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Abstract: In this paper, we give new formulas for calculating the self-inductance for circular coils of
the rectangular cross-sections with the radial and the azimuthal current densities. These formulas are
given by the single integration of the elementary functions which are integrable on the interval of the
integration. From these new expressions, we can obtain the special cases for the self-inductance of
the thin-disk pancake and the thin-wall solenoids that confirm the validity of this approach. For the
asymptotic cases, the new formula for the self-inductance of the thin-wall solenoid is obtained for the
first time in the literature. In this paper, we do not use special functions such as the elliptical integrals
of the first, second and third kind, nor Struve and Bessel functions because that is very tedious work.
The results of this work are compared with already different known methods and all results are in
excellent agreement. We consider this approach novel because of its simplicity in the self-inductance
calculation of the previously-mentioned configurations.
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1. Introduction

Several monographs and papers are devoted to calculating the self and the mutual inductance
for the circular coils of the rectangular cross-section with the azimuthal current density [1–18].
The conventional coils used in many applications such as all ranges of transformers, generators, motors,
current reactors, magnetic resonance applications, antennas, coil guns, medical electronic devices,
superconducting magnets, tokamaks, electronic and printed circuit board design, plasma science, etc.,
are very well-known. Today, with the availability of powerful and general numerical methods, such as
finite element method (FEM) and boundary element method (BEM), it is possible to accurately and
rapidly calculate the self and mutual inductance of almost any practical 3D geometric arrangement of
conductors. However, in many circumstances, there is still an interest to address this problem using
analytic and semi-analytic methods because they considerably simplify the mathematical procedures,
and often lead to a significant reduction of the computational effort.

The analytical and semi-analytical methods have been used where these important electromagnetic
quantities are obtained in the form of the simple, double and triple integrals, the elliptic integrals,
the converge series, the Bessel functions, Struve functions [1–18]. There are circular coils of the
rectangular cross-section with the radial current density which are interesting from an engineering
aspect. These coils are the well-known Bitter coils [19–25] which supply extremely high magnetic fields
up to 45 T [21].

In this paper, our goal is to analytically solve the four integrals in the basic formulas for the
self-inductance of the circular coils of the rectangular cross-section with radial and the azimuthal
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current densities, namely LR (radial current) and LA (azimuthal current), respectively. We obtained
all results of these four integrations in the form of elementary analytical functions. By the single
integration of these expressions, we obtained the simplest formulas for calculating the self-inductance
of LR and LA without using the special functions. All expressions are arranged in a suitable form for
the numerical integration where the possible singularities are treated at the proper manner. Numerous
tests are made in MATLAB and Mathematica programing which show that the numerical integration
given in Mathematica programming can be used for any range of parameters (very small or very
large values of α = R2

R1
and b = l

R1
), where R1 and R2 are the inner and outer radius of the coil and l is

its hight [26,27]. Many examples confirm the validity of the presented method. With the presented
method all possible cases for the circular coils with a finite cross-section or negligible cross-section
(thin coils and circular filamentary coils) are covered.

2. Basic Expressions

Let us consider the circular coil of the rectangular cross-section, as shown in Figure 1. Here,
R1 is the inner radius (in m), R2 is the outer radius (in m), l is the height of the coil (in m), I is the
current in the coil (in A), JR is the radial current density (in A/m2), JA is the azimuthal current density
(in A/m2), r1, r2 are the coordinates which determine any radial position inside the coil (in m), z1, z2 are
the coordinates which determine any axial position inside the coil (in m), N is the number of turns,
µ0 = 4π·10−7 µH/m is the permeability of the free space.
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Figure 1. Circular thick coil of the rectangular cross-section.

2.1. Radial Current

The radial current density and the corresponding self-inductance of the coil of the rectangular
cross-section are given by [15–20]:

JR =
NI

l ln R2
R1

·
1
r

, (1)

LR =
µ0N2

l2 ln2 R2
R1

∫ l

0

∫ l

0

∫ R2

R1

∫ R2

R1

∫ π

0

cos(θ)dz1dz2dr1dr2dθ
R12

, (2)

where,

R12 =

√
r2

1 + r2
2 − 2r1r2 cos(θ) + (z2 − z1)

2 .



