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Abstract: The one-pot multistep ethyltellurenylation reaction of epoxides with elemental tellurium
and lithium triethylborohydride is described. The reaction mechanism was experimentally
investigated. Dilithium ditelluride and triethyl borane, formed from elemental tellurium and lithium
triethylborohydride, were shown to be the key species involved in the reaction mechanism. Epoxides
undergo ring-opening reaction with dilithium ditelluride to afford β-hydroxy ditellurides, which are
sequentially converted into the corresponding β-hydroxy-alkyl ethyl tellurides by transmetalation
with triethyl borane, reasonably proceeding through the SH2 mechanism.
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1. Introduction

Organoselenium [1,2] and organotellurium [3] compounds continue to find wide application in
chemical sciences and biology [4–8]. Tellurium-containing derivatives play an important role in organic
synthesis [3,9], materials science [10,11], and medicinal chemistry [8,12–15]. The incorporation
of tellurium atoms into organic structures is often a rewarding strategy in developing new
enzyme modulators [14–17], catalysts [18], smart materials [10,11], and glutathione-peroxidase-like
antioxidants [19–25]. Additionally, often undergoing regio- and stereo-selective transformations,
organotellurium compounds can be employed in synthetically useful functional group conversion
reactions [26,27] and carbon-carbon bond-forming processes [28–31]. Owing to these features,
tellurenylation reactions provide an attractive functional handle for further elaboration. Selected
examples of biological and synthetic applications of organotellurium compounds are presented in the
Figure 1.

The development of new, reliable, and general methodologies towards these chalcogen-containing
organic molecules is thus highly sought after in organic synthesis. Particularly, the possibility to access
densely functionalised and sp3-rich compounds, characterised by high molecular complexity, enables
the possibility to define and explore new chemical space and plays a key role in terms of successfully
developing new catalysts and drug candidates [32,33]. Furthermore, sp3-rich organochalcogens
bearing O- and N-containing functionalities have been demonstrated to possess improved catalytic
and pharmacological properties [15–17,20,23,34]. However, although a number of methods for the
synthesis of selenides and tellurides have been reported, a number of limitations remain, including
functional-group compatibility and the harsh reaction conditions. Therefore, the development of mild
procedures for the synthesis of densely functionalised molecules still remains challenging.
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Figure 1. Biological and synthetic applications of organotellurium compounds (selected examples). 
Part a. A: a tellurium-containing biopolimeric nanogel for anticancer therapy [11]; B: tellurium-
containing carbonic anhydrases inhibitors with anticancer activity [15]; LQ7: a ditelluride active as 
antiparasitic agent [29]; ent-nakamurol A: an organotelluride is involved in the key step of its total 
synthesis [35]. Part b. Functionalization of organotellurium compounds [29,31]. 

Three-membered heterocycles such as epoxides and aziridines, often undergoing regioselective 
nucleophilic ring-opening reactions (NRORs), represent convenient starting materials for the 
synthesis of functionalised chalcogen-containing systems [36]. A number of ring-opening-based 
procedures for the synthesis of hydroxy- and amino-substituted selenides and tellurides have been 
developed over the last decade [37–42]. Such functionalised chalcogenides have also been employed 
as intermediates for the synthesis of valuable compounds [35,43,44] and as organocatalysts for the 
asymmetric addition of diethylzinc to aldehydes [45]. 

In this communication, as a part of our growing interest in the study of the chemistry of 
organotellurium compounds, we report a study on the mechanism of an unexpected reaction of 
epoxides with elemental tellurium and lithium triethylborohydride, leading to the formation of β-
hydroxy-alkyl ethyl tellurides. 

2. Materials and Methods  

2.1. Experimental Section 

All reactions were carried out in an oven-dried glassware. Solvents were dried using a solvent 
purification system (Pure-Solv™, Darmstadt, Germany). All commercial materials were purchased 
from various commercial sources and used as received, without further purification. Flash column 
chromatography purifications were performed with Silica gel 60 (230–400 mesh). Thin layer 
chromatography was performed with TLC plates Silica gel 60 F254, which was visualised under UV 

Figure 1. Biological and synthetic applications of organotellurium compounds (selected
examples). Part a. A: a tellurium-containing biopolimeric nanogel for anticancer therapy [11];
B: tellurium-containing carbonic anhydrases inhibitors with anticancer activity [15]; LQ7: a ditelluride
active as antiparasitic agent [29]; ent-nakamurol A: an organotelluride is involved in the key step of its
total synthesis [35]. Part b. Functionalization of organotellurium compounds [29,31].

