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Abstract: The large originator pharmaceutical companies need more and more new compounds for
their molecule banks, because high throughput screening (HTS) is still a widely used method to find
new hits in the course of the lead discovery. In the design and synthesis of a new compound library,
important points are in focus nowadays: Lipinski’s rule of five (RO5); the high Fsp3 character; the use
of bioisosteric heterocycles instead of aromatic rings. With said aim in mind, we have synthesized a
small compound library of new spiro[cycloalkane-pyridazinones] with 36 members. The compounds
with this new scaffold may be useful in various drug discovery projects.

Keywords: Friedel–Crafts reaction; Grignard reaction; Fsp3 character; pyridazinones;
spiro[cycloalkane-pyridazinone]; hydrazine

1. Introduction

There are various methods used to find a hit that will later be a lead compound in the development
of a new drug, a new chemical entity. Nowadays the most up-to-date methods are, e.g., computer aided
drug design and the fragment-based techniques. High-throughput screening (HTS) [1,2] is a
widely used method, which needs a large number of compounds. The large companies which
are interested in the development of originator pharmaceutical products have their own molecule
banks, with possible extensive compound libraries. In the building up of a compound library,
the advantageous physicochemical parameters of the compounds, the so called ADME (absorption,
distribution, metabolism, excretion) parameters, are very important aspects. Large companies do not
allow one to put new compounds with disadvantageous parameters or with known toxicity into their
molecule banks.

After the publication of Lipinski’s “rule of five” (RO5) [3–5], more and more attention was paid to
the physicochemical parameters of the drug candidate molecules. According to Lipinski’s rules, it is
advantageous from the points of view of solubility and permeability if the number of H-bond donors is
less than 5, the number of H-bond acceptors is less 10, the calculated logP (P = octanol–water partition
coefficient, clogP) is under 5, and the molecular mass is lower than 500. LogP provides valuable
information about the lipophilic/hydrophobic property of the molecule which strongly influences the
absorption of the substance, its interaction with the receptor, its metabolism, and its toxicity.

Later, other important properties were studied. Veber et al. [6] suggested that the polar surface
area should be smaller than 140 A2 and the number of rotatable bonds should be ten or less in an
ideal case. The fulfillment of these two criteria provides the opportunity for good oral bioavailability.
Today these parameters are routinely studied to predict the drug candidates’ pharmacokinetics and
ADME profiles [3]. Over the past decade there has been an increasing practice of creating structurally
more complex molecules which are closer to natural materials and provide an opportunity to produce
new types of compounds.
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Lovering et al. [7,8] defined the complexity with the saturation of molecules. Saturation allows the
formation of molecules with more complex structures and the expansion of the structural versatility of
the compounds without significant increases in molecular weight. It was also supposed that increasing
Fsp3 character may improve the physicochemical properties of the molecules which contribute to
clinical success. Lovering and his coworkers [7,8] introduced the definition of the Fsp3 character,
which is an important parameter to characterize the drug-likeness. Fraction of sp3 carbons means:
Fsp3 = number of carbons with sp3 hybridization /total number of carbon atoms. Thousands of
compounds which reached a phase of drug research (research phase, Phase I–III, drugs) were selected
from GVK BIO Biosciences’ database and analyzed by their sp3 character. From the data obtained,
it was concluded that the average Fsp3 character was 0.36 for research compounds and it increased to
0.47 for drugs. This growth trend was observed in all phases of drug research. The degree of saturation
also affects the physical properties of the compounds. With increasing sp3 character, the water solubility
increases and the melting point decreases. This way, one is more likely to produce compounds which
have favorable ADME parameters, which increases their chances of becoming clinical candidates [7,8].

M. Hansson et al. studied the relationship between molecular hit rates in HTS and molecular
descriptors. They established that ClogP and Fsp3 had the largest influences on the hit rate [9].
This inspired researchers to synthesize new compound with high Fsp3 character. For example, after a
HTS study, Hirata and coworkers [10 developed a new series of RORγ inhibitors, which was guided
by Fsp3 character and ligand efficiency (LE). Both of them are important drug-likeness metrics. With a
careful design, the authors could improve the metabolic stability and reduce the CYP inhibition of
their orally efficacious RORγ inhibitors (Scheme 1).
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descriptors for clinical success. They studied the MDL Drug Data Report (MDDR) database; the 
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a compound at preclinical or Phase I stage better than logD or Fsp3.  

