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Abstract: The reliable and predictable synthesis of enantiopure coordination cages is an important
step towards the realization of discrete cages capable of enantioselective discrimination. We have built
upon our initial report of a lantern-type helical cage in attempts to expand the synthesis into a general
approach. The use of a longer, flexible diacid ligand results in the anticipated cage [Cu4(L1)4(solvent)4]
with a similar helical pitch to that previously observed and a cavity approximately 30% larger. Using a
shorter, more rigid ligand gave rise to a strained, conjoined cage-type complex when using DABCO
as an internal bridging ligand, [{Co4(L2)4(DABCO)(OH2)x}2 (DABCO)]. The expected paddlewheel
motif only forms for one of the Co2 units within each cage, with the other end adopting a “partial
paddlewheel” with aqua ligands completing the coordination sphere of the externally facing metal
ion. The generic approach of using chiral diacids to construct lantern-type cages is partially borne
out, with it being apparent that flexibility in the core group is an essential structural feature.
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1. Introduction

The formation of enclosed cages, capable of guest encapsulation, has been a mainstay of the
supramolecular field since the early work on carcerands by Cram [1]. There has been particular
attention given to the use of metal ions as structural agents in the formation of coordination cages,
with their relatively predictable coordination geometries allowing for a good degree of control over the
self-assembling synthesis [2–8]. The use of cages as agents for guest discrimination is prevalent in
the literature, with the internal cavities providing excellent size and shape discrimination between
analytes. Such discrimination should lend itself well to separations of racemic mixtures and there is
growing literature regarding the synthesis of chiral self-assembled cages [9–12].

There have been a number of different approaches towards chiral coordination cages reported in the
literature, although far fewer than reports of achiral (or racemic) systems. Tetrahedral metallo-supramolecular
cages, with metal ions situated at the corners of the cage, can have tris-chelated octahedral metal centres
that, by definition, have either Λ or ∆ chirality with local C3 symmetry [13–15]. In the absence of any
templating effect there is nothing to direct the chirality to a specific handedness and a mixture of
cages with multiple diastereoisomers may result. Whilst this can provide a route to chiral cages
using achiral precursors, it is clearly not the most desirable synthetic strategy, as the resolution of
these complexes can be challenging. Similar approaches can be employed to make cages with other
geometries, such as cubes and octahedra, with similar issues associated with the chirality of tris-chelate
metal centres [16–20]. Rather than local chirality around metal centres, it is desirable that the chirality
is communicated to the overall cage, including the interior cavity. Strategies towards this include
the use of chiral ligands to connect the metals together [21–23] or using supplementary non-bridging
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chiral ligands that cap the metal centres [24–26]. The major synthetic difficulty of these routes is the
requirement for the ligands to be enantiomerically pure. There is also the issue that peripheral chiral
groups, whilst reducing the symmetry of the cage as a whole, may not impact the interior space.
One particularly relevant methodology has been to incorporate chiral functionalities at the ends of
bis-chelate ligands, such that the molecular chirality dictates the ∆/Λ chirality around the resulting
tris-chelated metal and therefore gives bulk enantiopurity in the cages [27–31]. Chiral coordination
cages have recently been demonstrated to show enantioselective recognition [15,24], enantio- and
chemo-selective catalysis [23,25], and recognition by fluorescence or luminescence methods [12].
Most pertinent to this current work are examples of using amino-acid based ligands to form chiral
metallosupramolecular species containing copper paddlewheels, such as triangles and face-capped
octahedra [32–34].

Recently we showed that it is possible to form charge-neutral, helical complexes of the form
Cu4L4 containing two copper paddlewheel motifs and four dicarboxylate ligands containing amino
acids, as shown in Figure 1 [35]. A similar, smaller cage complex was reported around the same
time by Chen et al. [36], and many achiral analogues are known [37–42]. Subsequently we have
explored how changing the nature of the dicarboxylate affects the type and size of cage that can be
obtained. Using a more rigid naphthalenediimide-based ligand we, and others, isolated Cu12L12

octahedra [43,44] and, by using a more rotationally unrestricted biphenyl core, we obtained Cu8L8

“double-walled” squares [45]. It is also possible to isolate discrete catenanes using similar ligands [46],
which are analogous to motifs observed in extended networks [47–50].
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Figure 1. The previously reported chiral diacid (H2LeuBPSD) and its Cu4L4 cage complex alongside a 
schematic of the generic formulation of these helical cages, in which the cores of the ligands can be 
altered in attempts to construct analogous cages. 

