of the n→π* azomethine transition indicated that the CuII 
coordination occurred on that position of the Schiff base [40]. Moreover, a broadband in the 550–770 
nm region was consistent with the d–d transition of the metal center [43–45] of complexes CuIIL1 and 
CuIIL4 (636 and 650 nm, respectively). However, the other complexes exhibited a less evident d–d 
band, possibly due to a higher planar geometry in comparison to CuIIL1 and CuIIL4 (Figures 
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of radical cations was observed. These observations are in agreement with the redox behavior of 
other Schiff bases [47,48]. After coordination, these redox processes were displaced to higher 
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high resolution mass spectrometry (HRMS) in which, for example, a peak corresponding to the 
monomer was present at m/z 538.1669, whereas the dimer was observed at m/z 1169.2410 for the 
CuIIL2 complex (Figure S58). However, since dimers can be formed in the gas phase depending on 
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3.2. Ligand Substitution and Electron Paramagnetic Resonance Measurements 

First, ligand substitution was followed by conductivity measurements to give us insights on the 
natural dissociation of the complexes. In dichloromethane (DCM) at 298 K, the conductivities were 
consistent with neutral compounds (values in the 2.00–6.00 µS cm−1 range). However, in acetonitrile 
(ACN) at 298 K, the conductivity was shown to constantly increase over time, somewhat reaching a 
plateau after half an hour (Figure 3A). The quasi-stabilized values for complexes CuIIL2, CuIIL3, and 
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Figure 2. Synthesis of L1–L5 ligands from L-proline. Reaction conditions: (a) SOCl2(l), CH3OH;
(b) BrCH2(Ph), K2CO3(s), CH3CN; (c) MgBr(Ph), THF; (d) NaN3(s), H2SO4 70%, CHCl3; (e) LiAlH4(s),
THF; (f) salicylaldehyde and derivatives, Na2SO4(s), CH3OH.

Corroborating to the FTIR spectroscopy, a bathocromic shift was observed for the π→π* bands of
azomethine in the electronic spectroscopy, characterizing the coordination through this moiety [43].
In addition, the disappearance of the n→π* azomethine transition indicated that the CuII coordination
occurred on that position of the Schiff base [40]. Moreover, a broadband in the 550–770 nm region was
consistent with the d–d transition of the metal center [43–45] of complexes CuIIL1 and CuIIL4 (636 and
650 nm, respectively). However, the other complexes exhibited a less evident d–d band, possibly due
to a higher planar geometry in comparison to CuIIL1 and CuIIL4 (Figures S30–S33) [46].

In the cyclic voltammetry, for all ligands, the oxidation of phenol to quinone and the formation of
radical cations was observed. These observations are in agreement with the redox behavior of other
Schiff bases [47,48]. After coordination, these redox processes were displaced to higher potentials as an
effect of electron depletion upon coordination by the metal [49].

The possibility of the formation of monomeric and dimeric structures was first inspected by high
resolution mass spectrometry (HRMS) in which, for example, a peak corresponding to the monomer
was present at m/z 538.1669, whereas the dimer was observed at m/z 1169.2410 for the CuIIL2 complex
(Figure S58). However, since dimers can be formed in the gas phase depending on the solution
concentration [50], we performed EPR analysis in solid and in solution. With these analyses, we
evaluated the existence of equilibrium between monomers and dimers in solution that could be
controlled by ligand substitution reactions.