J. H. Nettles and coworkers [13] used 2D and 3D molecular descriptors for target fishing 
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M. H. Clausen et al. published another example for the synthesis of compounds with high Fsp3

character [10,11]. They established a library of fluorinated Fsp3-rich fragments for 19F-NMR based
screening in fragment based drug discovery (FBDD), which is one of the most important methods of
searching for a lead in drug discovery. The synthesized 115 fluorinated fragments gave valuable hits
against four diverse protein targets in 19F-NMR screening.

Normally, the 3D descriptors perform better in lead-compound searches than 2D descriptors,
such as Fsp3 or logP. D. C. Kombo et al. [12] showed the importance of the 2D and 3D molecular
descriptors for clinical success. They studied the MDL Drug Data Report (MDDR) database;
the compounds were monitored from the preclinical phase to the market. According their experience,
these shape-based 3D molecular descriptors predicted the success or withdrawal from the market of a
compound at preclinical or Phase I stage better than logD or Fsp3.

J. H. Nettles and coworkers [13] used 2D and 3D molecular descriptors for target fishing connecting
the chemical and biological space. They compared the 2D and 3D molecular descriptors for prediction
of the biological targets. This method was based on the similarity to reference molecules of the
biologically active compounds in a chemical database with 46,000 compounds. They concluded that
2D molecular descriptors were more successful in target prediction, while the 3D molecular descriptors
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seemed to be better in cases of singletons, which showed low structural similarity to other molecules
in the database. It is worth combining both 2D and 3D descriptors.

Ritchie and coworkers [14] studied the role of the number of aromatic rings in the compound’s
developability. The effects of aromatic ring number on various developmental parameters were
analyzed, such as water solubility, lipophilicity, serum albumin binding, CyP450 inhibition, and hERG
inhibition. They concluded that the presence of fewer aromatic rings in an oral drug candidate is
beneficial in regard of developability. In addition, the presence of more than three aromatic rings
in a molecule correlates with poor prospects in the development, thereby reducing the chances of
successful drug discovery. Further analyzes [15] have also shown that the replacement of an aromatic
ring with a bioisoster heteroaromatic ring has a good effect on development. This can explain why the
number of approved drugs with heteroaromatic rings is rising.

The expansion of the chemical space is another important point of view when building up a
new compound library. In spite of the fact that spirocycles have been published for sixty years,
this compound family remained at the periphery of drug discovery earlier [16]. Nowadays there
are a few drugs on the market or under development [17–21]. The natural product Griseofulvin
has antifungal activity [22]. The steroid derivative spironolactone is used for the treatment of fluid
retention, edema, and symptoms of heart failure (Figure 1) [23]. Recently the FDA approved the
calcitonin gene-related peptide receptor antagonist ubrogepant for the acute treatment of migraines [24].
The spiro moiety usually has high Fsp3 character and its advantage is that it makes possible greater
three-dimensionality than the aromatic rings. Y-J. Zheng and C. M. Tice collected interesting examples
wherein spirocyclic scaffolds were applied in drug discovery [25].
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activity [29]. Over the past few decades, many papers and patents have been published on bioactive 
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A further way to improve the physicochemical properties of the compounds is to replace the
phenyl or pyridyl rings with bioisoster rings containing two nitrogens: pyridazine, pyrimidine,
or pyrazine. This increases the drug-likeness of the molecules, and generally the ADME profile,
log P values, solubility, and absorption are more favorable [26]. For example, pyridazin-3(2H)-on
is a valuable structural moiety which can be a good starting point for drug research projects [27].
The pyridazine ring can be easily functionalized in various positions, making it an attractive synthetic
building block for the preparation of new compounds [28]. Various structural modifications on the
ring system containing the pyridazinone unit have resulted in compounds with favorable biological
activity [29]. Over the past few decades, many papers and patents have been published on bioactive
pyridazines and pyridazinones, which have been utilized in almost all therapeutic fields with various
mechanisms of action [30,31]. For example, the antihypertensive hydralazine (Apresoline) is used
to treat high blood pressure and heart failure [32]. The calcium sensitizer levosimendan is effective
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in congestive heart failure [33]. The antihypertensive bemoradan is an inhibitor of cardiac muscle
cyclic AMP phosphodiesterase (PDE), which explains its cardiotonic effect [34]. The monoamine
oxidase inhibitor minaprine [35,36] has an antidepressant effect. The tricyclic pipofezine (Azafen or
Azaphen) [37] acts as a serotonin reuptake inhibitor. It was launched as an antidepressant in the
1960s and it is still on the market today. Emorfazone [38], as a nonsteroidal anti-inflammatory agent,
has analgesic effects. See Figure 2 for said examples.
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Figure 2. Antihypertensive, antidepressant, and anti-inflammatory pyridazinone derivatives.

