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Abstract: Treatment of 2,4-dinitrophenol with sulfonyl chlorides in the presence of pyridine results
in the formation of undesired pyridinium salts. In non-aqueous environments, the formation of
the insoluble pyridinium salt greatly affects the formation of the desired product. A facile method
of producing the desired sulfonate involves the use of an aqueous base with a water-miscible
solvent. Herein, we present the optimization of methods for the formation of sulfonates and its
application in the production of desired x-substituted 2,4-dinitrophenyl-4′-phenylbenzenesulfonates.
This strategy is environmentally benign and supports a wide range of starting materials. Additionally,
the intermolecular interactions of these sulfonate compounds were investigated using single-crystal
x-ray diffraction data.

Keywords: arylsulfonates; pyridinium salt formation; single-phase solvent system; sulfonate
synthesis; sulfonyl chlorides; X-ray crystallography

1. Introduction

A reliable method for producing arylsulfonates involves the nucleophilic substitution reaction
of alcohols and sulfonyl halides. This reaction is highly efficient in creating the sulfonate ester,
a synthetically important electrophile in organic chemistry due to its high chemical reactivity [1].
This property has been utilized in the detection and fluorescent imaging of biologically important
compounds. In particular, recent research has shown that 2,4-dinitrobenzenesulfonate-functionilized
carbon dots (g-CD-DNBS) are significant regarding the detection and fluorescence imaging of biothiols
(Scheme 1) [2].
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phenylbenzenesulfonate compounds. Similarly, this resemblance is found in the fluorescent probe O-
hNRSel. O-hNRSel was developed for the detection and imaging of selenocysteine (Sec) in living cells 
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The 2,4-dinitrobenzenesulfonyl (DNBS) group resembles the x-substituted 2,4-dinitrophenyl-
4′-phenylbenzenesulfonate compounds. Similarly, this resemblance is found in the fluorescent probe
O-hNRSel. O-hNRSel was developed for the detection and imaging of selenocysteine (Sec) in living cells
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(Scheme 2) [3]. Sec is a selenium-containing amino acid that resides in proteins of organisms and viruses.
Selenium is linked to several health benefits, including the prevention of cancer and cardiovascular
diseases [4]. The role of Sec in human health underlines the importance of Sec fluorescence probes.
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A facile synthesis of sulfonates is necessary to produce these biologically significant compounds.
A review of the current literature suggests the use of sulfonic acids or sulfonyl halides for
synthesizing sulfonates [5,6]. The compounds synthesized hereafter were done so through the
sulfonylation of 2,4-dinitrophenol with sulfonyl chloride in the presence of a base. Basic conditions
allow for the neutralization of hydrochloric acid. The presence of hydrochloric acid lowers the
pH of the reaction, resulting in poor deprotonation of the intermediary structure. Preliminary
experiments for the synthesis of 2,4-dinitrophenyl-4-methylbenzenesulfonate involved the treatment
of 4-methylbenzenesulfonyl chloride (1) with 2,4-dinitrophenol (2) in the presence of pyridine
and dichloromethane. This reaction was done under N2 atmosphere to avoid hydrolysis of
4-methylbenzenesulfonyl chloride. The production of the insoluble pyridinium salt, the pyridine
adduct of 2,4-dinitrophenyl 4-methylbenzenesulfonate (3), was evidence of an unsuccessful reaction.
Compound 3 is insoluble in dichloromethane and pulled out of the solution as a white precipitate. The
proposed mechanism for the formation of the pyridinium salt (3) in the presence of pyridine is found
in Scheme 3. The desired sulfonate (4) was not formed as a result of compound 3 being insoluble in
solution. A review of the literature supports the theory that a pyridinium salt was formed [7].
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Scheme 3. The proposed mechanism for the treatment of 4-methylbenzenesulfonyl chloride (1) with
2,4-dinitrophenol (2) in the presence of pyridine and dichloromethane to form the pyridinium adduct
of 2,4-dinitrophenyl 4-methylbenzenesulfonate (3). Shown below this is the desired rearrangement of
compound 3 to give the sulfonate product (4).