Physics 2020, 2 354

2.2. Azimuthal Current

The azimuthal current density and the corresponding self-inductance of the coil of the rectangular
cross-section are given by [15–20]:

JA =
NI

l(R2 −R1)
, (3)

LA =
µ0N2

l2(R2 −R1)
2

l∫
0

l∫
0

R2∫
R1

R2∫
R1

π∫
0

cos(θ)dz1dz2r1dr1r2dr2dθ
R12

. (4)

3. Calculation Method

3.1. The Self-Inductance LR Caused by the Radial Current Density

Introducing the substitution r1 = xR1, r2 = yR1, z1 = vR1, z2 = zR1, t = v − z, l = bR1,
R2 = αR1, θ = π− 2β, in Equation (2) and making the first four integrations in order to the variables
z2, z1, r2 and r1, or y, x, v and z, (Appendix A) we obtained the self-inductance LR in the following form:

LR = −
2µ0N2R1

b2 ln2(α)

11∑
n=1

π
2∫

0

cos(2β) Tndβ, (5)

where

T1 = b3

3 sin(2β) [2arctan(q) − arctan(q1) − arctan (q2)] ,

T2 = 8
3

(
α3 + 1

)
cos3(β) − 4

3 cos2(β)
(
α2r2 + r1

)
+ 2

3

[(
α2 + 1

)
cos(2β)2α

]
(r− r0),

T3 = 4bα2 cos2(β)arsinh
[

b
2α cos(β)

]
+ 4b cos2(β)arsinh

[
b

2 cos(β)

]
−2b

[(
α2 + 1

)
cos(2β) + 2α

]
arsinh

(
b
r0

)
,

T4 = 2b2[α arsinh(v22) + arsinh(v11)],

T5 = −2b2[α arsinh(v2) + arsinh(v1)],

T6 = −2b sin(2β)
[
α2arctan(p22) + arctan(p11)

]
,

T7 = 2b sin(2β)
[
α2arctan(p2) + arctan(p1)

]
,

T8 = α3

3 sin2(2β) ln
(m2+1

m2−1

)
+ 1

3 sin2(2β) ln
(m1+1

m1−1

)
,

T9 = −α
3

3 sin2(2β) ln
(m20+1

m20−1

)
−

1
3 sin2(2β) ln

(m10+1
m10−1

)
,

T10 = −α
3

3 sin2(2β) ln
(m22+1

m22−1

)
−

1
3 sin2(2β) ln

(m11+1
m11−1

)
,

T11 =
2(α3+1)

3 sin2(2β) ln
[

cos(β/2)
cos(β/2)

]
,
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where

r =
√

b2 + α2 + 1 + 2α cos(2β), r0 =
√
α2 + 1 + 2α cos(2β), r1 =

√
b2 + 4 cos2(β),

r2 =
√

b2 + 4α2 cos2(β) , r01 =
√

4 cos2(β) = 2 cos(β), r02 =
√

4α2 cos2(β) = 2α cos(β),

q =
α sin2(2β)−b2 cos(2β)

b sin(2β)r , q1 =
α2 sin2(2β)−b2 cos(2β)

b sin(2β)r2
,

q2 =
sin2(2β)−b2 cos(2β)

b sin(2β)r1
, v1 =

α+cos(2β)
√

b2+sin2(2β)
, v2 =

1+α cos(2β)
√

b2+α2 sin2(2β)
,

v11 =
1+cos(2β)
√

b2+sin2(2β)
, v22 =

α+α cos(2β)
√

b2+α2 sin2(2β)
, p1 =

b[α+cos(2β)]
sin(2β)r ,

p2 =
b[1+α cos(2β)]
α sin(2β)r , p11 =

b[1+cos(2β)]
sin(2β)r1

, p22 =
b[α+α cos(2β)]
α sin(2β)r2

,

m1 = r
α+cos(2β) , m2 = r

1+α cos(2β) , m10 = r0
α+cos(2β) , m20 = r0

1+α cos(2β) ,

m11 = r1
1+cos(2β) , m22 = r2

α+α cos(2β) .

Expressions for Tn , n = 1, 2, . . . , 11, are given as in the Addendum where we calculate the
self-inductance for the coil of the rectangular cross-section with radial current in Example 2 in
the Addendum.