3.2. Ligand Substitution and Electron Paramagnetic Resonance Measurements

First, ligand substitution was followed by conductivity measurements to give us insights on the
natural dissociation of the complexes. In dichloromethane (DCM) at 298 K, the conductivities were
consistent with neutral compounds (values in the 2.00–6.00 µS cm−1 range). However, in acetonitrile
(ACN) at 298 K, the conductivity was shown to constantly increase over time, somewhat reaching
a plateau after half an hour (Figure 3A). The quasi-stabilized values for complexes CuIIL2, CuIIL3,
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and CuIIL4 were 63, 43, and 23 µS cm−1, respectively. These values indicate that the labilization of
the chlorido ligand by acetonitrile was more pronounced for CuIIL2. The solvolysis of the chlorido
ligand was facilitated when water was present in solution, as shown in Figure 3B, which shows
that in 2 min, the conductivity was already stabilized in limiting values of the 1:1 electrolyte range
(55.0–90.0 µS cm−1) [51]. Interestingly, the conductivity of these complexes was more stable both in
methanol and the methanol/water mixture (80/20 v/v), revealing a slower rate of ligand substitution in
these solvents (Figures S53–S55). The observed values ranged from 45.0 to 53.0 µS cm−1 and 47.0 to
50.0 µS cm−1 in methanol and the methanol/water mixture, respectively, which were lower than that
expected for the 1:1 electrolyte in methanol. The lower values might indicate the presence of a mixture
of charged and neutral species in solution. The displaced chloride could be detected by the addition of
silver nitrate solution as a white precipitate of AgCl.
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to each other, as an effect of ligand substitution, in which the nitrogen atom of ACN or the oxygen 
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Considering the existence of a mixture of species in solution, EPR measurements were performed
in the same solvents of the conductivity analyses to enable a better structural comprehension (Figure 4).
In dichloromethane, all complexes presented values of gz higher than gx and gy (Table 1 and Table S7),
suggestive of an axial symmetry [52–54], due to the presence of an unpaired electron in the dx2–y2 orbital.
The axial symmetry supports the proposal of a square planar geometry of the complexes [42,55,56].
However, as shown in Table 1, the differences between the values of gx and gy are indicative of a
distortion of the plane. In addition, the highest observed gz for CuIIL4 could mean that this complex
has a tetrahedral distortion. In contrast, the Az is smaller for the CuIIL5 complex as a result of a greater
distortion, indicating that aside from the difference between substituents in the ligands, another factor
might be affecting the tetrahedral distortion of complexes CuIIL4 and CuIIL5.

Table 1. Electron Paramagnetic Resonance parameters for the CuII complexes of this work in
dichloromethane at 298 K.

Compounds G tcorr, ps A, cm−1 (×10−4)

gx gy gz Ax Ay Az

CuIIL1 2.0501 2.0932 2.1626 71.9 14.53 11.51 200.2
CuIIL2 2.0584 2.0932 2.1626 114.5 11.88 11.51 198.8
CuIIL3 2.0515 2.0932 2.1626 75.3 11.88 11.51 201.0
CuIIL4 2.0494 2.0518 2.2063 44.2 14.53 14.06 199.5
CuIIL5 2.0504 2.0932 2.1626 116.7 11.88 11.51 188.6
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CuIIL4 is shown in green, and CuIIL4 is shown in grey lines. The narrow line in the high magnetic field
for CuIIL3 are a standard signal of CrIII:MgO sample (g = 1.9797).

In acetonitrile and acetonitrile/water (80:20) mixture, the values of gx and gy were more similar
to each other, as an effect of ligand substitution, in which the nitrogen atom of ACN or the oxygen
atom of water are coordinated to copper, forming a plane with higher symmetry than the previous
N, N, O, Cl coordination plane. The increase in symmetry observed in the EPR measurements in
ACN and ACN/H2O is in agreement with the chlorido displacement observed in the conductivity
measurements. However, there was still no evidence of dimeric and monomeric species in equilibrium
in these solutions.

Hence, the spinning radiuses of the molecules in solution were obtained from the spectral
simulations using the EasySpin program [57] to obtain the rotational time correlation tcorr (Table 2).
These values are associated withthe spinning velocity of a molecule in solution, expressing large values
of tcorr when effective intramolecular interactions are generated. Curiously, the increasing order of tcorr

was CuIIL4 > CuIIL1 > CuIIL3 > CuIIL2 > CuIIL5, revealing that complexes bearing a substituent group
with oxygen (CuIIL2 and CuIIL5) are more effectively interacting in solution than CuIIL4. With the
tcorr values, we were able to calculate the radiuses and volumes of rotation of the complexes using the
Stokes–Einstein–Debye (SED) equation (tcorr = 4πηa3/3KBT), where a is the molecular radius of rotation
(Table 2). In general, all compounds have reduced their radius of rotation in acetonitrile and the
acetonitrile/water (80:20) mixture. Therefore, the complexes were probably arranged mostly as dimeric
structures in dichloromethane, and when coordinating solvents were present such as acetonitrile and
water, the equilibrium between dimeric and monomeric species shifted to monomeric ones.