A new synthetic method was proposed and applied to the synthesis of three x-substituted
2,4-dinitrophenyl-4′-phenylbenzenesulfonates. The resulting products were characterized by
crystallographic and spectroscopic means. Crystallographic characterization offers insight into
the structural features and inter- and intramolecular interactions of molecules. Herein, we report the
facile synthesis and characterization of x-substituted 2,4-dinitrophenyl-4′-phenylbenzenesulfonates.
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2. Experimental

The reagents used in the synthesis of x-substituted 2,4-dinitrophenyl-4′-phenylbenzenesulfonates
were obtained from commercial sources and used without further purification. Thin-layer
chromatography (TLC) was used to track reaction progress and obtain Rf values for the reactions.

Preparation of 2,4-Dinitrophenyl 4-methylbenzenesulfonate in the presence of N,N-diisopropylethylamine
(4). 2,4-dinitrophenol (2.025 g, 11.0 mmol) was dissolved in a flask containing 11 mL of chilled
dichloromethane. 4-Methylbenzenesulfonyl chloride (2.090 g, 11.0 mmol) was added dropwise to
the stirred solution. This was followed by the dropwise addition of N,N-diisopropylethylamine
(3.8 mL, 21.8 mmol). The stirred solution was left at room temperate for 24 h under N2 atmosphere.
After 24 h, the mixture was diluted with 15 mL of dichloromethane and transferred to a separatory
funnel. The organic layer was washed with water (3 × 10 mL). The aqueous layers were combined and
back-extracted with 10 mL of dichloromethane. All organic layers were combined, washed with brine
(10 mL), and dried over anhydrous sodium sulfate. Evaporation of solvent yielded a solid, yellow
residue as a crude product. Purification via column chromatography with dichloromethane as the
solvent yielded a yellow powder (1.712 g, 46%). M.p. 196–202 ◦C. Rf = 0.74 (CH2Cl2). 1H-NMR
(400 MHz, DMSO-d6) δ 8.79 (d, J = 2.8 Hz, 1H), 8.54 (dd, J = 9.1, 2.8 Hz, 1H), 7.78–7.71 (m, 2H), 7.54 (d,
J = 9.1 Hz, 1H), 7.49 (m, 2H), 2.42 (s, 3H). HRMS (ESI): cald. For C13H10N2NaO7S [M + Na]+ 361.0100;
found 361.0110.

Preparation of pyridinium adduct of 2,4-Dinitrophenyl 4-methylbenzenesulfonate in the presence of pyridine
(3). 2,4-dinitrophenol (2.016 g, 11.0 mmol) was dissolved in a flask containing 11 mL of chilled
dichloromethane. 4-Methylbenzenesulfonyl chloride (2.088 g, 10.9 mmol) was added dropwise to
the stirred solution. This was followed by the dropwise addition of pyridine (1.80 mL, 21.8 mmol).
The stirred solution was left at room temperate for 24 h under N2 atmosphere. After reaction completion,
an insoluble precipitate was isolated via vacuum filtration giving a fine, white powder. Recrystallization
in 2:1 acetone/water, followed by trituration with hexanes afforded the product as small, translucent
crystalline sheets (1.875 g, 41% yield). M.p. 240–248 ◦C. Rf = 0.70 (80:20 ACN/H2O w/1 mL NH4OH).
1H-NMR (400 MHz, DMSO-d6) δ 9.40–9.33 (m, 2H), 9.05 (d, J = 2.5 Hz, 1H), 8.96–8.82 (m, 2H), 8.50–8.35
(m, 3H), 7.43–7.36 (m, 2H), 7.06 (d, J = 7.8 Hz, 2H), 2.24 (s, 3H).