Thus, the new formula for the self-inductance of the circular coil with the rectangular cross-section
and the radial current density can be obtained by Equation (5) using the simple integration of the
previous elementary functions. In this paper, we use the Gaussian numerical integration in MATLAB
programming and the numerical integration by default in Mathematica programing.

The special case of Equation (5) is the self-inductance of the thin-disk coil with a radial current [23].
This self-inductance can be obtained from Equation (5) by finding the limit when b→ 0 , or doing three
integrations such as in [23].

The self-inductance LR−disk is obtained in the analytical form as follows:

LR−disk =
4µ0N2R1(α+ 1)

ln2 α
[E(k0) − 1], (6)

where
k2

0 =
4α

(α+ 1)2 ,

and E(k0) is the elliptic integral of the second kind [23].

3.2. The Self-Inductance LA Caused by the Azimuthal Current Density

Introducing the substitution r1 = xR1, r2 = yR1, z1 = vR1, z2 = zR1, t = v − z, l = bR1,
R2 = αR1, θ = π− 2β, in Equation (2) and making the first four integrations in order to the variables
z2, z1, r2 and r1, or y, x, v and z, (Appendix B) we obtained the self-inductance LA in the following form

LA = −
µ0N2R1

15b2(α− 1)2

6∑
n=1

π
2∫

0

cos(2β) Sndβ, (7)



Physics 2020, 2 356

where

S1 = b4

sin2(2β)

[
r2 −

bcos(2β)
sin(2β) arctan(q2)

]
+ b4

sin2(2β)

[
r1 −

bcos(2β)
sin(2β) arctan(q1)

]
−

2b4

sin2(2β)

[
r− bcos(2β)

sin(2β) arctan(q)
]
,

S2 = 9a2b2r2 + 9b2r1 − 9(a2 + 1)b2r + 2
[
6a4cos2(2β) − 2a4 cos(2β) − 8a4

]
(r2 − r02)

+2
[
6cos2(2β) − 2 cos(2β) − 8](r1 − r01) − 4

[
3
(
a4 + 1

)
cos2(2β) − α

(
a2 + 1

)
cos(2β)

−2
(
α2 + 1

)2
]
(r− r0) ,

S3 = 30bsin(2β)cos(2β)
[
a4arctan(p22) + arctan(p11) − a4arctan(p2) − arctan(p1)

]
,

S4 = 15b
{
α4 sin2(2β) ln

( r2+b
r2−b

)
+ sin2(2β) ln

( r1+b
r1−b

)
−

1
2

[(
α2 + 1

)2
− 2

(
α4 + 1

)
cos2(2β)

]
ln

(
r+b
r−b

)}
,

S5 = 12 cos(2β) sin2(2β)
{
α5 ln[r0 + 1 + α cos(2β)] + ln[r0 + α+ cos(2β)]

−(α5 + 1) ln
[
4 cos(β)cos2(β/2)

]
− α5 ln(α)

}
,

S6 = 4 cos(2β)
[
5b2
− 3 sin2(2β)

]
ln

[
r+α+cos(2β)
r1+1+cos(2β)

]
+4α3 cos(2β)[5b2

− 3α2 sin2(2β)] ln
[

r+1+α cos(2β)
r2+α+α cos(2β)

]
.

Expressions for Sn , n = 1, 2, . . . , 6, are given as in the Addendum where we calculate the
self-inductance for the coil of the rectangular cross-section with azimuthal current in Example 4
α = 3, b = 2) in the Addendum.

Thus, the self-inductance of the circular coil of the rectangular cross-section with the
azimuthal current density can be obtained by Equation (7) using simple integration of the previous
elementary functions.

The special case of this calculation is the self-inductance of the thin-disk coil (pancake) with the
azimuthal current [26,27]. This self-inductance can be obtained from Equation (7) finding the limit
when α→ 0 or doing the three integration such as in [26].