Table 2. Comparison of the values of the radiuses of rotation and approximate volumes of the complexes
CuIIL1–CuIIL5 considering a spherical model.

Compounds a, Å V, Å3 (×102)

DCM ACN ACN/H2O DCM ACN ACN/H2O

CuIIL1 5.55 4.20 4.38 7.16 3.10 3.51
CuIIL2 6.49 5.14 4.19 11.4 5.68 3.08
CuIIL3 5.64 4.69 4.14 7.51 4.32 2.97
CuIIL4 4.72 4.69 4.34 4.40 4.32 3.42
CuIIL5 6.53 4.68 4.48 11.7 4.29 3.76

In fact, when frozen solutions of the complexes in DCM were analyzed by EPR spectra and
compared to simulated spectra (Figure 5), it was evident that a component attributed to molecular
aggregates needed to be introduced for a better fit. These molecular aggregates had a magnetic
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interaction, indicating that two CuII centers probably interacted with each other, causing the lines to
broaden. This broadening was more pronounced for CuIIL2 and CuIIL5, which were the most effective
complexes to form dimeric structures, as observed by the tcorr values. A similar trend was observed for
the measurements performed in acetonitrile and in the acetonitrile/water (80:20) mixture, indicating
equilibrium between monomeric and dimeric species in frozen solution. The stronger interaction
observed for complexes CuIIL2 and CuIIL5 might indicate the presence of halogen-bonds between the
oxygen from methoxy and ethoxy radicals with the chloride. Halogen bonds are more sensitive to steric
effects and could be the reason for the higher volume observed for CuIIL2 in ACN than CuIIL5 [58].
Moreover, the dimerization of copper complexes in different solvents has already been observed by
EPR measurements by other groups [56], corroborating our observations.
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Figure 5. Comparison between the experimental and simulated EPR spectrum of CuIIL4 complex
at 77 K in dichloromethane. The experimental EPR spectrum is shown as a black line, whereas the
simulated spectrum is shown as a red line. Simulation spectra are composed by a monomeric and
dimeric species that are shown in blue and green, respectively.

The difference in the gz observed for the different complexes may be a result of distinct aggregation
structures. For instance, CuIIL1, CuIIL2, and CuIIL5 present values of gz0 higher than gx0 and gy0,
which are similar to monomeric species, possibly due to the maintenance of an axial geometry even
after aggregation. An opposite behavior was observed for complexes CuIIL3 and CuIIL4, which hadgz0
values lower than gx0 and gy0 in the aggregate species. Therefore, these complexes (CuIIL3 and CuIIL4)
may have formed aggregates with nonaxial geometry, suggesting that the unpaired CuII electron is not
of the dx2–y2 orbital, possibly due to a trigonal bipyramidal geometry, as shown in Figure 6. Structural
features behind thermodynamic differences for the interactions between one solvent molecule and
the CuIIL1 monomer and dimer were evaluated by quantum chemical calculations. The dimers had
very distinctive geometries in each electronic spin state, with the lowest-lying singlet states having a
single Cl bridge between the two monomers (Figure 6B–D), which renders each monomer structurally
different from the other, while the higher energy triplet state has two Cl bridging the two Cu(II) atoms
(Figure S76). It was evidenced by the simulations that for all of the solvents considered as well as for
the bare dimer in vacuum, the singlet state was always lower lying than the triplet state, corroborating
the proposition of the structures in Figure 6.
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Figure 6. Proposition of the aggregate structures of complexes CuIIL2 and CuIIL4 in frozen solutions 
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Since all complexes behaved similarly in the EPR measurements in dichloromethane, acetonitrile,
and the acetonitrile/water mixture at 298 K, only CuIIL2 was evaluated in methanol and the
methanol/water in EPR measurements at 298 K. To provide a comparison between dimeric and
monomeric species in solution, an analogous of complex CuIIL2 was synthesized with perchlorate as
a counterion ([CuIIL2ClO4] Figure 1). The perchlorate ion is known for its high volume and would
be expected to generate only monomeric species in solution. Therefore, this complex was compared
with CuIIL2 in EPR measurements performed at 298 K in methanol and the methanol/water (80/20, v/v)
mixture. Interestingly, the EPR spectrum of CuIIL2 in methanol (Figure 7) is visibly a mixture between
two species. However, unexpectedly, [CuIIL2ClO4], despite presenting a profile of monomeric species
in solution, exhibited a three times higher tcorr than CuIIL2, which could indicate that [CuIIL2ClO4] is
in fact, dimeric. Indeed, the HRMS spectra exhibited m/z peaks corresponding to dimeric structures
(1175.2834, Figure S59) and in the FTIR spectra, three bands associated with monodentated ClO4