Preparation of 2,4-Dinitrophenyl 4-methylbenzenesulfonate in the presence of triethylamine (4).
2,4-dinitrophenol (1.999 g, 10.9 mmol) was dissolved in a flask containing 11 mL of chilled
dichloromethane. 4-Methylbenzenesulfonyl chloride (2.076 g, 10.9 mmol) was added dropwise to the
stirred solution. This was followed by the dropwise addition of triethylamine (3.0 mL, 21.9 mmol). The
stirred solution was left at room temperate for 24 h under N2 atmosphere. After 24 h, the mixture was
diluted with 15 mL of dichloromethane and transferred to a separatory funnel. The organic layer was
washed with water (3 × 10 mL). The aqueous layers were combined and back-extracted with 10 mL
of dichloromethane. All organic layers were combined, washed with brine (10 mL), and dried over
anhydrous sodium sulfate. The resulting solution was evaporated to afford a solid, yellow residue.
The crude product was recrystallized in 2:1 DCM/ethyl acetate to afford large, pale-yellow, translucent
crystals (1.768, 50%).

Preparation of 2,4-Dinitrophenyl 4-methylbenzenesulfonate in the presence of aqueous sodium hydroxide
(4). 2,4-dinitrophenol (1.021 g, 5.25 mmol) was dissolved in a flask containing 10 mL of THF.
4-Methylbenzenesulfonyl chloride (1.052 g, 5.25 mmol) was then added to the flask, followed by the
dropwise addition of 1 M NaOH (10 mL, 10.5 mmol). The solution was stirred at room temperate for
6 h. After reaction completion, a yellow precipitate was isolated via vacuum filtration to afford a yellow
powder. The crude product was recrystallized in ethanol to afford large, pale-yellow, translucent
crystals (1.204 g, 66%).

Preparation of 2,4-Dinitrophenyl 2,4,6-trimethylbenzenesulfonate (Table 1, entry 1). 2,4-dinitrophenol (0.842
g, 4.57 mmol) and 2,4,6-trimethylbenzenesulfonyl chloride (1.002 g, 4.58 mmol) were added to a flask
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containing 10 mL of tetrahydrofuran. Of aqueous potassium carbonate 0.915 M (10 mL, 9.15 mmol)
was added dropwise to the stirred solution. The solution was then stirred at room temperate for 6 h.
After reaction completion, a yellow precipitate was isolated via vacuum filtration to afford a yellow
powder. The crude product was recrystallized in ethanol to afford large, pale-yellow, translucent
crystals (1.470 g, 88%). M.p. 128–132 ◦C. Rf = 0.86 (CH2Cl2). 1H-NMR (400 MHz, Chloroform-d) δ 8.75
(d, J = 2.8 Hz, 1H), 8.44 (dd, J = 9.0, 2.8 Hz, 1H), 7.58 (d, J = 9.0 Hz, 1H), 7.03 (s, 2H), 2.57 (s, 6H), 2.35 (s,
3H). HRMS (ESI): cald. For C15H14N2NaO7S [M + Na]+ 389.0400; found 389.0410.

Table 1. Solvent and counter-ion effects on the synthesis of 2,4-dinitrophenyl sulfonate derivatives a.
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1 2,4,6-trimethyl 0.915 M aq. K2CO3 THF 6 88
2 4-phenyl 1.6 M aq. K2CO3 THF 8 72
3 4-(4′-methylphenyl) 1.6 M aq. K2CO3 THF 8 69
4 4-methyl 1.0 M aq. NaOH THF 6 66
5 4-(4′-flourophenyl) 1.6 M aq. K2CO3 THF 8 59

6 b 4-methyl triethylamine DCM 24 50
7 b 4-methyl N,N-diisopropylethylamine DCM 24 46