Three-membered heterocycles such as epoxides and aziridines, often undergoing regioselective
nucleophilic ring-opening reactions (NRORs), represent convenient starting materials for the synthesis
of functionalised chalcogen-containing systems [36]. A number of ring-opening-based procedures for
the synthesis of hydroxy- and amino-substituted selenides and tellurides have been developed over
the last decade [37–42]. Such functionalised chalcogenides have also been employed as intermediates
for the synthesis of valuable compounds [35,43,44] and as organocatalysts for the asymmetric addition
of diethylzinc to aldehydes [45].

In this communication, as a part of our growing interest in the study of the chemistry of
organotellurium compounds, we report a study on the mechanism of an unexpected reaction of
epoxides with elemental tellurium and lithium triethylborohydride, leading to the formation of
β-hydroxy-alkyl ethyl tellurides.

2. Materials and Methods

2.1. Experimental Section

All reactions were carried out in an oven-dried glassware. Solvents were dried using a
solvent purification system (Pure-Solv™, Darmstadt, Germany). All commercial materials were
purchased from various commercial sources and used as received, without further purification. Flash
column chromatography purifications were performed with Silica gel 60 (230–400 mesh). Thin layer
chromatography was performed with TLC plates Silica gel 60 F254, which was visualised under UV light,
or by staining with an ethanolic acid solution of p-anisaldehyde followed by heating. High resolution
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mass spectra (HRMS) were recorded by electrospray ionization (ESI). In the control experiment with
degassed solvent, tetrahydrofuran (THF) was degassed by freeze–pump–thaw cycles (×3) on the high
vacuum line.

The 1H and 13C-NMR spectra were recorded in CDCl3 with Mercury 400, Bruker 400 Ultrashield
(Bruker, Milan, Italy), and Varian Gemini 200 spectrometers operating at 400 MHz for 1H and 100 MHz
for 13C. NMR signals were referenced to nondeuterated residual solvent signals: 7.26 ppm for 1H
and 77.0 ppm for 13C. The 125Te-NMR spectra were recorded in CDCl3 at 126 MHz with a Bruker
Ultrashield 400 Plus instrument (Bruker, Milan, Italy). (PhTe)2 was used as an external reference
(δ = 420 ppm). Chemical shifts (δ) are given in parts per million (ppm), and coupling constants (J)
are given in Hertz (Hz), rounded to the nearest 0.1 Hz. The 1H-NMR data are reported as follows:
chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet,
dd = doublet of doublet, bs = broad singlet, ap = apparent), coupling constant (J), and assignment.
Mass spectra (MS) were determined by ESI (Thermo Fisher Scientific, Milan, Italy).

Ditelluride 3a [46] and diselenide 6a [47] were prepared from 2-((benzyloxy)methyl)oxirane
according to procedures reported in the literature.

2.2. General Procedure for the Synthesis of β-Hydroxy-alkyl Ethyl Tellurides 2

Li2Te2 was generated according to the literature [48,49] from 1.0 mL of a 1 M THF solution of
LiEt3BH (1.0 mmol, 1.0 eq.) and elemental tellurium powder (128 mg, 1.0 mmol, 1.0 eq.), stirred
at ambient temperature under inert atmosphere (N2) for 6 h. The dark red suspension of Li2Te2 in
THF was treated with the epoxide (1.0 mmol, 1.0 eq.) and the reaction was stirred for 6 h at ambient
temperature. Afterwards, the mixture was diluted with Et2O (10 mL), filtered through a short pad
of celite, and washed with saturated aq. NH4Cl and then with H2O (2 × 5 mL). The organic phase
was dried over Na2SO4, filtered and evaporated under reduced pressure. The crude residue was then
purified by flash chromatography (Et2O/petroleum ether) to yield β-hydroxy-alkyl ethyl tellurides 2.

2.2.1. Synthesis of 1-(Benzyloxy)-3-(ethyltellanyl)propan-2-ol 2a

Following the general procedure, 2-((benzyloxy)methyl)oxirane (152 µL, 1.0 mmol) and elemental
tellurium (128 mg, 1.0 mmol) gave, after purification by flash chromatography (Et2O/petroleum ether
1:1), 2a as a colourless oil (61 mg, 38%) [49]. 1H-NMR (200 MHz, CDCl3): δ (ppm) 1.60 (3H, t, J = 7.6 Hz,
CH3), 2.63 (2H, ap q, J = 7.6 Hz, CH3CH2Te), 2.63 (1H, bs, OH), 2.76–2.89 (2H, m, CH2Te), 3.41–3.48
(1H, m, CHaHbO), 3.59 (1H, dd, J = 4.2, 9.6 Hz, CHaHbO), 3.45–3.97 (1H, m, CHOH), 4.55 (2H, ap s,
CH2Ph), 7.26–7.40 (5H, m). 13C-NMR (100 MHz, CDCl3): δ (ppm) −4.5(CH3CH2Te), 7.7 (CH2Te), 17.8,
70.6, 73.4, 74.3, 127.8, 127.8, 128.4, 137.9. 125Te-NMR (126 MHz, CDCl3): δ (ppm) 213.6.