Herein we report the synthesis and structure of two enantiopure cages constructed using 
dicarboxylate ligands with different core groups, shown in Scheme 1. It is found that a longer, more 
curved ligand (L12−) is able to form an analogue of the original Cu4L4 cage, whereas a shorter and less 
flexible ligand (L22−) clearly shows strain and is unable to form a fully closed cage complex. 

Figure 1. The previously reported chiral diacid (H2LeuBPSD) and its Cu4L4 cage complex alongside a
schematic of the generic formulation of these helical cages, in which the cores of the ligands can be
altered in attempts to construct analogous cages.

Herein we report the synthesis and structure of two enantiopure cages constructed using
dicarboxylate ligands with different core groups, shown in Scheme 1. It is found that a longer, more
curved ligand (L12−) is able to form an analogue of the original Cu4L4 cage, whereas a shorter and less
flexible ligand (L22−) clearly shows strain and is unable to form a fully closed cage complex.
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Scheme 1. Synthetic methodology for the two chiral diacids that have been used to synthesise cage 
complexes; the extended species H2L1 and the shorter H2L2. 

2. Materials and Methods 

2.1. General Details 

All reagents and solvents were purchased from standard commercial suppliers and used as 
received, except for 9,10-dimethyl-9,10-dihydro-2,3,6,7-tetracrboxyl-9,10-ethanoanthracene, which 
was synthesised according to a literature preparation [51]. NMR spectra were obtained using a Bruker 
Avance 400 spectrometer operating at 400 MHz (1H) or 100 MHz (13C). FT–IR spectra were collected 
using an Agilent Carey 630 diamond attenuated total reflectance spectrometer. Mass spectra were 
collected using a Micromass platform electrospray mass spectrometer. TGA data were collected using 
a Mettler TGA/DSC 1 instrument (5 K/min under N2 atmosphere). Elemental analyses were 
conducted at the London Metropolitan University. 
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Scheme 1. Synthetic methodology for the two chiral diacids that have been used to synthesise cage
complexes; the extended species H2L1 and the shorter H2L2.

2. Materials and Methods

2.1. General Details

All reagents and solvents were purchased from standard commercial suppliers and used as
received, except for 9,10-dimethyl-9,10-dihydro-2,3,6,7-tetracrboxyl-9,10-ethanoanthracene, which was
synthesised according to a literature preparation [51]. NMR spectra were obtained using a Bruker
Avance 400 spectrometer operating at 400 MHz (1H) or 100 MHz (13C). FT–IR spectra were collected
using an Agilent Carey 630 diamond attenuated total reflectance spectrometer. Mass spectra were
collected using a Micromass platform electrospray mass spectrometer. TGA data were collected using
a Mettler TGA/DSC 1 instrument (5 K/min under N2 atmosphere). Elemental analyses were conducted
at the London Metropolitan University.

2.2. Synthesis and Characterisation

Synthesis of H2L1: A suspension of l-leucine (150 mg, 1.15 mmol) and 9,10-dimethyl-9,10-dihydro-
2,3,6,7-tetracarboxyl-9,10-ethanoanthracene (190 mg, 0.463 mmol) was added to a round-bottomed flask
with acetic acid (20 mL) and heated at 120 ◦C for four nights, during which time all solids were taken
into solution. After this time the light-yellow solution was poured over ice, forming a light-yellow
precipitate, which was recovered by filtration, washed with water and dried in vacuo. Yield: 172.5 mg,
62%. m.p. 195–198 ◦C. Found: C, 63.56; H, 5.96; N, 3.99%; C34H36N2O8. Requires: C, 63.32; H, 6.15; N,
3.89%. δH (400 MHz, d6–DMSO): 0.81 (m, 12H, CH2CHMe2); 1.36 (m, 2H, CH2CHMe2); 1.67 (s, 4H,
CH2CH2); 1.8 (m, 2H, CH2CHMe2); 2.21 (s, 6H, Mecore); 2.16 (m, 2H, CH2CHMe2); 4.74 (dd, 3J = 12,
3J = 4.2 Hz, 2H, NCH); 7.78 (s, 4H, ArH). δC (100 MHz, d6–DMSO): 21.1; 23.5; 26.1; 37.1; 43.4; 44.3;
50.6; 116.6; 129.7; 152.8; 168.0; 171.3. υmax/cm−1: 2958w; 2871w; 1841w; 17,700m; 1702s; 1617m; 1534w;
1465w; 1442w; 1377s; 1321w; 1250m; 1205m; 1155m; 1088w; 991w; 911w; 869w; 752m. m/z (ES−):
504.1 ([M-Leu + OH]−, calculated for C26H26NO8

−, 504.2), 100%; 599.2 ([M − H]−, calculated for
C34H35N2O8

−, 599.2) 93%.