−

species were observed at 1121, 1108 and 1027 cm−1, corroborating the hypothesis of [CuIIL2ClO4]
complex dimerization. The addition of 20% water keeps the equilibrium in solution, as expected,
due to the similarity of the conductivities of the complexes in methanol and the methanol/water
mixtures. Therefore, it can be assumed that methanol and water do not fully displace the chloride.
The unexpected dimerization of [CuIIL2ClO4] might strengthen the proposition of halogen bond
formation in the CuIIL2 complex, suggesting a supramolecular structure with the possibility of use in
dynamic catalysis [59].
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3.3. Urea Hydrolysis as a Model Reaction: Kinetics of NH3 Formation

The self-organization of these complexes into dimeric or monomeric structures was shown to be
dependent on the solvent and ligand exchange reactions, as shown in Figure 8. Due to the distinct
behaviors of the complexes in acetonitrile/water and methanol/water, we suspected that hydrolytic
catalysis could be tuned by influencing the equilibrium between monomeric and dimeric species.
Hence, we decided to evaluate their potential as catalysts to hydrolyze urea, as a model reaction.
Catalysis was performed primarily in the acetonitrile/water and methanol/water mixtures. In this
reaction, ammonia is expected to be formed and aliquots of the reaction were analyzed by the Berthelot
method [60] over the reaction times (5, 10, 20, 30, 40, 50, 60, 120, 240, and 480 s).
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method to detect ammonia formation (minimum reaction time: 5 s) and we could only observe the
decrease in ammonia concentration over the reaction time (Figure 9A and Figures S63–S66). In contrast,
in the methanol/water mixtures, the reaction profile changed, in which the increase in ammonia
concentration was observed until a saturation level was reached (Figure 9B). The lability of the chlorido
was smaller in methanol and the methanol/water (80/20) mixture when compared to the acetonitrile
system, and indicates that the labilization of chlorido affects the path of the reaction. For instance,
in acetonitrile/water, all complexes exhibited a decrease of the volume, possibly due to the formation
of monomeric species in solution. Therefore, the equilibrium dimer/monomer is still present in
methanol/water and it can be inferred that the presence of dimeric structures in solution is possibly
slowing the reaction.
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Figure 9. Ammonia quantification produced by CuIIL2 complex in (A) acetonitrile/water and
(B) methanol/water mixtures up to 480 s at 308 K and at different urea concentrations: 5.2 mmol L−1

(brown line, squares), 10.4 mmol L−1 (green line, circles), 15.6 mmol L−1 (blue line, triangles),
and 20.8 mmol L−1 (black line, inverted triangles).

Considering that complex [CuIIL2ClO4] was mostly dimeric in solution, it would be expected
to observe a slower reaction rate of urea hydrolysis by this complex. In general, the behavior
of [CuIIL2ClO4] was similar to the chloride complex (faster in acetonitrile/water and slower in
methanol/water mixtures), but indeed, a four times lower conversion was observed (Figure 10).
Moreover, the reaction in methanol/water only started to produce ammonia after 5 min of reaction,
whereas the CuIIL2 complex was able to produce it after 1 min of reaction. Hence, it may indicate that
the dimeric structure is not active toward urea hydrolysis.
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Figure 10. Ammonia quantification produced by the [CuIIL2ClO4] complex in the acetonitrile/water
(red line) and methanol/water mixture (black line) at 308 K using a 10.4 mmol L−1 urea concentration.
Only the positive portion of the error bars is shown in the graphic.