2.2.2. Synthesis of 1-(Ethyltellanyl)-3-isopropoxypropan-2-olol 2b

Following the general procedure, 2-(isopropoxymethyl)oxirane (32 µL, 0.25 mmol), LiEt3BH
(0.25 mL, 0.25 mmol) and elemental tellurium (32 mg, 0.25 mmol) gave, after purification by flash
chromatography (Et2O/petroleum ether 1:1), 2b as a colourless oil (30 mg, 44%). 1H-NMR (200 MHz,
CDCl3): δ (ppm) 1.18 (6H, ap d, J = 6.5 Hz), 1.62 (3H, t, J = 7.6 Hz), 2.64 (2H, ap q, J = 7.6 Hz), 2.75 (1H, ap
s, OH), 2.74–2.92 (CH2Te), 3.38 (1H, dd, J = 6.7, 9.3 Hz, CHaHbO), 3.54 (1H, dd, J = 3.6, 9.3 Hz, CHaHbO),
3.59–3.67 (1H, m, CH(CH3)2), 3.83–3.92 (1H, m, CHOH). 13C-NMR (50 MHz, CDCl3): δ (ppm) −4.6
(CH3CH2Te), 7.6 (CH2Te), 17.5 (CH3), 21.8, 71.3, 71.6, 72.2. MS (ESI, positive) [M + H]+ 276.8.

2.2.3. Synthesis of 1-(Ethyltellanyl)hexan-2-ol 2c

Following the general procedure, 2-butyloxirane (25 mg, 0.25 mmol), LiEt3BH (0.25 mL, 0.25 mmol)
and elemental tellurium (32 mg, 0.25 mmol) gave, after flash chromatography (Et2O/petroleum ether
2:1), 2d as a colourless oil (31 mg, 48%) [49]. 1H-NMR (200 MHz, CDCl3): δ (ppm): 0.86–0.97 (3H, m,
CH3), 1.24–1.62 (6H, m, CH2), 1.61 (3H, t, J = 7.6 Hz), 2.16 (1H, ap s, OH), 2.64 (2H, ap q, J = 7.6 Hz),
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2.71–2.94 (2H, m, CH2Te), 3.73–3.78 (1H, m, CHOH). 13C-NMR (100 MHz, CDCl3); δ (ppm): −4.7, 17.6,
14.6, 15.3, 23.3, 28.6, 38.0, 73.3. HRMS (ESI) calculated for C8H18NaOTe: 283.0318; found: 283.0331.

2.2.4. Synthesis of 1-(Ethyltellanyl)propan-2-ol 2d

Following the general procedure, 2-methyloxirane (70 µL, 1.0 mmol), LiEt3BH (1.0 mL, 1.0 mmol)
and elemental tellurium (126 mg, 1.0 mmol) gave, after flash chromatography (Et2O/petroleum ether
1:1), 2d as a colourless oil (45 mg, 41%) [49]. 1H-NMR (200 MHz, CDCl3): δ (ppm) 1.30 (3H, d,
J = 6.1 Hz, CH3), 1.61 (3H, t, J = 7.6 Hz, CH3CH2), 2.24 (1H, bs, OH), 2.63–2.72 (2H, m, CH3CH2), 2.73
(1H, dd, J = 12.2, 7.4 Hz, CHaHbTe), 2.87 (1H, dd, J = 4.6, 12.2 Hz, CHaHbTe), 3.78–4.02 (1H, m, CHOH).
13C-NMR (100 MHz, CDCl3): δ (ppm) −4.7 (CH3CH2Te), 16.0, 17.7, 23.7, 67.3.

Copy of 1H-NMR, 13C-NMR, and 125Te-NMR spectra can be found in Supplementary Materials.