Synthesis of H2L2: The synthesis was based on a literature report with minor modifications [52].
Pyromellitic dianhydride (0.707 g, 3.24 mmol) and l-alanine (0.752 g, 8.44 mmol) were added to a
round-bottomed flask with acetic acid (40 mL) and heated under reflux overnight, giving a colourless
solution. Concentrated hydrochloric acid (20 mL) was added to the solution, which was allowed to
concentrate by evaporation overnight to give a white powder. The product was collected by vacuum
filtration, washed with cold water, added dropwise, and dried in air. Yield: 0.703 g, 60%. δH (400 MHz,
d6–DMSO): 1.59 (d, 6H, Me); 4.96 (q, 2H, NCH); 8.30 (s, 2H, ArH); 13.32 (s, 2H, CO2H). δC (100 MHz,
d6–DMSO): 15.14; 48.02; 118.45; 137.26; 165.92; 171.14. υmax/cm−1: 3570w; 3146w; 3007w; 2953w;
1758w; 1702s; 1618w; 1561w; 1459m; 1383m; 1364m; 1304m; 1252w; 1208w; 1171w; 1154w; 1132w;
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1104w; 1067m; 1018wm; 934m; 854m; 822w; 802w; 761w; 726m; 677w. m/z (ES−): 315.1 ([M-COO-H]−,
calculated for C15H11N2O6

−, 315.1) 100%; 359.1 ([M − H]−, calculated for C16H11N2O8
−, 359.1) 20%.

Synthesis of [Cu4(L1)4(DMF)(OH2)3]·3.5DMF·9.5H2O (compound 1): H2L1 (10 mg, 16.7 µmol) and
Cu2(OAc)4 (6.0 mg, 33.3 µmol) were added to DMF (1 mL) and sonicated to dissolve. The solution
was heated at 85 ◦C for two nights during which time light blue/green block-shaped crystals formed,
which were recovered by vacuum filtration. Yield: 2.2 mg, 61%. Found: C, 56.04; H, 5.58, N, 5.59%;
C139H149N9O36Cu4·3.5DMF·9.5H2O ([Cu4(L1)4 (DMF) (OH2)3]·3.5DMF·9.5H2O). Requires: C, 56.14;
H, 6.02; N, 5.31%. υmax/cm−1: 2955w; 2869w; 1771w; 1709 s; 1637m; 1465w; 1411m; 1377s; 1351m;
1259w; 1204w; 1156w; 1101w; 1062w; 992w; 913w; 870w; 805w; 771w; 755m; 729w; 660m. m/z (ES+):
2649.7 (cage + H)+, calculated for C136H136Cu4N8O32

+, 2647.645; 2708.7 (cage + H2O + MeCN + H)+,
calculated for C138H141Cu4N9O33

+, 2706.683. TGA: On-set, 70 ◦C, mass loss = 10% (calculated 11.8%
for loss of two non-coordinated H2O and 4.5 DMF molecules and all coordinated solvent); decomp,
350 ◦C.

Synthesis of [Co8(L2)8(DABCO)3(OH2)8]·solvent (compound 2): H2L2 (10 mg, 28 µmol), DABCO
(1.6 mg, 14 µmol), and Co(NO3)2·6H2O (8.1 mg, 28 µmol) were added to DMF (2 mL) and sonicated
to dissolve. The solution was heated at 100 ◦C for three nights during which time crystalline
royal blue plates formed. Only one or two small single crystals formed, preventing bulk analysis.
m/z (ES−): 955.9 ([Co4(L2)4(DABCO)(H2O)3(OH)]NO3)2−, calculated for C70H59Co4N11O39

2−, 956.0;
1841.9 ([Co4(L2)4(DABCO)]NO3)-, calculated for C70H52Co4N11O35

−, 1842.0.