The self-inductance LA−disk is obtained in the analytical form as follows:

LA−disk =
2µ0N2R1

3(α− 1)2 V , (8)

where
V = α(α+ 1)E(k0) +

(
α3 + 1

)
(2G− 1) +

π
2

ln
k0

2
+ S10 +

(
α3
− 1

)
S2 , (9)

k2
0 =

4α

(α+ 1)2 ,

S1 =

π
2∫

0

ln[1 + ∆]dβ, S2 =

π
2∫

0

ln
[√

1− k2
0 + ∆

]
dβ, ∆ =

√
1− k2

0 sin2(β) ,

and G = 0.915965594 . . . is the Catalan’s constant [26,27].
The self-inductance is obtained as the combinations of the elementary functions, the elliptical

integral of the second kind [28–30], and the single integrals (the semi-analytical solution).
In [27], the new expression for V is given by:

V = α(α+ 1)E(k0) +
(
α3 + 1

)
(2G− 1) −

π
2

ln 2− S10 − α
3S20 , (10)



Physics 2020, 2 357

S10 =

π
2∫

0

ln
[
α+ cos(2β) +

√
α2 + 2α cos(2β) + 1

]
dβ ,

S20 =
1
2

π
2∫

0

ln
α cos(β) + 1 +

√
α2 + 2α cos(β) + 1

α sin(β) − 1 +
√
α2 − 2α sin(β) + 1

dβ .

This expression is also very friendly for the numerical integration in Equation (9).
For the full disk (R1 = 0, R2 = R), the self-inductance is

LA−full−disk =
2µ0N2R1

3
[2G− 1] . (11)

This formula can be found in [10,27,31].
There is also one special case when R1 → R2 → R (thin-wall solenoid of radius R and hight l).

Finding the limit in Equation (7) or solving the three integrals in [32], we obtain the well-known
Lorentz’s formula (1879),

LA−wall−solen =
2µ0N2R2

3l

[
l

kR
K(k) −

l2 − 4R2

klR
E(k) − 4

R
l

]
, (12)

where

k2 =
4R2

4R2 + l2
,

and K(k), E(k) are the elliptic integrals of the first and second kind [32].
From previous formulas for LR and LA it is obvious that they have similar terms and all expressions

are elementary functions that are very friendly for single numerical integration. The special cases
are obtained as the analytical and semi-analytical expressions for these important electromagnetic
quantities (6)–(12).

3.3. Asymptotic Behaviors of Disk Coils and Thin-Wall Solenoids

At first, we analyze the disk coil.
For R1 = R2 we have a well-known singular case which gives

L = ∞ . (13)

For R1 → R2 → R (inner radius tends toward the outer radius), this case leads to the well-known
formula [31]

L = µ0N2R
[
ln

8R
a
− 2 + Y

]
. (14)

where R is the turn radius, a is the radius of the circular wire from which the turn is constructed.
If the current flows only on the wire surface (due to the skin effect) Y = 0, and the current flow is
homogeneous in the wire, then Y = 0.25.

For R1 ≈ R2 (the case of a logarithmic singularity), Conway [31] gives the analogous formula

L = µ0N2R2

[
ln

8R2

R2 −R1
−

1
2

]
. (15)

From Kirchhoff’s formula for the self-inductance of a circular ring of the radius R and the circular
section of the radius a with one turn [13], we have

L = µ0R
[
ln

8R
a
− 1.75

]
. (16)
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Luo, Y. and Chan, B. [13] obtained, for this asymptotic case

L = µ0
(R2 + R1)

R1

[
ln

4(R2 + R1)

(R2 −R1)
− 0.5

]
(H/m) . (17)

The asymptotic case for the thin-wall solenoid can be calculated from [13]

L = µ0

[
ln

4R
h
− 0.5

]
(H/m) . (18)

where R is the wall solenoid’s radius and 2h is its hight.
From this approach, the self-inductance of a thin-wall solenoid in the asymptotic case is obtained

for the first time in the literature.
Let us put in Equation (12)

b =
l

2R
, k2 =

1
1 + b2 ,

so that the self-inductance of the thin-wall solenoid is

LA−wall−solen =
2µ0N2R

3k

[
K(k) +

1− b2

b2 E(k) −
k
b2

]
. (19)

To find the self-inductance of thin-wall solenoid for b→ 0, the asymptotic behavior of K(k) and
K(k) near the singularity at k = 1 are given by the following expression [33]:

K(k) ∼ ln
4
k′

= ln
4

√

1− k2
= ln

4
b
+ ln

√
1 + b2 , (20)

E(k) ∼ 1 +
1
2

(
1− k2

)
[ln

4
k′
− 0.5] = 1 +

b2

2(1 + b2)
[ln

4
k′
− 0.5] . (21)