8 b,c 4-methyl pyridine DCM 24 -

a Reaction conditions: 2,4-dinitrophenol (1.0 eq.) was dissolved in 10 mL of solvent. Sulfonyl chloride (1.0 eq) was
added dropwise to the solution, followed by the dropwise addition of base (2.0 eq). All reactions were run at room
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Preparation of 2,4-Dinitrophenyl-4′-phenylbenzenesulfonate (1b). 2,4-dinitrophenol (0.729 g, 3.96 mmol)
and biphenyl-4-sulfonyl chloride (1.005 g, 3.96 mmol) were added to a flask containing 10 mL of
tetrahydrofuran. Of aqueous potassium carbonate 1.6 M (5.0 mL, 7.92 mmol) was added dropwise to
the stirred solution. The stirred solution was left at room temperate for 8 h. After reaction completion,
a yellow precipitate was isolated via vacuum filtration to afford a yellow powder. The crude product
was recrystallized in a small amount of dichloromethane to afford pale-yellow translucent crystals
(1.136 g, 72% yield). M.p. 137–140 ◦C, Rf = 0.69 (CH2Cl2). 1H-NMR (400 MHz, Chloroform-d) δ 8.78 (d,
J = 2.7 Hz, 1H), 8.50 (dd, J = 9.0, 2.7 Hz, 1H), 8.01–7.96 (m, 2H), 7.82–7.75 (m, 3H), 7.64–7.60 (m, 2H),
7.53–7.43 (m, 3H). HRMS (ESI): cald. For C18H12N2NaO7S [M + Na]+ 423.0300; found 423.3700.

Preparation of 2,4-Dinitrophenyl-4′-(4-methylphenyl)-benzenesulfonate (2b). 2,4-dinitrophenol (0.692 g,
3.75 mmol) and 4′-methylbiphenyl-4-sulfonyl chloride (1.001 g, 3.75 mmol) were added to a flask
containing 10 mL of tetrahydrofuran. Of aqueous potassium carbonate 1.6 M (5.0 mL, 7.92 mmol) was
added dropwise to the stirred solution. The stirred solution was left at room temperate for 8 h. After
reaction completion, a yellow precipitate was isolated via vacuum filtration to afford a yellow powder.
The crude product was recrystallized in a small amount of dichloromethane to afford pale-yellow
translucent crystals (1.075 g, 69% yield). M.p. 152–155 ◦C, Rf = 0.66 (CH2Cl2). 1H NMR (400 MHz,
Chloroform-d) δ 8.78 (d, J = 2.7 Hz, 1H), 8.50 (dd, J = 9.0, 2.7 Hz, 1H), 7.99–7.93 (m, 2H), 7.81–7.74 (m,
3H), 7.56–7.49 (m, 2H), 7.30 (d, J = 7.9 Hz, 2H), 2.42 (s, 3H). HRMS (ESI): cald. For C19H14N2NaO7S [M
+ Na]+ 437.0400; found 437.3800.

Preparation of 2,4-Dinitrophenyl-4′-(4-flourophenyl)-benzenesulfonate (3b). 2,4-dinitrophenol (0.680 g,
3.69 mmol) and 4′-flourobiphenyl-4-sulfonyl chloride (1.006 g, 3.69 mmol) were added to a flask
containing 10 mL of tetrahydrofuran. Of aqueous potassium carbonate 1.6 M (5.0 mL, 7.92 mmol)
was added dropwise to the stirred solution. The stirred solution was left at room temperate for
8 h. After reaction completion, a yellow precipitate was isolated via vacuum filtration to afford a
yellow powder. The crude product was recrystallized in a small amount of dichloromethane to afford
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pale-yellow translucent crystals (0.917 g, 59% yield). M.p. 140–143 ◦C, Rf = 0.64 (CH2Cl2). 1H-NMR
(400 MHz, Chloroform-d) δ 8.78 (d, J = 2.7 Hz, 1H), 8.51 (dd, J = 9.0, 2.7 Hz, 1H), 8.02–7.94 (m, 2H),
7.82–7.71 (m, 3H), 7.65–7.55 (m, 2H), 7.24–7.14 (m, 2H). HRMS (ESI): cald. For C18H11FN2NaO7S [M +

Na]+ 441.0200; found 441.3500.

