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Abstract: Dye-sensitized solar cells (DSSCs) have emerged as promising alternatives to traditional
silicon-based solar cells due to their relatively high conversion efficiency, low cost, flexibility,
and environmentally benign fabrication processes. In DSSCs, platinum (Pt)-based materials used
as the counter electrode (CE) exhibit the superior catalytic ability toward the reduction reaction of
triiodide ions, which are attributed to their excellent catalytic activity and high electrical conductivity.
However, Pt-based materials with high cost and limited supply hinder them from mass production.
Developing highly active and stable CE materials without noble metals has been a persistent challenge
for the practical application in DSSCs. Recently, a number of earth-abundant catalysts, especially
carbon-based materials, display high activity, low cost, and good stability that render them attractive
candidates to replace Pt in DSSCs. Herein, we will briefly review recent progress on carbon-based
electrocatalysts as CEs in DSSC applications. The strategies of improving the catalytic activity of
carbon-based materials such as structural engineering and/or heteroatom doping will be introduced.
The active sites toward the reduction reaction of triiodide ions summarized from experimental results
or theoretical calculation will also be discussed. Finally, the futuristic prospects and challenges of
carbon-based electrocatalysts as CEs in DSSCs will be briefly mentioned.
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1. Introduction

Dye-sensitized solar cells (DSSCs) have attracted much attention and have made increasing
progress since they were first reported in 1991 [1]. Many attractive properties such as low-cost
fabrication processes, lightweight, flexible, and good performance in weak light conditions have
been demonstrated in DSSCs [2–4]. A DSSC consists of three main components: a dye-sensitized
titania (TiO2) photoanode, the triiodide (I3

−)/iodide (I−) electrolyte solution, and a platinum-coated
fluorine-doped tin oxide (FTO) glass as a counter electrode (CE), as shown in Figure 1a [5]. Figure 1b
briefly illustrates the energy diagram of a DSSC and the preferred charge transfer pathway. When
photons illuminate on adsorbed dye sensitizer, the electrons of dye were excited to lowest unoccupied
molecular orbital (LUMO) as shown by the (a) in Figure 1b. Then the electrons were transferred into the
conduction band (CB) of the semiconductors (b) and diffuse to the current collector (c). The electrons
flow through the external circuit to the cathode (d) where the electrons transfer to the electrolyte (e)
and the oxidized electrolyte (I3

− ions) are reduced. The electrolyte (I− ions) can regenerate the oxidized
dye (f). A circuit circle is completed. The CE is responsible for catalyzing the reduction of I3

− ions in
the electrolyte solution, which plays a crucial role on the performance of DSSCs. In general, platinum
(Pt; the actual material is more precisely Pt/PtOx) exhibits good electrical conductivity and excellent
catalytic activity for the reduction of the redox couples [6]. However, its high cost and severe corrosion
in triiodide (I3

−)/iodide (I−)-based electrolyte solutions are the main concern [7,8]. A good CE has
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to meet some requirements such as low cost, high conductivity, corrosion resistance, good catalytic
activity toward reducing the redox couple, and excellent stability in the electrolyte solution [9]. In order
to maximize the performance of DSSCs, the exchange current density (j0) of CE, which is inversely
related to charge-transfer resistance (Rct) between CE and electrolyte solution, is described as the
below equation:

j0 =
RT

nFRct
(1)

where R, T, n, F, and Rct are the gas constant, the absolute temperature, the number of transferred
electrons, Faraday constant, and charge-transfer resistance at CE/electrolyte solution interface,
respectively. Thus, it is obvious that the intrinsic catalytic activity of CE can be evaluated by
the Rct value. The Rct is usually measured by the electrochemical impedance spectrum (EIS) with a
symmetric configuration (as shown in Figure 1c) to rule out the interference from other components in
DSSCs [10,11]. A Nyquist plot as shown in Figure 1d can be figured out by fitting with the equivalent
circuit. In Nyquist plot, the semicircle in high-frequency region shows the charge-transfer process in
the interface of CE and electrolyte solution, while that in low-frequency region is corresponding to
the diffusion process of electrolyte ions. Also, Rs represents the sheet resistance of CE and electrolyte
diffusion impedance (ZN).
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desired electron pathway for a DSSC. CB and VB refer to the conduction band and valence band, 
respectively. EF represents the Fermi level of the semiconductor. LUMO and HOMO levels are the 
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permission from [5]. Copyright (2014) American Chemical Society. (c) A schematic illustration of the 
impedance in a DSSC and equivalent circuit and (d) the corresponding Nyquist plot. Rr represents the 
charge-transfer resistance at the oxide/electrolyte interface. Cdl and Cµ represent the double-layer 
capacitance and nanocrystalline oxide capacitance, respectively [10,11]. Copyright 2020, WILEY-
VCH. 