The approximations (20) and (21) are the first terms of the convergent series [28–30,33]. We calculate
the normalized self-inductance of the extremely short-wall solenoid (b→ 0) as

LN =
LA−wall−solen

N2R
. (22)

From Equations (19)–(22) we finally have:

LN =
µ0

3


(
3 + b2

)
√

1 + b2
ln

4
√

1 + b2

b
+

2
[√

1 + b2(1− b2) − 1]

b2 −

(
1− b2

)
2
√

1 + b2

. (23)

For b extremely near at zero, we find using the l’Hospital’s Rule from Equation (23) that the first
term tends to ln 4

b , the second to −1 and the third to −0.5. Finally, the self-inductance from this range of
the parameter b is

LN = µ0

[
ln

4
b
−

1
2

]
(H/m) . (24)

This formula has been obtained by the ansatz in [13].
To our knowledge, the formula (23) appears for the first time in the literature.
Thus, we cover all possible cases with the new formulas and the already well-known or the

improved formulas in the calculation of the self-inductance of the previously mentioned circular coils.
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4. Numerical Validation

To verify the validity of the new formulas for the self-inductances LR and LA we applied the
following set of examples. The special cases are discussed. We compared the results of the presented
approach with those known in the literature.

Example 1. Calculate the self-inductance of the thick Bitter circular coil of a rectangular cross-section. The coil
dimensions and the number of turns is as follows:

R1 = 1 m , R2 = 2 m , l = 2 m , N = 100 .

Applying the new formula (5), the self-inductance is

LR = 17.815333 mH .

By using Conway’s method [20], the self-inductance is

LConway = 17.815333 mH .

The results are in excellent agreement.

Example 2. Calculate the self-inductance of the thick Bitter circular coil of a rectangular cross-section. The coil
dimensions and the number of turns is as follows:

R1 = 0.025 m , R2 = 0.035 m , l = 0.04 m , N = 100 .

Using (5) we obtain
LR = 0.4383980 mH .

By using Ren’s method [21,22], the self-inductance is

LRen = 0.4383978 mH .

This self-inductance is obtained by double integration.
Using the software ANSYS (FEM) [20,21] the self-inductance is

LRen = 0.44528 mH .

All results are in good agreement.

Example 3. Calculate the self-inductance of the thin Bitter disk (pancake) [23]. The coil dimensions and the
number of turns is as follows:

R1 = 1 m , R2 = 2 m , N = 1000 .

The formula (6) gives
LR−disk = 3.56991288673 H.

Example 4. In Table 1 we compare the results obtained by this work (7), [9,13].
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Table 1. The accuracy and the computational time for the self-inductance calculation [9,13], LA.

α b LLuo (µH/m) [13] LKajikawa (µH/m) [9] LThis Work (µH/m)

1.5 0.5 2.8693036 2.8693 2.8693035
3.0 2.0 2.5330065 2.533 2.5330065
4.0 6.0 1.9012958 1.9012 1.9012958
7.0 12.0 2.4472979 2.4473 2.4472979
9.0 8.0 4.2674018 4.2661 4.2674018

In these calculations, we take R1 = 1 m and α = R2
R1

, b = 2l
R1

(see Table 1).
From Table 1, we can see the excellent agreement between this work (7) and [13], and good

agreement with [9].

Example 5. Let us compare the results of the formula (7) by those obtained using [9,13], as shown in Table 2.

Table 2. The comparison with Luo and Kajikawa formulas.

α b LLuo (µH/m) [13] LKajikawa(µH/m) [9] LThis Work (µH/m)

1.2 20.0 0.2142821 0.21428 0.2142821
5.0 20.0 1.0456844 1.0457 1.0456844
20.0 20.0 7.8764442 7.867 7.8764442
40.0 20.0 19.950453 19.951 19.950453
1.2 2.0 1.4613306 1.4618 1.4613306
5.0 2.0 3.8343885 3.8343 3.8343885
20.0 2.0 14.120116 14.112 14.120116
40.0 2.0 28.015984 27.992 28.015984
1.2 0.2 3.5880363 3.588 3.5880363
5.0 0.2 5.0682989 5.0681 5.0682989
20.0 0.2 15.288175 15.28 15.288175
40.0 0.2 29.185174 29.161 29.185174

In these calculations we take R1 = 1 m and α = R2
R1

, b = 2l
R1

. In [13], the hight of the coil is 2h and

b = h
R1

. In [9], the same parameters were used as in this paper.
From Table 2, one can see that the results of this work and those in [13] are in an excellent agreement

and in particularly good agreement whit Kajikawa results [9] where the number of significant figures
in the calculation was about three.