Spectroscopic and Crystallographic Characterization

1H-NMR spectra (400 MHz) were recorded on a JEOL ECZ400 spectrometer using a DMSO-d6 or
Chloroform-d solvent. Chemical shifts are reported in parts per million (ppm, δ) relative to the residual
solvent peak, and coupling constants (J) are reported in Hertz (Hz). Results were analyzed and figures
were created with the use of MestReNov [8]. The spectra of all compounds synthesized can be found
in Figures S1–S8. Spectra were obtained from 16 scans.

The data yielded from the crystallographic characterization of x-substituted 2,4-dinitrophenyl
-4′-phenylbenzenesulfonates can be found in Tables S1–S15. Molecular structures of 2,4-dinitrophenyl
-4′-phenylbenzenesulfonate (1b), 2,4 -dinitrophenyl-4′-(4-methylphenyl)-benzenesulfonate (2b), and
2,4 -dinitrophenyl-4′-(4-flourophenyl)-benzenesulfonate (3b) can be found in Figures S9–S11. X-ray
diffraction was carried out on a Bruker APEXII CCD diffractometer with Mo Kα radiation. The
software used for data collection is as follows: Data collection: APEX2 [9]; cell refinement:
SAINT [10]; data reduction: SAINT [10]; program used to solve structure: ShelXT [11]; program
used to refine structure: OLEX2 [12,13]; program used to generate figures: Mercury [14–18];
and absorbance correction: SADABS [19]. Interactive links for the structures of x-substituted
2,4-dinitrophenyl-4′-phenylbenzenesulfonates are found in the following figures: 2,4-dinitrophenyl
-4′-phenylbenzenesulfonate (1b), Figure S9; 2,4-dinitrophenyl -4′-(4-methylphenyl)-benzenesulfonate (2b),
Figure S10; 2,4-dinitrophenyl-4′-(4-flourophenyl)-benzenesulfonate (3b), and Figure S11.

3. Results and Discussion

In our work towards developing a facile synthesis of sulfonates, various reaction conditions were
investigated. A variety of solvent and base combinations were used to ascertain their effects on the
yield and reaction time of sulfonate derivatives, the results of which can be found in Table 1. Entries
are presented in order of decreasing yield. Successful formation of the desired product occurred in all
cases, except entry 8 where dichloromethane and pyridine were used. This led to the development
of a new synthetic method using an aqueous base and the water-miscible solvent, tetrahydrofuran.
This single-phase solvent system defeats the need for a phase transfer catalyst and can support a wider
range of starting materials. The use of an aqueous base and tetrahydrofuran resulted in higher yields,
less environmental impact, and shorter reaction times. Additionally, the desired sulfonate product was
isolated directly from the reaction mixture with good purity. An initial concern with this new synthetic
method was the hydrolysis of sulfonyl chloride due to the presence of water. However, results show
the rate of hydrolysis has little effect on yield.

A comparison of entries 2, 3, and 5 revealed the electronic and steric effects from
biphenyl sulfonyl chloride derivatives and their implications in the synthesis of x-substituted
2,4-dinitrophenyl-4′-phenylbenzenesulfonates. The structure and yield of these sulfonates are shown
in Figure 1. The highest yielding x-substituted 2,4-dinitrophenyl-4′-phenylbenzenesulfonate was
compound 1b, which has no substituent. Compounds 2b and 3b, which contain electron-donating and
electron-withdrawing groups, respectively, were slightly lower in yield. In general, the reaction yield
may be affected by electronic factors, steric factors or a combination of both. Although it is not clear to
us which factor is responsible for the difference in yields, one can imagine a combination of electronic
factors and steric factors to be responsible. However, the difference in yields was not statistically
significant enough for us to draw clear conclusions on what exactly accounts for the difference in
reaction yields.
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-phenylbenzenesulfonates. Reaction conditions: 2,4-dinitrophenol (1.0 eq) was dissolved in 10 mL of
THF. Sulfonyl chloride (1.0 eq) was added dropwise to the solution, followed by the dropwise addition
of 1.6 M aq. K2CO3 (2.0 eq). All reactions were run at room temperature.