2.3. X-ray Crystallography

Single crystal X-ray diffraction data were obtained using the MX1 beamline at the Australian
Synchrotron, operating at 17.4 keV (λ = 0.7108 Å) [53]. The data were collected at 100 K using an
open-flow N2 cryostream. The data collections were controlled using the software BluIce [54]. The initial
data indexing and reduction was conducted using the XDS software suite [55]. Structures were solved
using SHELXT and refined against F2 by standard least squares methods using SHELXL-2018 [56,57].
The programs X-Seed or Olex2 were used as a graphical interface to the SHELX program suite [58,59].
Non-hydrogen atoms were refined using an anisotropic model, except for a few exceptions, as shown
in Appendix A. All hydrogen atoms were placed in calculated positions and refined using a riding
model. The data were treated with the SQUEEZE routine of PLATON to account for regions of poorly
ordered solvent, as shown in Appendix A [60]. Crystallographic data have been deposited in the
Cambridge Structural Database (2006794–2006795) and can be obtained from www.ccdc.cam.ac.uk.
Special refinement details are provided in both Appendix A and CIF files.

3. Results

3.1. Design and Synthesis of Ligands

Two dicarboxylate ligands, containing amino acid residues, were synthesized as analogues of the
sulfone–diphthalimide species that we previously used to form helical [Cu4(LeuBPSD)4] cages [35].
The two core groups used represent a longer, bent ligand using a 9, 10-dimethylethanoanthracene
derivative (H2L1) and a shorter, more rigid ligand using a pyromellitic acid building block (H2L2).
Pyromelliticdiimides are well known in the literature. For example, isophthalate derivatives have been
used in MOFs with high sorption capacities [60], dipyridyl derivatives have been used in a number of
coordination polymers [61–64], as have thioether derivatives [65], and the diimide core has also been
incorporated into a number of macrocycles and receptors [66–71]. Pyromelliticdiimides based on amino
acid derivatives have been reported in hydrogen-bonding systems and coordination polymers [72–79].
The applicability of the dihydroanthracene core group is hinted at in the literature with metallocages
reported containing shorter ligands using bicyclooctene as a core group [36]; the ethanodihydroanthracene
moiety can be viewed as an analogous, extended core group with the same geometry. This core group,

www.ccdc.cam.ac.uk
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as a bis-catechol, has been used in the synthesis of a uranyl lantern-type cage, discrete silane assemblies,
and a Mn12 metallacycle [80–82].

9,10-Dimethyl-9,10-ethanoanthracene-2,3,6,7-tetracarboxylic acid was synthesised in three steps
by a literature procedure [51]. A low yielding cyclisation step proved rather prohibitive for the large
scale synthesis of this material. The tetra-acid was reacted with leucine in acetic acid under reflux for
four nights, resulting in H2L1 being isolated as a pale, yellow solid, as shown in Scheme 1. H2L2 was
synthesized by the slight amendment of a known method [52].

3.2. Synthesis and Structure of Helicate-Type Complexes

The reaction of H2L1 with copper acetate at an elevated temperature in DMF yielded a blue/green
crystalline material suitable for analysis by single crystal X-ray diffraction (compound 1). The structure,
solved and refined in the orthorhombic setting C2221, reveals the anticipated lantern-type helical
complex, [Cu4(L1)4(solvent)4]. The asymmetric unit contains one half of a cage (comprising one copper
paddlewheel and one and two half ligands). The overall cage has the two halves related by a two-fold
proper rotation that bisects the mid points of two ethanoanthracene core groups. The external facing
sites of the two paddlewheels are occupied by aqua ligands. The internal sites are occupied by one
DMF and one aqua ligand, which are disordered within the crystal structure. The cage has an internal
Cu···Cu distance of 9.225(3) Å, substantially longer than the prior sulfone-based analogue (ca. 7.2 Å).
Taking the internal cavity, minus coordinated solvent, as an approximate prolate spheroid, the internal
volume is ca. 380 Å3. The persistence of the cage in solution was confirmed by mass spectrometry
as a H2O/MeCN solvated complex. The cage does not possess a C4 axis along the Cu2···Cu2 vector,
with the paddlewheels themselves not aligned, although a pseudo four-fold rotation can be seen in
Figure 2 on the left. The complex has a helical pitch that results in the ligands coordinating at sites 90◦