Example 6. In this example, we compare the results of the self-inductance (7) with the self-inductance obtained
by Bessel functions [10] (Table 3).

Table 3. The comparison with Conway’s formula and Kajikawa’s formula.

α b LConway (µH/m) [10] LKajikawa(µH/m) [9] LThis Work(µH/m)

1.5 0.5 2.8693035 2.8693 2.8693035
3.0 2.0 2.5330065 2.533 2.5330065
4.0 6.0 1.9012858 1.9012 1.9012858
7.0 12.0 2.4472979 2.4473 2.4472979
9.0 8.0 4.2676018 4.2661 4.2676018

There is an excellent agreement between Conway’s method and this work and particularly good
agreement by Kajikawa’s method, as seen from Table 3.
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Example 7. In this example, we calculate the normalized self-inductance of the thin-disk coil (pancake) regarding
the inner radius and the number of turns for the different shape factor α = R2

R1
(Table 4). We compare the results

of Formulas (8)–(10) with [4,31].

Table 4. Comparison of Computational Accuracy for the different shape factor α.

α LSpielrein (µH/m) LConway (µH/m) L(8),(9) (µH/m) L(8),(10) (µH/m)

5.0 36.282205 36.282205 36.282205 36.282205
10.0 8.5558079 8.5558079 8.5558079 8.5558079
3.0 4.1202479 4.1202478 4.1202478 4.1202478
1.5 3.9375566 3.9375570 3.9375569 3.9375569
1.1 5.1875898 5.1875898 5.1875898 5.1875898
1.01 7.8169836 7.8169836 7.8169836 7.8169836
1.001 10.671287 10.671287 10.671287 10.671287
1.00001 16.452442 16.452442 16.452442 16.452442
1.000001 19.345878 19.345878 19.345878 19.345878
1.0000001 22.239382 22.239382 22.239382 22.239382

From presented results obtained by formulas (8)–(10), and from Spielrein’s and Conway’s
approaches, we can see that all of them are in an excellent agreement. There is negligible disagreement
with Spielrein’s approach where the self-inductance was calculated by a series which does not
converge quickly.

Example 8. In this example, the self-inductance of the disk is calculated when α is remarkably close to 1 (Table 5)
until the extreme case α = 1 for which the self-inductance is∞.

Table 5. Comparison of computational accuracy for the shape factor α close to 1.

α−1 LConway (µH/m) L(8),(10) (µH/m)

10−1 5.1875898 5.1875898
10−2 7.8169836 7.8169836
10−3 10.671287 10.671287
10−4 19.345878 19.345878
10−8 25.132895 25.132895
10−10 25.132895 25.132895
10−12 36.706950 36.706950
10−15 45.387491 45.387491
10−16 45.387491 45.387491

From Table 5, where α is extremely close to 1, expressions (8)–(10) give the same results as
Conway’s approach.

Example 9. In this example, we compare the results for the self-inductance (23) by those obtained in [13]
(Equations (27) and (46)) and in [9].

As one can see from Table 6, all results are in an excellent agreement. It is obvious that the formula
(23) gives more precise results for the range of 10−6

≤ b ≤ 10−1 then formula (46) in [13] and for
b ≤ 10−6 the formula (24) is the same as the formula (46) in [13]. Kajikawa’s method gives particularly
good results for 10−3

≤ b ≤ 10−1. With this calculation, we confirm the validity of the newly developed
formula (23) which also leads to formula (24).
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Table 6. Comparison of Computational Accuracy for the different shape factor b.

b LLuo(27) or L(12) (µH/m) LLuo(46) (µH/m) LThis Work(23) (µH/m) L [9] (µH/m)

10−1 4.0133453 4.0072641 4.0037786 4.0134
10−2 6.9008759 6.9007779 6.9006943 6.9009
10−3 9.7942930 9.7942916 9.7942903 9.7942
10−6 18.474833 18.474833 18.474833 -
10−9 25.155374 25.155374 25.155374 -
10−12 35.835916 35.835916 35.835916 -

Example 10. Calculate the self-inductance of the full disk coil of the radius R1 = 0.5 m and the number of turns
N = 100.