There are many different kinds of novel materials investigated as CE for DSSCs in recent years 
[12–19]. As mentioned above, the prerequisites to promising CEs are high exchange current density 
and high electrical conductivity. Figure 2 summarizes the exchange current density of various CEs 
based on their theoretical conductivity. It is demonstrated that the electrical conductivity of different 
CEs follow the order of metals and alloys > metal nitrides, metal carbides > carbon materials > 
multiple compounds > conductive polymers, selenides > sulfides > oxides. Among them, carbon-

Figure 1. (a) A schematic representation of a dye-sensitized solar cell (DSSC). (b) Energy diagram
and desired electron pathway for a DSSC. CB and VB refer to the conduction band and valence
band, respectively. EF represents the Fermi level of the semiconductor. LUMO and HOMO levels are
the lowest unoccupied and highest unoccupied molecular orbitals of the sensitizer. Reprinted with
permission from [5]. Copyright (2014) American Chemical Society. (c) A schematic illustration of the
impedance in a DSSC and equivalent circuit and (d) the corresponding Nyquist plot. Rr represents
the charge-transfer resistance at the oxide/electrolyte interface. Cdl and Cµ represent the double-layer
capacitance and nanocrystalline oxide capacitance, respectively [10,11]. Copyright 2020, WILEY-VCH.

There are many different kinds of novel materials investigated as CE for DSSCs in recent
years [12–19]. As mentioned above, the prerequisites to promising CEs are high exchange current
density and high electrical conductivity. Figure 2 summarizes the exchange current density of various
CEs based on their theoretical conductivity. It is demonstrated that the electrical conductivity of
different CEs follow the order of metals and alloys > metal nitrides, metal carbides > carbon materials >

multiple compounds > conductive polymers, selenides > sulfides > oxides. Among them, carbon-based
materials are low-cost and promising CE materials to replacing Pt. Generally, carbon-based CEs possess
sufficient conductivity and high resistance from electrolyte corrosion. However, the transparency of
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a DSSC is usually limited by the counter electrode, e.g., carbon-based CEs can be less translucent
than platinized FTO. Though the CEs’ optical transparency is not mandatory for the proper function
of DSSCs, it presents an added benefit for practical modules (i.e., light illumination from both sides
of DSSC devices). Fortunately, graphene, one kind of carbon allotropes, exhibits remarkable carrier
mobility (>2 × 105 cm2V−1s−1), high optical transparency, and specific surface area (2670 m2/g);
those benefits make it be a promising CE material in DSSCs [20]. It has been shown that the specific
surface area of carbon-based materials is positively correlated with the exchange current density (j0) or
power conversion efficiency (PCE). To further increase the specific surface area and catalytic activity,
the structural engineering of graphene to three-dimensional (3D) shape/morphology are efficient routes.
It would expose many defects and/or functional groups such as hydroxyl groups (-OH), carbonyl
groups (>C=O), and carboxyl groups (-COOH) when the structure of two-dimensional graphene
transforms to three dimensions. Increasing the number of defects and/or functional groups leads to
an improvement in electrocatalytic activity [21]. On the other hand, the insertion of heteroatoms into
the basal plane of graphene is also an efficient way to enhance the intrinsic electrocatalytic activity of
graphene, which is much lower than that of Pt [22–24].
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Figure 2. The plot of exchange current density (j0) of different counter electrodes (CEs) with their
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2. Synthesis of Graphene