In order to verify how the solvent was affecting the equilibrium monomer/dimer, we performed
the reaction of urea hydrolysis in other solvents (DMSO, THF, and ethanol), Figures S70–S72. We
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observed that a high reaction rate of urea hydrolysis was achieved in solvents that exhibited less
pronounced hydrogen bonds with water (ACN, DMSO, and THF) than the organic solvents methanol
and ethanol [61]. Therefore, we reasoned that the effect of preferential solvation [62] by the organic
solvents in the aquation reaction of our complexes could be tuning the equilibrium dimer/monomer.
The interaction between solvent molecules and the complex is probably occurring via the apolar sites
of the solvent, since the complex has a neutral charge. This mode of solvation results in a secondary
sphere organized in a way that the dipoles of the solvents are oriented to the bulk solution, and water
can interact with these sites via hydrogen bonds (Figure 11A). The stronger hydrogen bond between
methanol and water stabilizes the initial state of reaction (dimer–solvent), leading to a slower rate of
ligand substitution due to the higher activation energy of the reaction in methanol/water (Figure 11B),
thus forming less monomers than in ACN (or the DMSO, THF/H2O mixtures). These results are in
contrast to the increased reaction rate observed in methanol and ethanol by the other groups [63] due to
the stabilization of the transition state, which strengthens our supposition. Moreover, the reaction rate
in the ethanol/water mixtures was even slower than in the methanol/water mixtures due to the longer
chain of ethanol, resulting in a higher stabilization of the hydrogen bonds with water in the tertiary
coordination sphere. Therefore, our analysis of the equilibrium monomer/dimer in solution verified
the occurrence of only the monomer species in ACN/H2O by EPR assays, whereas in the MeOH/H2O
mixtures, we detected the presence of dimeric structures by HRMS and EPR experiments, corroborating
this hypothesis. The thermochemical data obtained from the DFT calculations of the CuIIL1 monomer
or dimer interacting with a single solvent molecule support that the interaction between the dimeric
structure is more stabilized in methanol and water than in acetonitrile. The enthalpic difference between
methanol and water was less than 1 kJ/mol, but an eight times higher enthalpy difference was observed
between acetonitrile and water (8.5 kJ/mol). Thus, the stabilization of the ground state in strong
hydrogen-bond solvents and the competition between solvents is more pronounced in methanol/water
systems, which could result in a lower substitution rate of the chloride in methanol/water mixtures in
comparison to the acetonitrile/water mixtures, reinforcing our experimental data.
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check this possibility, we evaluated complexes CuIIL2, CuIIL3, and CuIIL4 in different urea 
concentrations (Figures 9 and S68). It should be noted, however, that the increase in urea 
concentration also increased the water content of the mixture, which could influence the 
monomer/dimer equilibrium. Noticeably, the complexes presented different behaviors upon an 
increase in urea (and water) concentrations. For instance: CuIIL3 had a sigmoidal behavior, whereas 
the behavior for CuIIL2 was linear (Figure 12). By keeping the water constant at 20%, the water effect 
in the monomer/dimer equilibrium decreased, and essentially, this effect was more pronounced for 
CuIIL2, observing a 2-fold decrease of the reaction rate when the water concentration was constant. 
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mixtures (A) and its effect in the stabilization of the ground state (dimeric species) (B).

Noticing the strong effect of the solvent in the equilibrium monomer/dimer, we suspected that this
could enable the tuning of the catalytic behavior by an allosterism (or upregulation).In order to check this
possibility, we evaluated complexes CuIIL2, CuIIL3, and CuIIL4 in different urea concentrations (Figure 9
and Figure S68). It should be noted, however, that the increase in urea concentration also increased
the water content of the mixture, which could influence the monomer/dimer equilibrium. Noticeably,
the complexes presented different behaviors upon an increase in urea (and water) concentrations.
For instance: CuIIL3 had a sigmoidal behavior, whereas the behavior for CuIIL2 was linear (Figure 12).
By keeping the water constant at 20%, the water effect in the monomer/dimer equilibrium decreased,
and essentially, this effect was more pronounced for CuIIL2, observing a 2-fold decrease of the reaction
rate when the water concentration was constant. This result indicates that water has a positive
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effect in catalysis for the CuIIL2 complex due to the shift of inactive dimeric species into active
monomeric species. In contrast, the CuIIL3 complex and CuIIL4, already have their equilibrium shifted
to monomeric species and therefore, do not present a strong influence of water in catalysis, even though
a slight positive allosteric effect of water is also observed.
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Since other aspects of the reaction could be affecting the reaction kinetics such as the activity
of water and reaction pH, we decided to verify their significance in our systems. For instance,
the composition of a solvent mixture containing water will change the activity of water (aw) [64]
and the increase in aw could impact the reaction mechanism and kinetics of a hydrolytic reaction.
For instance, the water activity of the methanol/water mixtures used in our systems ranged from 0.26
to 0.65 (Figure S76) (determined by the equation from Zhu et al. [65]), whereas the acetonitrile/water
(10% volume) mixture had a water activity of 0.9. Therefore, it would be reasonable to ascribe
the observed differences of reaction rates to the different water activity of these systems. However,
the catalytic reaction performed in ACN containing 2% (aw~0.4) (Figure S74) still showed a high reaction
rate of urea hydrolysis in this solvent mixture. This finding reinforces the proposed idea of solvent
effect in the reaction kinetics, since acetonitrile aids in the equilibrium shift to monomeric species.