Crystal structures of the x-substituted 2,4-dinitrophenyl-4′-phenylbenzenesulfonates
were obtained by single crystal X-ray diffraction. Pertinent data such as bond angles,
bond lengths, torsion angles, and other crystallographic parameters can be found in the
supplementary material. The asymmetric units of 2,4-dinitrophenyl-4′-phenylbenzenesulfonate
(1b), 2,4-dinitrophenyl-4′-(4-methylphenyl)-benzenesulfonate (2b), and 2,4-dinitrophenyl-
4′-(4-flourophenyl)-benzenesulfonate (3b) can be found in Figure 2.
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Figure 2. The molecular structure of 2,4-dinitrophenyl-4′-phenylbenzenesulfonate (1b; top,
middle), 2,4-dinitrophenyl-4′-(4-methylphenyl)-benzenesulfonate (2b; bottom, right), and
2,4-dinitrophenyl-4′-(4-flourophenyl)-benzenesulfonate (3b; bottom, left) with atom labeling scheme.
Displacement of ellipsoids is shown at the 50% probability level. Hydrogen atoms have been omitted
for clarity.

The x-substituted 2,4-dinitrophenyl-4′-phenylbenzenesulfonates exhibited a two-fold screw axis
(−x, 1/2 + y, 1/2 − z), and glide plane geometry (x, 1/2 − y, 1/2 + z) with an inversion center (−x, −y,
−z). Screw axis and glide plane geometries are indicative of efficient packing. All three sulfonate
structures exhibited a monoclinic system (P21/c space group). The central sulfur atom, S1, is a slightly
distorted tetrahedron according to the τ4 descriptor for four-fold coordination [20]. The aryl groups of
the sulfonates were oriented gauche about the S1–O1 bond with the following C7–S1–O1–C1 torsion
angles: 131.6 (1)◦, 1b; −94.0 (1)◦, 2b; −92.7 (1)◦, and 3b (Table 2). The S1 = O2 and S1 = O3 bond lengths
were in good agreement with known values. The S1–C7 and S1–O1 bond lengths were 1.751 (2) Å and
1.626 (1) Å for compound 1b; 1.745 (2) Å and 1.619 (1) Å for compound 2b; and 1.743 (2) Å and 1.623
(1) Å for compound 3b, respectively. The S1–O1–C1 bond angles for compounds 1b, 2b, and 3b were
120.5 (1)◦, 120.4 (1)◦, and 119.2 (1)◦, respectively. Molecules were liked by π–π interactions, C–H···O
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hydrogen bonds, C–H···π interactions, and, in the case of compound 3b, C–H···F hydrogen bonds
(Figure 3). Hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined
as riding: C–H = 0.95–1.00 Å with a fixed Uiso(H) = 1.2Ueq(C) for all C–H groups.

Table 2. Bond lengths of S1–C7, S1–O1, S1 = O2, and S1 = O3 (Å), bond angles of
S1–O1–C1 (◦) and torsion angles of C7–S1–O1–C1 (◦) for 2,4-dinitrophenyl-4′-phenylbenzenesulfonate
(1b), 2,4-dinitrophenyl-4′-(4-methylphenyl)-benzenesulfonate (2b), and 2,4-dinitrophenyl-4′-(4-
flourophenyl)-benzenesulfonate (3b).

Geometric Parameters (Å, ◦)

1b 2b 3b

S1–C7 1.751 (2) 1.745 (2) 1.743 (2)
S1–O1 1.626 (1) 1.619 (1) 1.623 (1)
S1=O2 1.420 (1) 1.421 (1) 1.424 (1)
S1=O3 1.423 (1) 1.417 (2) 1.413 (1)

S1–O1–C1 120.5 (1) 120.4 (1) 119.2 (1)
C7–S1–O1–C1 131.6 (1) −94.0 (1) −92.7 (1)
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Figure 3. A depiction of the inter- and intramolecular hydrogen bonds present
in the crystal structures of 2,4-dinitrophenyl-4′-phenylbenzenesulfonate (1b; right),
2,4-dinitrophenyl-4′-(4-methylphenyl)-benzenesulfonate (2b; middle), and 2,4-dinitrophenyl
-4′-(4-flourophenyl)-benzenesulfonate (3b; left) shown as capped sticks with standard CPK colors.
Hydrogen bonds and contacts are depicted with cyan dashed lines.