Many kinds of preparation methods including electrochemical deposition [25,26], chemical
vapor deposition [27,28], doctor blade [29,30], and electrophoretic deposition [31,32] have been
investigated for CE preparation in DSSCs. All of the preparation techniques were aimed to achieve
high electrocatalytic activity and high conductivity of CE materials. Li et al. [26] reported an all
electrochemical strategy to synthesize MoS2/graphene composite films as CEs in DSSCs (Figure 3a).
The graphene oxide was electrodeposited and electro-reduced, and then MoS2 was subsequently
electrodeposited on reduced graphene oxide layers. The MoS2/graphene composite film as CE exhibited
higher electrocatalytic ability toward triiodide reduction reaction due to its 3D structure providing
large surface area. Consequently, the DSSCs with optimized MoS2/graphene CEs exhibit a high PCE of
8.01%, which is comparable to 8.21% of DSSCs with Pt CEs. Choi et al. [28] demonstrated a CE using
graphene-based multi-walled carbon nanotubes structure. Graphene layers were first drop-casted
on a SiO2/Si substrate and multi-walled carbon nanotubes were synthesized on top of graphene
layers with iron catalysts by CVD. The graphene-based multi-walled carbon nanotubes (GMWNTs)
film was transferred onto the fluorine-doped tin oxide/glass substrate (Figure 3b). The DSSCs with
graphene-based multi-walled carbon nanotubes as CE show an efficiency of 3.0% and high fill factor of
69%, suggesting graphene-based multi-walled carbon nanotubes were a promising candidate as the
CE material in DSSCs.
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The actual DSSC performances achieved by using two-dimensional graphene nanosheets are
always less than that expected. The reduced performance is substantially originated from the
agglomeration and restacking of graphene nanosheets due to their strong π-π interactions. To solve
the problems of graphene restacking, three-dimensional (3D) graphene spheres, and crumples with
large surface areas and abundant pores have been designed [33–35]. Xue et al. [36] developed
one-step CVD synthetic method to prepare 3D graphene-carbon nanotube hollow fibers with radially
aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through an anodized
aluminum template. These fibers with a controllable surface area, meso-/micropores, and superior
electrical properties are an excellent CE in DSSCs. The DSSCs based on these fibers showed a PCE
of 6.8% compared to that based on Pt wire CE with a PCE of 2.74%. Additionally, these novel
fiber-shaped graphene-RACNT energy conversion devices are so flexible they can be woven into
fabrics as power sources.

3. Graphene-Based Counter Electrodes for DSSCs

Many research groups have demonstrated that DSSCs with graphene CEs show the performances
of DSSCs varied from 0.74% to 9.4% [37–48]. To the best of our knowledge, Xu and his coworkers
were first to incorporate graphene materials as the catalytic CE for a DSSC [47]. The graphene sheets
functionalized with 1-pyrenebutyrate (PB-G) were prepared by the reduction of graphene oxide.
The conductivity of large-area flexible PB-G films exhibit seven orders of magnitude higher than that
of the graphene oxide precursor. The efficiency of the DSSC with PB-G as a CE was measured to be
2.20%, compared to that of DSSC with standard Pt CE (3.98%). Graphene nanoplatelets (GnP) as a basic
morphology of graphene have been prepared as the CE materials for DSSCs due to their large amount of
active sites [49–51]. Ju et al. [14] prepared nitrogen-doped GNPs (NGnP) as metal-free electrocatalysts
in DSSCs by ball-milling graphite in the presence of nitrogen gas (Figure 4a). The prepared NGnP
show a structure of the nitrogen atom anchored at the edge of graphene nanoplatelets. The resultant
NGnP CEs exhibited good electrocatalytic performance for the reduction of Co(bpy)3

3+, judging by the
low charge-transfer resistance (Rct) values at the CE/electrolyte solution interface and high fill factor
(71.9%) in DSSCs (Figure 4b). The performance of DSSCs with NGnP5 CE exhibited a PCE of up to
10.27%, which is higher than that of the DSSC with Pt-based CE (9.96%) (Figure 4c). Most importantly,
the prepared NGnP CE exhibited superior stability compared to Pt CE by using the Co(bpy)3

2+/3+

redox couple. Where, the Co(bpy)3
2+/3+-based electrolytes not only provide higher voltage of DSSC,

but also appear to be quite fast at carbon-based cathodes.
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Figure 4. (a) A schematic illustration and SEM images of producing NGnP by the ball-milling graphite
in the presence of nitrogen and subsequently exposing it to moisture in the air. (b) (top) Nyquist plot of
electrochemical impedance spectrum (EIS) obtained from symmetrical dummy cells with the Pt/FTO
and NGnP5/FTO electrodes. (bottom) Current–voltage characteristics of the DSSCs with the Pt and the
NGnP5 CEs under AM1.5 illumination. (c) A table lists the photovoltaic parameters of the DSSCs with
Pt and NGnP CEs [14]. Copyright 2014, WILEY-VCH.