2.2.5. Control Experiment with the Radical Inhibitor

A solution of 3,3’-ditellanediylbis(1-(benzyloxy)propan-2-ol) 3a (29 mg, 0.05 mmol) and BHT
(3,5-di-tert-butyl-4-hydroxytoluene, 22 mg, 0.1 mmol) in dry THF (2 mL) was treated with triethylborane
(0.1 mmol, 100 µL of a 1 M solution in THF). The reaction mixture was stirred at ambient temperature
for 6 h, and afterwards, the solvent was removed under vacuum.

3. Results

During the course of our studies on the reactivity of strained heterocycles with selenium-centered
nucleophiles we developed convenient routes towards generating a variety of hydroxy-, amino-,
and mercapto-substituted Se-containing systems [50–53]. For example, through the tuning of the
stoichiometry and the conditions of the reaction of (Me3Si)2Se [(bis(trimethylsilyl)selenide, a synthetic
equivalent of hydrogen selenide] with epoxides, thiiranes, and aziridines, we were able to successfully
achieve a range of functionalised selenols [50], selenides, and diselenides [47].

Attracted by the synthetic utility and versatility of organotellurium compounds, we recently
moved to evaluate the chemistry of tellurium-centered nucleophiles with strained heterocycles [46,49].
The poor stability of (Me3Si)2Te [48,49] prompted us to employ dilithium telluride and dilithium
ditelluride, generated from elemental tellurium and lithium triethylborohydride (superhydride),
as tellurenylation reagents for the NRORs of epoxides and aziridines [49]. However, while the
ring-opening of epoxides with Li2Te provided access to symmetrical β-hydroxy-tellurides 1 (Scheme 1,
part a), the reaction with Li2Te2 gave almost exclusively β-hydroxy-alkyl ethyl tellurides 2 instead of
the expected β-hydroxy-ditellurides 3, which were isolated only in trace amounts (Scheme 1, part b).
Intrigued by this result, we wished to deeper investigate such a transformation in order to establish
the mechanism involved in the formation of asymmetrical β-hydroxy-alkyl ethyl tellurides 2.
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Scheme 1. Reactivity of epoxides with Li2Te and Li2Te2, generated from elemental tellurium under 
lithium triethylborohydride conditions. (a) Synthesis of tellurides 1. (b) Formation of β-hydroxy-alkyl 
ethyl tellurides 2. 

Scheme 1. Reactivity of epoxides with Li2Te and Li2Te2, generated from elemental tellurium under
lithium triethylborohydride conditions. (a) Synthesis of tellurides 1. (b) Formation of β-hydroxy-alkyl
ethyl tellurides 2.

Notably, this ethyltellurenylation reaction proved to be general and differently substituted epoxides
could be smoothly converted into the corresponding β-hydroxy-alkyl ethyl tellurides through this
one-pot multistep procedure (Scheme 2).
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Scheme 2. One-pot ethyltellurenylation of epoxides. Traces of ditellurides 3a–d (3%–7%) were detected
in the crude material. Isolated yields are reported.

A plausible explanation for the formation of unsymmetrical tellurides 2 involves the
transmetalation of triethylborane with β-hydroxy-ditellurides 3. However, an alternative path
could proceed through the ring-opening of epoxides with tris(ethyltelluro)borane 4 (Scheme 3) which,
in principle, could be generated from dilithium ditelluride and triethyl borane. A series of control
experiments were therefore undertaken in order to test these hypotheses.

We initially evaluated whether tris(ethyltelluro)borane 4 could be generated upon the treatment of
elemental tellurium with lithium triethylborohydride. However, the formation of 4 was not observed
under the standard reaction conditions (Scheme 3, reaction a). Traces of 4 were not detected performing
the reaction in a coaxial NMR tube and monitoring its progress over the time.

On the basis of these results, we next turned our attention to evaluating whether under the studied
conditions ditellurides 3 could behave as precursors of β-hydroxy-alkyl ethyl tellurides 2. We recently
developed an on-water methodology to access functionalised dialkyl ditellurides from elemental
tellurium, sodium hydroxymethanesulfinate, and strained heterocycles [46]. Therefore, we employed
this route to prepare β-hydroxy-ditelluride 3a and then we studied its reactivity with organoboranes.
As a result, 3a was thus treated with lithium triethylborohydride and, pleasingly, β-hydroxy-alkyl
ethyl telluride 2a was formed in 42% yield (Scheme 3, reaction b). However, under these conditions
the alkyltellurolate 5a, arising from the LiBEt3H-induced reduction of the ditelluride 3a, could be the
species actually involved in the formation of 2a. Unequivocal proof for the direct involvement of
ditelluride 3a and triethylborane was obtained by the reaction of these two compounds which, in the
absence of hydrides, afforded 2a in 48% yield (Scheme 3, reaction c). Notably, related diselenide 6a
reacted slowly with triethylborane under the same conditions and only traces (<5%) of unsymmetrical
ethyl-selenide 7a were detected after 6 h (Scheme 3, reaction d).