apart between the two paddlewheels, analogous to the structures observed in studies of the smaller
sulfone-based ligand. It seems that the use of a longer ligand results in a complex that is somewhat
less regular in shape, presumably due to the enhanced flexibility of the core group, yet the overall
structural design is retained. The arrangement around the paddlewheels is not distorted, with imide
N···N distances between adjacent ligands in the range 6.29–6.39 Å.
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of two crystallographically unique complexes in the asymmetric unit. The nature of the complex is 
somewhat complicated to determine unambiguously due to crystallographic disorder, with several 
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Figure 2. Two views of the cage complex [Cu4(L1)4] showing only the coordinating oxygen atoms in
the solvent positions. Hydrogen atoms are omitted for clarity.

The reaction of H2L2 with cobalt nitrate at an elevated temperature in DMF yielded a few royal
blue crystals (compound 2) that were suitable to obtain moderate resolution single crystal X-ray
diffraction data using synchrotron radiation. Unfortunately, the yields were so low as to prohibit bulk
analysis other than by mass spectrometry of the reaction solution, as described below. The crystal
structure was solved and refined in the orthorhombic space group P21212 and contains halves of two
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crystallographically unique complexes in the asymmetric unit. The nature of the complex is somewhat
complicated to determine unambiguously due to crystallographic disorder, with several possible sites
for (de)protonation. However, the gross formulation is clear as a “dumbbell-like” complex consisting of
two pseudo-[Co(L2)4(DABCO)] units, bridged by a central DABCO ligand with an overall formulation
of [{Co4(L2)4(DABCO)(H2O)x}2(DABCO)], as shown in Figure 3. The two crystallographically unique
dumbbell complexes both contain an axis of rotation passing through the central DABCO ligand,
meaning that the two ends are symmetry equivalent. The two complexes appear to be compositionally
identical, although the crystallographic disorder is different and, for brevity, only the complex with the
more minor disorder is discussed below—see Appendix A for further crystallographic discussion.
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In both complexes, there is one major component of the disorder. The ends of this dumbbell
complex are a variation of the M4L4 cage motif, with the cage closed by the expected paddlewheel
motif at one end (that closest to the centre of the complex) yet capped by an unusual coordination
environment at the other end (the far ends of the complex, Figure 4). The two ends are bridged by a
DABCO ligand within the cavity of the cage. The Co2 unit at the end of the complex consists of two
octahedral cobalt ions. The one nearest the centre of the cavity is coordinated by four carboxylate
oxygen atoms and the DABCO ligand, as expected, but also by an aqua ligand. This aqua ligand
forms a bridge to the second Co ion, which is coordinated by only two of the carboxylate groups and
has three aqua ligands to complete its coordination sphere. The remaining two carboxylates of this
M4L4 unit are non-coordinating. Ambiguity arises from the nature of the bridging ligand (H2O, OH−,
or O2−) and the protonation state of the carboxylate groups (i.e., carboxylate vs. carboxylic acid); bond
lengths and crystal colour confirm the oxidation state of the metal ions as cobalt (II). The distances
between the bridging oxygen atom and non-coordinated oxygen atoms of the carboxylate groups are
ca. 2.7 Å and the angle subtended at the bridging oxygen atom is 104◦. These measurements strongly
suggest that this is a µ2 bridging H2O, acting as a hydrogen bond donor to the two carboxylates,
and therefore has the formula [{Co4(L2)4(DABCO)(H2O)4}2(DABCO)]. There are minor components
in both instances for which solvation within the coordination sphere cannot be fully resolved due to
their small occupancy and proximity to heavier elements. What can be found suggests tetrahedral
or non-standard coordination geometries for these positions, supported by the observation of crystal
colour (blue), which suggests some amount of tetrahedral CoII is present.