Additionally, Ju et al. [52] synthesized edge-selenated graphene nanoplatelets (SeGnPs) by a
simple mechanochemical reaction between graphite and selenium (Se) powders. The SeGnPs preserved
the completeness of graphene basal plane and selectively-doped selenium atom at the edge of graphene
confirmed by atomic-resolution transmission electron microscopy (Figure 5a). The SeGnPs as a
CE in DSSCs exhibit outstanding electrocatalytic performance and ultimately high stability in both
Co(bpy)3

2+/3+ and conventional I−/I3
− electrolyte solutions (Figure 5b). Furthermore, the theoretical

calculations were applied to clarify the I3
− reduction mechanism. They found that SeGnPs with

single-coordinated armchair and zigzag edges demonstrated significantly enhanced electrocatalytic
activity for I3

− reduction (Figure 5c). The rapid electron transfer was made through the well-preserved
graphitic basal plane to increase the current (Figure 5d). The efficiencies of SeGnP CE were respectively
up to 10.98% and 9.17% in Co(bpy)3

2+/3+ and I−/I3
− electrolyte solutions, compared to those of Pt CE

10.11% and 9.07% in Co(bpy)3
2+/3+ and I−/I3

− electrolyte solutions, respectively.
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graphene (NHG) by chemical vapor deposition with MgO template and subsequently employing N2 
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defects, and nitrogen dopants of NHG were obtained (Figure 6b,c), resulting in outstanding 
electrocatalytic activity for the I–/I3– redox reaction. The DSSCs with NHG CEs exhibited a higher PCE 
of 9.07% compared with that of DSSCs with Pt CEs (8.19%) (Figure 6d), which can be ascribed to the 
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further confirmed by density functional theory (DFT) calculations, which found that the pyridinic 
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Figure 5. (a) A schematic illustration, atomic-resolution transmission electron microscopy,
and corresponding inverse fast Fourier transform images of SeGnPs. (b) Current-voltage characteristics
and Rct of DSSCs with Pt and SeGnP CEs. (c) (top) Representative illustrations of single-coordinated
(Se(c1)), double-coordinated (Se(c2)), and hydrogenated Se (SeH)-doped armchair (ac) and zigzag (zz)
graphene edges. (bottom) The adsorption energies of the I atom were evaluated and compared with
the undoped edge and basal plane cases. The shaded region indicates the iodine reduction reaction
activity criterion. (d) (top) For various I− and I3

−-adsorbed graphene basal plane models. (bottom) The
current-voltage curves were calculated and compared with those from pristine grapheme [52].

Structural engineering of graphene is an efficient route to increase the specific surface area and
the number of active sites/defects. For example, Yang et al. [53] synthesized nitrogen-doped holey
graphene (NHG) by chemical vapor deposition with MgO template and subsequently employing N2

plasma treatment (Figure 6a). High conductivity, large surface area and abundant edge-induced defects,
and nitrogen dopants of NHG were obtained (Figure 6b,c), resulting in outstanding electrocatalytic
activity for the I−/I3

− redox reaction. The DSSCs with NHG CEs exhibited a higher PCE of 9.07%
compared with that of DSSCs with Pt CEs (8.19%) (Figure 6d), which can be ascribed to the lower sheet
resistance and Rct of NHG CEs (Figure 6e,g). Moreover, the detailed mechanism was further confirmed
by density functional theory (DFT) calculations, which found that the pyridinic nitrogen (PN), pyrrolic
nitrogen (PR), and edge-induced defects including five-carbon ring (C5) and seven-carbon ring (C7) act
as catalytically active sites to greatly enhance the catalytic activity for the triiodide reduction reaction
(Figure 6f).
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Figure 6. (a) A schematic presentation of nitrogen-doped holey graphene (NHG) synthesis by N2