Trialkyl boranes readily undergo radical reactions generating alkyl radicals. Such processes
can be initiated by oxygen, light or radical initiators, such as AIBN (Azobisisobutyronitrile) [54,55].
Additionally, ditellurides have been demonstrated to easily react with alkyl radicals, exhibiting
remarkable radical-trapping activity [56]. On the basis of these considerations and supported by a
literature precedent describing the reactivity of diphenyl ditelluride with organoboranes [57], we
hypothesised a radical process involving ditellurides 3 and ethyl radicals. Control experiments
performed using 3,5-di-tert-butyl-4-hydroxytoluene (BHT) as a radical inhibitor further demonstrated
a radical pathway. Additionally, performing reactions b and c (Scheme 3) in the dark had no significant
effect on the reaction outcome, showing that light was not required for the process leading to 2a. On the
other hand, when degassed tetrahydrofuran (THF) was used as the solvent, the ethyltellurenylation
reaction was strongly inhibited and only traces of 2a (<10%) were isolated.
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an SH2 process (IV) [59,60]. The tellurium-centered radical 8, formed in the SH2 reaction, undergoes
typical propagation and termination processes, including the recombination with a second equivalent
of 8 providing ditelluride 3 [61]. Furthermore, the reaction of 8 with oxygen or borylperoxyl radicals
(V) would afford reactive tellurenyl peroxides which plausibly decompose, thus explaining the rather
low yield of the transmetalation reaction and the absence of ditelluride 3, or unreacted epoxide in the
crude mixture.

Chemistry 2020, 2, x 6 

 

 
Scheme 3. Control experiments. a Only traces (<5%) of 7a were detected by 1H-NMR of the crude 
material. 

On the basis of the control experiments and previous reports, a proposed reaction mechanism is 
reported in Scheme 4. The first step (I) involves the reduction of elemental tellurium with lithium 
triethylborohydride, leading to the formation of dilithium ditelluride and triethylborane [58]. 
Subsequently (II), Li2Te2 reacts with two equivalents of epoxide to afford the corresponding 
ditelluride 3 through a regioselective nucleophilic ring-opening reaction. The following 
transmetalation of Et3B with 3 reasonably proceeds through the oxygen-mediated formation of ethyl 
radicals (III) [54,55] which, in turn, react with ditelluride 3 providing unsymmetrical β-hydroxy-alkyl 
ethyl telluride 2 through an SH2 process (IV) [59,60]. The tellurium-centered radical 8, formed in the 
SH2 reaction, undergoes typical propagation and termination processes, including the recombination 
with a second equivalent of 8 providing ditelluride 3 [61]. Furthermore, the reaction of 8 with oxygen 
or borylperoxyl radicals (V) would afford reactive tellurenyl peroxides which plausibly decompose, 
thus explaining the rather low yield of the transmetalation reaction and the absence of ditelluride 3, 
or unreacted epoxide in the crude mixture.  

 
Scheme 4. Proposed mechanism for the formation of unsymmetrical β-hydroxy-alkyl ethyl tellurides 
2. 

Scheme 4. Proposed mechanism for the formation of unsymmetrical β-hydroxy-alkyl ethyl tellurides 2.



Chemistry 2020, 2 658

4. Conclusions

In conclusion, we have described a one-pot multistep reaction in which epoxides are converted
into the corresponding unsymmetrical β-hydroxy-alkyl ethyl tellurides upon treatment with elemental
tellurium under lithium triethylborohydride-reducing conditions. The reaction mechanism was
experimentally investigated; β-hydroxy ditellurides and triethyl borane were demonstrated to be
the key species involved in this one-pot ethyltellurenylation reaction. The transmetalation of triethyl
borane with hydroxy-dialkyl ditellurides, reasonably occurring through an oxygen-induced SH2
mechanism, represents the key step of the process. The findings here described can be exploited
for the development of novel general methodologies towards the synthesis of synthetically and
biologically valuable complex sp3-rich unsymmetrical tellurides. Further studies on the application of
this reaction to functionalised boranes (and boronic esters) for the preparation and the elaboration of
poly-functionalised unsymmetrical tellurides are currently ongoing in our laboratories.
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