The extent of hydrogen bonding varied significantly in the sulfonate derivatives. In the case
of compound 2b, only two C–H··· O hydrogen bonds were observed (Table 3). A greater number of
hydrogen bonds in compounds 1b and 3b lend credence to a lattice dependent on hydrogen bond
contacts for efficient packing. The F1···H17 bond in compound 3b had a bond length of 2.450 Å,
the shortest and therefore strongest hydrogen bond of the sulfonate compounds.
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Table 3. Length of hydrogen-bond contacts (Å) and corresponding symmetry codes for 2,4
-dinitrophenyl-4′-phenylbenzenesulfonate (1b), 2,4-dinitrophenyl-4′-(4-methylphenyl)-benzenesulfonate
(2b), and 2,4-dinitrophenyl-4′-(4-flourophenyl)-benzenesulfonate (3b). Atoms labels follow the atom
numbering scheme in Figure 2.

Bond Length (Å)

(1b) (2b) (3b) Symmetry Codes

H12··· O4 2.534 x, y, z x, −1 + y, z
H16··· O5 2.650 x, y, z −x, −1/2 + y, 1.5 − z
H5··· O7 2.480 x, y, z 1 − x, −1/2 + y, 1/2 − z
O3··· H6 2.719 x, y, z 1 − x, 1 − y, 1 − z

O5··· H15 2.602 x, y, z x, 2.5 − y, −1/2 + z
O6··· H9 2.580 x, y, z x, 2.5 − y, −1/2 + z
O2··· H5 2.596 x, y, z −1 + x, y, z

O3··· H14 2.681 x, y, z −x, 1 − y, 1 − z
O2··· H5 2.478 x, −1 + y, z −1 + x, −1 + y, z

O4··· H12 2.652 x, −1 + y, z 1 − x, −1.5 + y, 1/2 − z
H3··· O2 2.494 x, −1 + y, z 1 − x, −1.5 + y, 1/2 − z
O3··· H9 2.653 x, −1 + y, z 1 − x, 1 − y, 1 − z

O3··· H14 2.567 x, −1 + y, z 1 − x, 1 − y, 1 − z
F1··· H17 2.450 x, −1 + y, z 2 − x, 3 − y, 1 − z
O6··· H15 2.606 x, −1 + y, z x, 1.5 − y, −1/2 + z

4. Conclusions

The proposed synthetic method is useful in producing a broad range of sulfonates in good
yields with the elimination of chlorinated solvents and organic bases, compared to previous methods.
Additionally, the new synthetic method significantly decreased reaction time and work up. It was
determined that the reaction favored a single-phase solvent system involving an aqueous base and
water-miscible solvent. This facile method produced sulfonate products in high purity. The resulting
products were characterized by crystallographic and spectroscopic methods. Crystallographic
characterization revealed sulfonate structures exhibiting a monoclinic system (P21/c space group)
with a two-fold screw axis (−x, 1/2 + y, 1/2 − z) and glide plane geometry (x, 1/2 − y, 1/2 + z) and
inversion center (−x, −y, −z). Values obtained for the S = O bond lengths closely resembled known
values. Four-fold coordination about the S1 atom reviled a slightly distorted tetrahedron geometry. The
crystallographic results supported the successful formation of pure sulfonate products. The resulting
products will be used to investigate the reaction conditions for the regioselective cleavage of C–O and
S–O bonds in the amination of arylsulfonates.

Supplementary Materials: The following are available online at http://www.mdpi.com/2624-8549/2/2/36/s1,
Figures S1–S8 showing 1H-NMR spectra, Figures S9–S11 depicting asymmetric units of x-substituted
2,4-dinitrophenyl-4′-phenylbenzenesulfonates with interactive links, and tables S1–S15 containing the
crystallographic data for these compounds.
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