plasma treatment. A SEM image (b) and a high-resolution TEM image (c) of NHG. (d) Current-voltage
characteristics of the DSSCs with different CEs. (e) EIS measurement and the corresponding equivalent
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(g) Photovoltaic parameters of DSSCs with different CEs and the resulting data from cyclic voltammetry
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Tseng et al. [54] synthesized nitrogen-doped graphene hollow nanoballs (N-GHBs) by chemical
vapor deposition (CVD) via an in situ nitrogen-doping approach (Figure 7a). N-GHBs were deposited
directly on carbon cloth (CC) as an efficient metal-free electrocatalyst for DSSCs. The highly-curved
N-GHBs largely improve the loss of specific surface area caused by the self-restacking of planar graphene
sheets. Keeping oxygen contaminations from N-GHBs in in situ doping process, the characteristic
electrical conductivity of graphene was preserved in the as-synthesized N-GHBs. The nitrogen-doping
content of 8.7–14.0% and different nitrogen-doped configurations in N-GHBs could be controlled by
changing the evaporation temperature of melamine as a nitrogen source (Figure 7b). By comparing
the results of different nitrogen-doped states in N-GHBs and the corresponding DSSC performances,
they found that the pyridinic and quaternary nitrogens, rather than the total nitrogen doping
level, are mainly responsible for electrocatalytic activities toward triiodide reduction reaction.
The nitrogen-doped high-surface-area GHBs remarkably improve the intrinsic electrocatalytic activity,
lower the charge-transfer resistance (Figure 7d), and enhance the corresponding photovoltaic
performance (7.53%), which is comparable to that (7.70%) of a standard sputtered Pt CE-based
DSSC (Figure 7c and Table 1). The exceptional stability of N-GHBs was also demonstrated by EIS with
several scan cycles (Figure 7e).
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Figure 7. (a) A schematic representation of the chemical vapor deposition (CVD) design for N-GHBs
synthesis. (b) Distributions of various N-doped configurations with different N-GHBs samples.
(c) Photocurrent density-voltage curves. (d) EIS of various CEs-based DSSCs were investigated. (e) EIS
stability test of the symmetrical dummy cells with two identical electrodes of N-GHBs-P3/CC [54].
Copyright 2018, Elsevier.

Table 1. The parameters of the DSSCs with various counter electrodes were measured under AM 1.5G
illumination [54].

Counter
Electrodes

η

(%)
VOC
(mV)

JSC
(mA cm−2)

FF JIPCE
(mA cm−2)

Bare CC 0.48 ± 0.11 571 ± 2 4.33 ± 0.83 0.19 ± 0.01 4.14
GHBs/CC 6.20 ± 0.06 697 ± 5 14.50 ± 0.27 0.61 ± 0.01 14.29

N-GHBs-P3/CC 7.53 ± 0.06 703 ± 5 16.09 ± 0.18 0.67 ± 0.01 15.99
Sputtered Pt/CC 7.70 ± 0.14 735 ± 13 15.87 ± 0.32 0.66 ± 0.01 15.77

The electrocatalytic activity of graphene can be enhanced by introducing one kind of heteroatom as
we reviewed above. To further increase the catalytic activity, dual-doped graphene was also achieved
by theoretical calculation and experimental results [55–58]. Chang et al. [59] synthesized nitrogen
and sulfur co-doped graphene hollow nanoballs (N,S-GHBs) via chemical vapor deposition (CVD)
as a CE for DSSCs (Figure 8a). The transmission electron microscopic images revealed the hollow
structure of GHBs and confirmed the interlayer spacing (0.34 nm) of graphene (Figure 8b). Nitrogen
doping improves the adsorption of I3

− due to the electron transfer caused by the electronegativity
differences between carbon and nitrogen atoms. On the other hand, sulfur-doping approach generates
the geometric distortion due to the larger size of sulfur than carbon, which activates the sp2 bonding
structure of carbon into unsaturated sp3 bonding structure. Among these doped GHB samples,
N,S-GHBs show the best catalytic performance due to the synergistic effect from both electronic and
geometric changes, caused by the N- and S-doping, respectively (Figure 8e). The DSSC with a N,S-GHB
CE exhibits the PCE of 9.02%, comparable to that (8.90%) of a Pt-based counterpart due to the decrease
of Rct for triiodide reduction reaction (Figure 8c,d and Table 2).



Physics 2020, 2 420

Physics 2020, 2 FOR PEER REVIEW  9 

 

 
Figure 8. (a) A schematic illustration represents the growth of graphene hollow nanoballs (GHBs) on 
carbon cloth (CC) in a CVD reaction. (b) HR-TEM reveals the hollow structure and the lattice spacing 
of 0.34 nm of GHBs. (c) Cyclic voltammograms were tested with various CEs. (d) Photocurrent density 
vs. voltage curves of DSSCs with different CEs. (e) The doping amounts of the N and S atoms in N-
GHBs/CC, S-GHBs/CC, and N,S-GHBs/CC are displayed for comparison [59]. Copyright 2020, 
Elsevier. 

Table 2. The photovoltaic parameters of various CEs in a DSSC are compared under AM 1.5 G (100 
mW cm−2) illumination [59]. 