In addition to the water activity, the pH in our reactions was not controlled and the increase
in pH during the reaction could affect the coordination sphere and the reaction rate. Taking into
consideration this possibility, we performed a reaction including a pH indicator (phenol red) and
we did not observe a significant effect in the pH due to the produced ammonia over the reaction
time in the UV–Vis spectrum (Figure S73A). To remove any possible interference produced by the
indicator, we performed a reaction control without the pH indicator and added it after the reaction
reached a saturation level of ammonia. Again, no color change was observed (Figure S73B), indicating
that in the methanol/water and acetonitrile/water mixtures (Figure S73C), the produced ammonia
did not seem to severely affect the reaction pH. In fact, the pH of the buffered solutions in solvent
mixtures has been previously analyzed by other groups, and they noticed that the NH3/NH4

+ buffer
presented a lower pH in the solvent mixture than the observed one in pure water [66]. An in situ
FTIR experiment (Figure S75) showed an increase of a band in the 3000 cm−1 region, indicative of the
formation of ammonium ions. After 90 s, we observed that this band oscillated between a minimum
and a maximum, suggestive of the equilibrium between ammonia and ammonium. Therefore, due to
the fact that the pH of the reaction is not expressively altered during the reaction, we suspect that the
main interaction of ammonium is with the hydroxide formed in the hydrolysis reaction of ammonia.

In order to evaluate the impact of the pH in our catalytic reactions, we decided to use buffered
aqueous solutions of urea at three different pHs: 3, 6, and 8, and in this case, we observed a profile
indicative of a catalyzed reaction at both basic and acidic pHs (Figure S73D). Interestingly, the reaction
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rates using buffered solutions were lower than the non-buffered one, which might indicate an inhibition
of the hydrolysis by the buffers.

Since the in situ reversibility of the system was not observed, the best classification of the effect of
water in the urea hydrolysis reaction is “upregulation” or “regulation” [12]. We believe that the strong
water dependence of this system will be able to be explored in the future as water sensors.

4. Conclusions

A strong correlation between dimer/monomer equilibrium and catalysis was observed in the
copper complexes synthesized in this work. These complexes were synthesized from Schiff bases
from L-proline, exhibiting a square planar geometry. EPR analysis enabled us to verify the existence
of a mixture of compounds in solution, especially in the methanol/water mixtures. We explored the
hydrolytic capacity of these complexes in urea hydrolysis as a model reaction. As observed by EPR,
in the acetonitrile/water mixture, the equilibrium shifted to a monomer and the hydrolysis of urea was
too fast to detect the kinetics of ammonia formation by the Berthelot method. However, when the
equilibrium monomer/dimer was present, as in the methanol/water mixture, the reaction proceeded
slower and the ammonia formation kinetics could be detected in a saturation profile. This effect was
shown to be due to the preferential solvation effect, by which hydrogen bonds formed between the
secondary and tertiary coordination spheres stabilized the initial state of the aquation reaction. A strong
influence of water concentration was observed in the methanol/water system, with special attention
to CuIIL2 complex. A comparison with the dimeric perchlorate complex enabled us to visualize the
importance of the monomer in the reaction, since the dimer produced ammonia from urea very slowly.
In conclusion, this work relates a key feature of the chlorido bridges in a supramolecular structure of
CuII complexes for an allosteric (upregulation) behavior in catalysis.
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