This work, Equation (11), gives

LA−full−disk = 3.4847852 mH .

The same result is obtained in [31].
From [9] the self-inductance is

LA−Kajikawa = 3.4848 mH .

5. Conclusions

The new accurate self-inductance formulas for the circular thick coils of a rectangular cross-section
with radial and the azimuthal current densities are given. The formulas are obtained in the form of
a single integral whose kernel function on the interval of integration is the sum of the elementary
functions. The special cases of these formulas give the self-inductance for thin-disk coil and the
thin-wall solenoid in the closed and semi-analytical form. For the asymptotic case, the self-inductance
of the thin-wall solenoid with an extremely small height is developed for the first time in literature.
Thus, all cases for circular coils with and without cross-section are given. The presented method can
be helpful for engineers, physicists and people who work in this domain so that they can easily use all
formulas in Mathematica or MATLAB programming.
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Appendix A

Previously, in Equation (2) the following changes are made to simplify the four integrations,
r1 = xR1, r2 = yR1, z1 = vR1, z2 = zR1, t = v − z, l = bR1, R2 = αR1, θ = π − 2β. The first

integration over the variable y in Equation (2) gives

I1 =

α∫
1

dy
R12

= asinh
α+ x cos(2β)√
x2 sin2(2β) + t2

− asinh
1 + x cos(2β)√
x2 sin2(2β) + t2

.
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The second integration over the variable x in Equation (2) gives

I2 =
α∫

1
I1dx = 2

[
α asinh α+α cos(2β)

√
α2 sin2(2β)+t2

+ asinh 1+α cos(2β)
√

sin2(2β)+t2

−α asinh 1+α cos(2β)
√
α2 sin2(2β)+t2

− asinh 1+cos(2β)
√

sin2(2β)+t2

+ t
sin(2β)arctan α sin2(2β)−t2 cos(2β)

tsin(2β)
√

t2+α2+2α cos(2β)+1

−
t

2 sin(2β)arctan α2 sin2(2β)−t2 cos(2β)

tsin(2β)
√

t2+4α2 cos2(β)

−
t

2 sin(2β)arctan sin2(2β)−t2 cos(2β)

tsin(2β)
√

t2+4 cos2(β)

]
.

The third integration over the variable v in Equation (2) gives

I3 =
b∫

0

I2
2 dv =

[
t2

2 sin(2β)arctan α sin2(2β)−t2 cos(2β)

t sin(2β)
√

t2+α2+2α cos(2β)+1

−
t2

4 sin(2β)arctan α2 sin2(2β)−t2 cos(2β)

t sin(2β)
√

t2+4α2 cos2(β)

−
t2

4 sin(2β)arctan sin2(2β)−t2 cos(2β)

t sin(2β)
√

t2+4 cos2(β)

−
[(α2+1) cos(2β)+2α]

2 asinh t
r0

+
α2[cos(2β)+1]

2 asinh t
2α cos(β) +

[cos(2β)+1]
2 asinh t

2 cos(β)

+αtasinh α+α cos(2β)
√
α2 sin2(2β)+t2

+ tasinh 1+α cos(2β)
√

sin2(2β)+t2

−αtasinh 1+α cos(2β)
√
α2 sin2(2β)+t2

−tasinh α+cos(2β)
√

sin2(2β)+t2

−
α2 sin(2β)

2 arctan t cos(β)

sin(2β)
√

t2+4α2 cos2(β)

−
sin(2β)

2 arctan t cos(β)

sin(2β)
√

t2+4 cos2(β)

+
α2 sin(2β)

2 arctan t cos(β)

sin(2β)
√

t2+4α2 cos2(β)

+
α2 sin(2β)

2 arctan t(1+α cos(β))

α sin(2β)
√

t2+α2+2α cos(2β)+1

+
sin(2β)

2 arctan t(α+cos(β))

α sin(2β)
√

t2+α2+2α cos(2β)+1

] b− z

−z
.