Counter Electrodes η 
(%) 

VOC 
(mV) 

JSC 
(mA cm−2) 

FF JIPCE 
(mA cm−2) 

Bare CC 0.41 570 3.80 0.19 3.67 
GHBs/CC 6.47 785 13.33 0.62 13.06 

N-GHBs/CC 7.48 776 14.44 0.67 14.07 
S-GHBs/CC 8.15 785 14.84 0.70 14.68 

N,S-GHBs/CC 9.02 798 15.71 0.72 15.56 
Sputtered Pt/CC 8.90 802 15.22 0.73 14.96 

4. Conclusions and Outlook 

Dye-sensitized solar cells are becoming one of the representative third-generation solar cells 
because of their high solar-to-electric conversion efficiency, along with low cost, easy preparation, 
and environment benignity. The performance and the cost of DSSCs are highly dependent on the 
choice of counter electrodes. As a counter electrode, it must possess high electrocatalytic activity, 
high electrical conductivity, and excellent stability for electrolyte regeneration. Whereas, carbon 
materials have obvious advantages in price and abundance. However, the low intrinsic 
electrocatalytic activity is a limitation for achieving high-efficient counter electrodes. One or two 
kinds of heteroatom-doping in graphene have been demonstrated as an efficient route to improve the 
electrocatalytic activity. On the other hand, the structural transformation from two-dimensional 
graphene to three-dimensional graphene with meso-/micropores significantly enhanced the specific 
surface area and the diffusion of the electrolyte redox couples. Future development of carbon-based 
CEs should focus on the new designing ideas, e.g., the new methods and the new combination of 
carbon-based materials and other kinds of materials with high intrinsic electrocatalytic activity, 

Figure 8. (a) A schematic illustration represents the growth of graphene hollow nanoballs (GHBs)
on carbon cloth (CC) in a CVD reaction. (b) HR-TEM reveals the hollow structure and the lattice
spacing of 0.34 nm of GHBs. (c) Cyclic voltammograms were tested with various CEs. (d) Photocurrent
density vs. voltage curves of DSSCs with different CEs. (e) The doping amounts of the N and S
atoms in N-GHBs/CC, S-GHBs/CC, and N,S-GHBs/CC are displayed for comparison [59]. Copyright
2020, Elsevier.

Table 2. The photovoltaic parameters of various CEs in a DSSC are compared under AM 1.5 G
(100 mW cm−2) illumination [59].

Counter
Electrodes

η

(%)
VOC
(mV)

JSC
(mA cm−2)

FF JIPCE
(mA cm−2)

Bare CC 0.41 570 3.80 0.19 3.67
GHBs/CC 6.47 785 13.33 0.62 13.06

N-GHBs/CC 7.48 776 14.44 0.67 14.07
S-GHBs/CC 8.15 785 14.84 0.70 14.68

N,S-GHBs/CC 9.02 798 15.71 0.72 15.56
Sputtered Pt/CC 8.90 802 15.22 0.73 14.96

4. Conclusions and Outlook

Dye-sensitized solar cells are becoming one of the representative third-generation solar cells
because of their high solar-to-electric conversion efficiency, along with low cost, easy preparation,
and environment benignity. The performance and the cost of DSSCs are highly dependent on the choice
of counter electrodes. As a counter electrode, it must possess high electrocatalytic activity, high electrical
conductivity, and excellent stability for electrolyte regeneration. Whereas, carbon materials have
obvious advantages in price and abundance. However, the low intrinsic electrocatalytic activity is
a limitation for achieving high-efficient counter electrodes. One or two kinds of heteroatom-doping
in graphene have been demonstrated as an efficient route to improve the electrocatalytic activity.
On the other hand, the structural transformation from two-dimensional graphene to three-dimensional
graphene with meso-/micropores significantly enhanced the specific surface area and the diffusion
of the electrolyte redox couples. Future development of carbon-based CEs should focus on the new
designing ideas, e.g., the new methods and the new combination of carbon-based materials and other
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kinds of materials with high intrinsic electrocatalytic activity, aiming to achieve the conductivity,
catalytic activity, and stability of CE materials; the defect site engineering on carbonaceous materials;
the structural and interfacial engineering on carbonaceous materials. The active sites of CE materials
for reduction of redox mediators in a DSSC have few understandings, which plays the crucial role
on the improvement of the efficiency of a DSSC. Finally, it should be concerned with the interaction
between each component in CE materials and/or CE materials and electrolyte solution.
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