The two crystallographically unique complexes are different in terms of the distortion of the cage,
presumably a consequence of accommodating the disorder around the terminal Co2 units. One useful
way of measuring this distortion is by the distances between the imide nitrogen atoms of the adjacent L2
ligands. The complex containing two disordered Co positions adopts a “pinched” conformation, with
three N···N distances of 6.2 Å and one of 7.2 Å (measured at both ends of the cage). The measurements
are the same at both ends of the cage (i.e., there is no enhanced distortion of the N···N distance at the
non-paddlewheel node). The result is that there is a larger “window” on one face of the cage. The other
complex, with three disordered cobalt positions, contains N···N distances in the range 6.19–6.54 Å,
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again with no significant difference between the distances at the two ends of the cage. There is some
evidence of strain in the cages by examination of the Co-O bond lengths and the appreciable bowing of
the L2 ligands. The average of the Co-O bond lengths in the two paddlewheels is 2.03 Å, whereas
those in the pseudo-paddlewheels (measured only at the bottoms of these motifs, which are analogous
to a paddlewheel) average 2.06 Å. Whilst only a slight difference, this does suggest some strain at the
extremities of the complexes. The L2 ligands are significantly bowed away from planarity, which is
normally observed for pyromelliticdiimides [60–79]. Calculating a mean plane through the C and
N atoms of the pyromelliticdiimide core of L2 highlights that there is significant deviation away
from planarity, with the nitrogen atoms ca. 0.2 Å removed from the plane. The carbon atoms of the
alanine groups (formerly the α-carbon of the amino acid) are even further removed from the plane by
0.55–0.90 Å, highlighting the convex nature of the ligands in this complex and the apparent strain.

ESI mass spectrometry of the reaction solution shows both singly- and doubly-charged signals
corresponding to one end of the dumbbell complex, [Co4(L2)4(DABCO)] with some degree of
solvation, indicating that the cage is stable in solution, although not the dumbbell complex (not
unexpected, given the rather curious nature of the complex). A signal for a 1- ion matches
for [Co4(L2)4(DABCO)]NO3, suggesting the that the complex can exist in a non-solvated form,
presumably with the implication that the paddlewheels are fully closed. The 2- ion has a m/z value
that corresponds to [Co4(L2)4(DABCO)(H2O)3(OH)]NO3, which matches with the formulation seen
in the crystal structure (with the deprotonation of one water). These results suggest that the cage
complex is retained in the bulk, but not the dumbbell complex.

Chemistry 2020, 2 619 

 

two paddlewheels is 2.03 Å, whereas those in the pseudo-paddlewheels (measured only at the 
bottoms of these motifs, which are analogous to a paddlewheel) average 2.06 Å. Whilst only a slight 
difference, this does suggest some strain at the extremities of the complexes. The L2 ligands are 
significantly bowed away from planarity, which is normally observed for pyromelliticdiimides [60–
79]. Calculating a mean plane through the C and N atoms of the pyromelliticdiimide core of L2 
highlights that there is significant deviation away from planarity, with the nitrogen atoms ca. 0.2 Å 
removed from the plane. The carbon atoms of the alanine groups (formerly the α-carbon of the amino 
acid) are even further removed from the plane by 0.55–0.90 Å, highlighting the convex nature of the 
ligands in this complex and the apparent strain. 
ESI mass spectrometry of the reaction solution shows both singly- and doubly-charged signals 
corresponding to one end of the dumbbell complex, [Co4(L2)4(DABCO)] with some degree of 
solvation, indicating that the cage is stable in solution, although not the dumbbell complex (not 
unexpected, given the rather curious nature of the complex). A signal for a 1- ion matches for 
[Co4(L2)4(DABCO)]NO3, suggesting the that the complex can exist in a non-solvated form, 
presumably with the implication that the paddlewheels are fully closed. The 2- ion has a m/z value 
that corresponds to [Co4(L2)4(DABCO)(H2O)3(OH)]NO3, which matches with the formulation seen in 
the crystal structure (with the deprotonation of one water). These results suggest that the cage 
complex is retained in the bulk, but not the dumbbell complex. 

 

 

Figure 4. One end of the “dumbbell-type” complex shown in Figure 3, in which the coordination 
environment of the terminal end (top of picture) and the appreciable bowing of the L2 ligands can be 
seen (hydrogen atoms are omitted for clarity) alongside a schematic of the unusual terminal 
coordination environment. 