Finally, the fourth integration over the variable z in Equation (2),

I4 =

∫ b

0
(2I3)dz ,

leads to Tn, n = 1, 2, . . . , 8, which appears in expression (5) for the self-inductance LR of the circular
coil with a rectangular cross-section and radial current density.
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Appendix B

Previously, in Equation (4) the following changes are made to simplify the four integrations,
r1 = xR1, r2 = yR1, z1 = vR1, z2 = zR1, t = v− z, l = bR1, R2 = αR1, θ = π− 2β. The first integration
over the variable y in Equation (4) gives

I1 =
α∫

1

ydy
R12

=
[√

x2 + 2xα cos(2β) + α2 + t2 −
√

x2 + 2x cos(2β) + 1 + t2

−x cos(2α) α+x cos(2β)
√

x2 sin2(2β)+t2
+ x cos(2α) 1+x cos(2β)

√
x2 sin2(2β)+t2

]
.

The second integration over the variable x in Equation (4) gives

I2 =
α∫

1
xI1dx = 2

3

[
−α3 cos(2β)asinh α+α cos(2β)

√
α2 sin2(2β)+t2

− cos(2β)asinh 1+cos(2β)
√

sin2(2β)+t2

+α3 cos(2β)asinh 1+α cos(2β)
√
α2 sin2(2β)+t2

+ cos(2β)asinh α+cos(2β)
√

sin2(2β)+t2

+
[
α2 + t2

2 sin2(2β)

]√
4α2 cos2(β) + t2

+
[
1 + t2

2 sin2(2β)

]√
4 cos2(β) + t2

−

[
α2 + 1 + t2

sin2(2β)

]√
t2 + α2 + 2α cos(2β) + 1

+
t3 cos(2β)
sin3(2β)

arctan α sin2(2β)−t2 cos(2β)

tsin(2β)
√

t2+α2+2α cos(2β)+1

−
t3 cos(2β)
2 sin3(2β)

arctan α2 sin2(2β)−t2 cos(2β)

tsin(2β)
√

4α2 cos2(β)+t2

−
t3 cos(2β)
2 sin3(2β)

arctan sin2(2β)−t2 cos(2β)

tsin(2β)
√

4 cos2(β)+t2

]
.
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The third integration over the variable v in Equation (4) gives

I3 = −8t cos(2β)asinh 1+cos(2β)
√

sin2(2β)+t2
+ 8tα3 cos(2β)asinh 1+α cos(2β)

√
α2 sin2(2β)+t2

+8t cos(2β)asinh α+cos(2β)
√

sin2(2β)+t2

−
t4 cos(2β)
sin3(2β)

arctan α2 sin2(2β)−t2 cos(2β)

tsin(2β)
√

4α2 cos2(β)+t2

−
t4 cos(2β)
sin3(2β)

arctan sin2(2β)−t2 cos(2β)

tsin(2β)
√

4 cos2(β)+t2

+
2t4 cos(2β)

sin3(2β)
arctan α sin2(2β)−t2 cos(2β)

tsin(2β)
√

t2+α2+2α cos(2β)+1

+6α2 sin2(2β)asinh t
2α cos(β) + 6 sin2(2β)asinh t

2 cos(β)

+3
[
2
(
α4 + 1

)
cos(2β) −

(
α2 + 1

)2
]
asinh t

r0

+6α4 sin(2β) cos(2β)arctan t cos(β)

sin(2β)
√

t2+4α2 cos2(β)

+6 sin(2β) cos(2β)arctan t cos(β)

sin(2β)
√

t2+4 cos2(β)

−6α4 sin(2β) cos(2β)arctan t(1+α cos(β))

α sin(2β)
√

t2+α2+2α cos(2β)+1

−6 sin(2β) cos(2β)arctan t(α+cos(β))

sin(2β)
√

t2+α2+2α cos(2β)+1

+t
[
5α2 + t2

sin2(2β)

]√
4α2 cos2(β) + t2

+t
[
5 + t2

sin2(2β)

]√
4 cos2(β) + t2

−t
[
5
(
α2 + 1

)
+ 2t2

sin2(2β)

]√
t2 + α2 + 2α cos(2β) + 1 ]

l− z

−z
.

Finally, the fourth integration over the variable z in Equation (4),

I4 =

∫ b

0
I3dz,

leads to Sn, n = 1, 2, . . . , 11, which appears in expression (7) for the self-inductance LA of a circular coil
with a rectangular cross-section and azimuthal current density.
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