Imazodan [39], Amipizone [40], Zardaverine [41], and Indolidan [42] are used in veterinary
medicine. Pimobendan [43] belongs to a group of selective phosphodiesterase (PDE3) inhibitors used
to treat heart problems of dogs (Figure 3).
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Figure 3. Pyridazinone derivatives in veterinary medicine.

The pyridazine-containing fused ring system may have valuable biological activity. Zopolrestat is
used as an aldose reductase inhibitor to treat diabetic neuropathy and nephropathy [44]. The melanin
concentrating hormone 1 (MHCR-1) antagonist thienopyridazinones [45] showed in vivo anorectic
properties. The pyrazolo-pyrimidinopyridazinones exhibit potent and elective phosphodiesterase
5 (PDE5) inhibitory activity [46]. KK 505 is used as an anti-asthma agent [47] (Figure 4).
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Figure 4. Biologically active pyridazinones.

2. Synthesis of Spiro[cycloalkane-pyridazinone] Derivatives

Taking into account the expected bioactivity of the pyridazine derivatives and their favorable
physicochemical parameters, our attention turned to this family of compounds. Considering the
advantages of compounds with high Fsp3 character, we have designed a compound library with a
spiro[cycloalkane-pyridazinone] scaffold instead of the usual phenyl-pyridazinone derivatives.

2.1. Synthesis of the Starting Materials

The preparation of our starting materials 2-oxaspiro[4.5]decane-1,3-dione and 2-oxaspiro[4.4]
nonane-1,3-dione was performed according to methods known in the literature, optimizing them [48,49].
In the first step, starting from cyclohexanone or cyclopentanone, we performed Knoevenagel
condensation in the presence of ethyl 2-cyanoacetate (1) followed by the addition of a cyanide
group. The nitrile groups were hydrolyzed with concentrated hydrochloric acid. The anhydride
formation from the cycloalkyl dicarboxylic acids (4a, 4b) was also examined with two reagents:
acetic anhydride and acetyl chloride. The cyclization with acetyl chloride was clearly more favorable
as the desired spirocyclic anhydrides formed at lower temperatures and with higher yields (5a, 5b)
(Scheme 2).
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2.2. Friedel–Crafts and Grignard Reactions

In course of the synthesis of our pyridazinone derivatives, we prepared first the isomeric
γ-oxocarboxylic acids containing 1,1-disubstituted cycloalkanes from the starting compounds
(5a, 5b) and variously substituted benzene derivatives by Friedel–Crafts reaction (Scheme 4). This was
done according to a patented process in which 2-oxaspiro[4.4]nonane-1,3-dione was reacted with (5b)
1,2-dimethoxybenzene in the presence of AlCl3 [50]. In our work, eight new isomeric γ-oxocarboxylic
acids containing 1,1-disubstituted cycloalkanes were prepared. Compounds 6b and 6c were obtained
only in very low yields because the electrophilic aromatic substitution favors electron-rich groups.
Furthermore, in the Friedel–Crafts reaction of compound 5b with anisole, in addition to the main
product 7b, 7c—a by-product with an isomeric structure—was also identified.

Another way to prepare isomeric γ-oxocarboxylic acids containing 1,1-disubstituted cycloalkanes
is via the Grignard reaction [51]. This was used in cases where only low yields could be achieved
in Friedel–Crafts reactions, for example, in cases with less active reagents, such as toluene and
chlorobenzene. Grignard reactions were performed in tetrahydrofuran with p-tolyl magnesium
bromide and (4-chlorophenyl) magnesium bromide, under inert conditions. For compounds 6b and 6c
the yield was improved. Furthermore, for compounds 7a and 7f, molecules with isomeric structures
(7e and 7g) were also isolated and identified (Scheme 3) (Table 1).
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Table 1. Fsp3 values of γ-oxocarboxylic acids.