4. Discussion 

It is well known that copper forms a paddlewheel motif when combined with carboxylates, as 
reported for a large number of cage complexes [32–42]. For this reason, it has been the mainstay of 
our efforts to form lantern-type cages. Unfortunately, we were only able to isolate an identifiable 
product using H2L1 in combination with copper, with the reactions using H2L2 and copper giving 
solutions that could not be properly characterized. NMR, in particular, proves challenging, due to 
the paramagnetism of the copper(II) ion. Perhaps it can be reasoned that a copper (II) analogue of 
compound 2 would not form, as the coordination environment is not ideally suited to the 

Figure 4. One end of the “dumbbell-type” complex shown in Figure 3, in which the coordination
environment of the terminal end (top of picture) and the appreciable bowing of the L2 ligands can
be seen (hydrogen atoms are omitted for clarity) alongside a schematic of the unusual terminal
coordination environment.

4. Discussion

It is well known that copper forms a paddlewheel motif when combined with carboxylates,
as reported for a large number of cage complexes [32–42]. For this reason, it has been the mainstay of
our efforts to form lantern-type cages. Unfortunately, we were only able to isolate an identifiable product
using H2L1 in combination with copper, with the reactions using H2L2 and copper giving solutions that
could not be properly characterized. NMR, in particular, proves challenging, due to the paramagnetism
of the copper(II) ion. Perhaps it can be reasoned that a copper (II) analogue of compound 2 would
not form, as the coordination environment is not ideally suited to the coordination preferences of the
ion (presumably necessitating the N-donor DABCO ligand in a Jahn–Teller distorted axial position).
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Similarly, a cobalt (II) analogue of compound 1 could not be prepared, again with characterization
issues regarding paramagnetic nuclei. Cobalt–carboxylate paddlewheels are somewhat rarer in the
literature than their copper counterparts, and perhaps the DABCO ligand assists in stabilizing the
paddlewheel that we do observe. Whilst it is unfortunate that direct comparisons between complexes
with identical metal ions can be made, there does appear to be some rationale for why this may be
the case.

The cage-type complexes obtained using H2L1 and H2L2 demonstrate both the versatility of the
synthetic approach and its limitations. It is clear that there is a drive towards the formation of lantern-type
structures, a well-known M4L4 motif for achiral cages (in which rigid ligands connect the paddlewheels
in a mesocate-type arrangement with the ligands running straight between the paddlewheels), but one
which is less explored for helical complexes [35–42]. The [Cu4(L1)4(solvent)4] cage forms as anticipated.
Whilst the conformation of the cage is distorted away from an idealized C4 symmetric species in the
solid-state structure, it is likely that there is some structural relaxation in solution (one must always be
careful not to extrapolate solution behaviour from a static crystallographic model).

It seems that the anticipated M4L4-type motif in compound 2 is being disrupted due to the use of
a shorter and more rigid ligand than H2L1 and those used in previous studies. Although the change is
most pronounced at the terminal coordination sites, there are other features in the complex, namely,
the extreme bowing of the ligands and subtle changes to Co-O bond lengths, which indicate that the
system is under some strain. Clearly the rigidity of the ligand, combined with size, has a substantial
impact. The earlier report by Chen et al. demonstrated that short diimides can be used to form cages,
in this case using a bicyclooctene core [36]. Given the similarity in length between bicyclooctene
and phenyl cores, it is therefore evident that the rigidity of the pyromelliticdiimide is the governing
factor in limiting the formation of a complete lantern-type cage. Perhaps this is also borne out by our
published use of larger, NDI-based ligands that formed octahedral cages, as the rigidity presumably
disfavoured the formation of M4L4 complexes [43,44]. The internal bridging DABCO may help to
stabilize the cages in [{Co4(L2)4(DABCO)(H2O)4}2(DABCO)]. Whilst it is far from definitive, we were
unable to obtain any crystalline material using H2L2 in the absence of DABCO, other than analogues
of previously reported coordination polymers, thus suggesting that the role of DABCO is essential [79].

5. Conclusions

In our efforts to expand the scope of a generalized approach to forming chiral lantern-type cages,
complexes containing paddlewheel and “pseudo-paddlewheel” motifs were synthesized using the
chiral diacids H2L1 and H2L2. The [Cu4(L1)4] cage adopts the anticipated lantern-type helical structure
with a larger central cavity than our previously reported sulfone-based cage (ca. 380 Å3). The cages
within the [{Co4(L2)4(DABCO)(H2O)x}2(DABCO)] complexes retain the overall general design but are
clearly under some strain, highlighted by the broken paddlewheels at their extremities. These results
show promising initial steps towards a generic approach for the formation of enantiopure helical
compounds, with the condition/limitation that the core group of the ligand contains the correct angular
preference and flexibility. These results are encouraging to our ongoing efforts to expand the structural
types accessible from this general approach.
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Appendix A