Starting Material R1 R2 Product Fsp3 LogP CLogP

5a OCH3 H 6a 0.50 2.91 3.4955
5a CH3 H 6b 0.50 3.53 3.7746
5a Cl H 6c 0.46 3.60 4.0642
5a OCH3 OCH3 6d 0.53 2.79 3.17319
5b CH3 H 7a 0.47 3.11 3.2156
5b OCH3 H 7b 0.47 2.50 2.9365
5b OCH3 H 7c 1 0.47 2.50 2.9365
5b OCH3 OCH3 7d 0.50 2.37 2.61419
5b CH3 H 7e 1 0.47 3.11 3.2156
5b Cl H 7f 0.43 3.18 3.5052
5b Cl H 7g 1 0.43 3.18 3.5052

1 Isomeric structure.

2.3. Formation of Pyridazinone Ring

Pyridazinones were formed from isomeric γ-oxocarboxylic acids containing 1,1-disubstituted
cycloalkanes with hydrazine and hydrazine derivatives (methyl- and phenylhydrazine). We used the
reaction conditions developed by Van der May et al. [51]. The pyridazinones (8a–d) were prepared in
good yields. Pyridazinone derivatives (9) and (10) were also isolated in medium yields (Scheme 4).
In the case of compound 7b, in addition to the expected structure (11a), a compound with an isomeric
structure (11b) was also isolated and identified by 2D NMR (Scheme 5) (Table 2).
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Table 2. Fsp3 values of pyridazinones.

Starting Material R1 R2 Product Fsp3 LogP CLogP

6a OCH3 H 8a 0.50 2.91 2.753
6b CH3 H 8b 0.50 3.52 3.333
6c Cl H 8c 0.47 3.59 3.547
6d OCH3 OCH3 8d 0.53 2.78 2.492
7a CH3 H 9 0.46 3.10 2.774
7f Cl H 10 0.43 3.17 2.988

7b OCH3 H 11a
11b 1

0.46
0.46

2.49
2.49

2.194
2.194

7c OCH3 OCH3 12 0.50 2.36 1.933
1 Isomeric structure.

2.4. N-Substituted Pyridazinone Derivatives

N-substituted pyridazinone derivatives were formed with methyl- and phenyl hydrazine and
in N-alkylation/aralkylation reactions. Reactions with methylhydrazine were performed under the
above-mentioned conditions starting from the mixture of 6a and 6h [51] by boiling in ethanol. The crude
product was purified by preparative thin layer chromatography. The pyridazinones (13a and isomeric
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in tetrahydrofuran in the presence of sodium hydride, the N-methylated compounds (19–22) were
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isolated in medium yields. In the preparation of N-benzylated derivatives we first chose the classical
potassium carbonate method, but it did not produce the desired product, so we changed to cesium
carbonate, which enabled us to isolate our desired N-benzylated pyridazinone derivatives in medium
yields (23–27) (Scheme 8) (Table 3).
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Table 3. Fsp3 values of substituted pyridazinones.

Starting Material R1 R3 Product Fsp3 LogP CLogP

6a
6h OCH3 CH3

13a
13b 1

0.53
0.53

3.14
3.14

2.845
2.845

6a OCH3 Ph 14 0.36 4.81 4.744
6b CH3 Ph 15 0.36 5.42 5.324
6c Cl Ph 16 0.33 5.49 5.538
7a CH3 Ph 17 0.33 5.00 4.765
7f Cl Ph 18 0.30 5.07 4.979
8b CH3 CH3 19 0.53 3.76 3.425
8c Cl CH3 20 0.47 3.83 3.639
9 CH3 CH3 21 0.50 3.34 2.866

10 Cl CH3 22 0.44 3.41 3.080
8a OCH3 Bn 23 0.39 4.87 5.077
8b CH3 Bn 24 0.39 5.49 5.657
8c Cl Bn 25 0.36 5.56 5.871
9 CH3 Bn 26 0.36 5.07 5.098
10 Cl Bn 27 0.33 5.14 5.312

1 Isomeric structure.

3. Conclusions

In summary, our starting materials 2-oxaspiro[4.5]decane-1,3-dione (5a) and
2-oxaspiro[4.4]nonane-1,3-dione (5b) were prepared and optimized using methods known in
the literature [48,49]. From these 1,3-diones, eleven new isomeric γ-oxocarboxylic acids containing
1,1-disubstituted cycloalkanes were prepared by Friedel–Crafts and Grignard reactions. These were
reacted with various hydrazine derivatives, and with further N-alkyl/aralkylation reactions we isolated
25 new pyridazinone derivatives. The Fsp3 values of our compounds showed good correlations with
logP values; e.g., the logP values of compounds with high Fsp3 character (8a–d, 9, 10, 11a–b, 12)
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were between 2.36 and 3.59, under 5 (see Table 2). The situation was similar for compounds 13a,b–27
(Table 3). The introduction of a further aromatic ring into compounds 14–18 and 23–27 decreased the
Fsp3 character and increased the logP values to over 4.8. A smaller molecule library was created with
36 new compounds with high Fsp3 character, which could be a good starting point for drug research
projects [53,54].
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