Crystallographic Data and Special Refinement Details

Crystal data for 1: C139H149Cu4N9O36, M = 2775.82, clear green block, 0.02 × 0.01 × 0.01 mm3,
orthorhombic, space group C2221, a = 17.052(3) Å, b = 27.160(5) Å, c = 37.010(7) Å, V = 17,140(6) Å3,
Z = 4, Dc = 1.076 g/cm3, F000 = 5800, ADSC Quantum 210r, synchrotron radiation (MX1, Australian
Synchrotron), λ = 0.7108 Å, T = 100.0K, 2θmax = 52.9◦, 45,853 reflections collected, 14,407 unique
(Rint = 0.1457). Final GooF = 1.029, R1 = 0.0861, wR2 = 0.2282, R indices based on 7756 reflections with
I > 2σ(I) (refinement on F2), 884 parameters, 178 restraints. Lp and absorption corrections applied,
µ = 0.554 mm−1.

Data for compound 1 were treated using the SQUEEZE routine of PLATON, finding two large
voids per unit cell and several smaller pockets. Density accounting for 292 e− was located per cage
complex. This tentatively accounts for 15 H2O and 3.5 DMF molecules, more than is found by TGA,
although solvent is likely lost in handling and transit. A number of restraints were required for bond
lengths and displacement elipsoids, primarily those associated with the iosbutyl chains and disordered
solvent sites, as shown in the information embedded in CIF file.

Crystal data for 2: C146H124Co8N22O72, M = 3810.10, blue plate, 0.16 × 0.10 × 0.04 mm3, orthorhombic,
space group P21212, a = 35.489(7) Å, b = 21.851(4) Å, c = 25.061(5) Å, V = 19,434(7) Å3, Z = 4, Dc = 1.302 g/cm3,
F000 = 7784, ADSC Quantum 210r, synchrotron radiation (MX1, Australian Synchrotron), λ = 0.7108 Å,
T = 100.0K, 2θmax = 50.0◦, 125,332 reflections collected, 34,118 unique (Rint = 0.0826). Final GooF = 1.023,
R1 = 0.0859, wR2 = 0.2263, R indices based on 27,536 reflections with I > 2σ(I) (refinement on F2),
2356 parameters, 54 restraints. Lp and absorption corrections applied, µ = 0.753 mm−1.

The structural model contains significant disorder at the terminal positions of the complexes,
and the data were treated using SQUEEZE, due to large spaces between the complexes where no
model could be applied. However, no restraints of any kind (other than some restraints for disordered
DABCO ligands) were applied to the refinement, and the structure is reported in an unadulterated
form. All atoms, other than those associated with the minor components of the disorder, were located
and freely refined with anisotropic models. No hydrogen atoms were modelled on the aqua ligands,
but these are included in the molecular formula. Some large displacement parameters remain in the
model, indicative of disorder in the ligands that could not be modelled. The final refinement has a
non-zero Flack parameter, 0.088 (7), which is likely a result of slightly low quality data and large areas
of disorder in the model.

The complex containing atoms Co1–Co4 contains three disordered Co positions at the ends,
refined with 50:30:20 occupancies by means of equalizing the µiso averaged displacement parameters.
There is some evidence of a very minor fourth position (Q peak of apparent Co site < 2 e−) for which
modelling was not attempted. The aqua ligands were located for the major occupancy site and refined
isotropically; those belonging to the minor occupancy positions could not be located. Both DABCO
ligands contained disorder that was modelled with fixed 50:50 occupancies.

The complex containing atoms Co5–Co8 contains two disordered Co positions at the ends,
refined with 70:30 occupancies by means of equalizing the µiso averaged displacement parameters.
Aqua ligands to complete the octahedral coordination sphere were all located for the major component
(O only, isotropic model). The central DABCO ligand of the dumbbell contains disorder with two
C2H4 groups modelled with fixed 50:50 occupancies, and one C2H4 group is modelled with large
displacement parameters, as a disordered model could not be satisfactorily refined. Two carboxylate
oxygen atoms (O44 and O52) are modelled as disordered (30:70) in line with being either coordinated
to the minor occupancy cobalt position or not.
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