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Abstract: We present an overview of a proposal in relativistic proton-proton (pp) collisions
emphasizing the thermal or kinetic freeze-out stage in the framework of the Tsallis distribution.
In this paper we take into account the chemical potential present in the Tsallis distribution by
following a two step procedure. In the first step we used the redudancy present in the variables such
as the system temperature, T, volume, V, Tsallis exponent, q, chemical potential, µ, and performed all
fits by effectively setting to zero the chemical potential. In the second step the value q is kept fixed
at the value determined in the first step. This way the complete set of variables T, q, V and µ can be
determined. The final results show a weak energy dependence in pp collisions at the centre-of-mass
energy

√
s = 20 TeV to 13 TeV. The chemical potential µ at kinetic freeze-out shows an increase with

beam energy. This simplifies the description of the thermal freeze-out stage in pp collisions as the
values of T and of the freeze-out radius R remain constant to a good approximation over a wide
range of beam energies.
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1. Introduction

It has been estimated [1] that about 30,000 particles (pions, kaons, protons, antiprotons)) are
produced in a central heavy ion collision at the Large Hadron Collider (LHC) at 5.02 TeV. Hence it is
natural to use concepts from statistical mechanics to analyze the produced particles. This procedure
has a long and proud history with contributions from three Nobel prize winners: E. Fermi [2,3],
W. Heisenberg [4] and L.D. Landau [5]. To quote Landau:

“Fermi originated the ingenious idea of considering the collision process at very high energies by the
use of thermodynamic methods.”

This turned out to be useful also at much higher beam energies than those initially envisaged.
The main ingredient in the hadron resonance gas model (referred to as thermal model here) is that
all resonances listed in the Review of Particle Physics [6] are in thermal and chemical equilibrium.
This reduces the number of available parameters and just a few thermodynamic variables characterize
the system.

The chemical freeze-out stage is well understood and is strongly supported by experimental
results (see e.g., [7] for a recent review) with a strong connection to results obtained using Lattice
Quantum Chromodynamics (LQCD) as the chemical freeze-out temperature is consistent with the
phase transition temperature calculated in LQCD. Indeed, for the most central Pb-Pb collisions, the best
description of the ALICE data on yields of particles in one unit of rapidity at mid-rapidity was obtained
for a chemical freeze-out temperature given by Tch = 156.6± 1.7 MeV [7,8]. Remarkably, this value
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of Tch is close to the pseudo-critical temperature Tc = 156.5± 1.5 MeV obtained from first principles
Lattice QCD (LQCD) calculations [9], albeit with the possibility of a broad transition region [10].

For several decades, a well-established procedure using hydrodynamics [11] and variations
thereof has existed to describe this stage. In this paper we review another possibility to describe the
thermal freeze-out stage which has shown considerable potential especially to describe the final state
in proton–proton (pp) collisions. Most of these approaches are based on variations of a distribution
proposed by Tsallis about 40 years ago [12] to describe entropy by introducing an additional parameter
called q. In the limit q→ 1 this reproduces the standard Boltzmann–Gibbs entropy. The advantage is
that thermodynamic variables like temperature, energy density, pressure and particle density can still
be used and thermodynamic consistency is maintained.

This paper is an extension of [13]. For completeness and for the convenience of the reader we
have included the tables presented there and considerably improved on them, the inclusion of the
NA61/SHINE [14] is new and contributes very much to the understanding of the energy dependence
of the parameters, also all figures are new.

2. Thermal Freeze-Out

We will focus here on one particular form of the Tsallis distribution, satisfying thermodynamic
consistency relations [15,16] and given by:

E
d3N
d3 p

= gVE
1

(2π)3

[
1 + (q− 1)

E− µ

T

]− q
q−1

, (1)

where V is the volume, q is the Tsallis parameter, T is the corresponding temperature, E is the energy
of the particle, p is the momentum, g is the degeneracy factor and µ is the chemical potential. In terms

of variables commonly used in high-energy physics, rapidity y, transverse mass mT =
√

p2
T + m2:

d2N
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. (2)

In the limit where the parameter q tends to unity one recovers the well-known
Boltzmann–Gibbs distribution (with pT being the particle transverse momentum):

lim
q→1

d2N
dpTdy

= gV
pTmT cosh y

(2π)2 exp
(
−mT cosh y− µ

T

)
. (3)

The main advantage of Equation (2) over Equation (3) is that it has a polynomial decrease with
increasing pT which is what is observed experimentally.

It was recognized early on [17] that there is a redundancy in the number of parameters in this
distribution, namely the four parameters T, V, q and µ in Equation (2) can be replaced by just three
parameters T0, V0, q with the help of the following transformation:

T0 = T
[
1− (q− 1)

µ

T

]
, µ ≤ T

q− 1
, (4)

V0 = V
[
1− (q− 1)

µ

T

] q
1−q , (5)

leading to a transverse momentum distribution which can thus be written equivalently as

d2N
dpTdy

= gV0
pTmT cosh y

(2π)2

[
1 + (q− 1)

mT cosh y
T0

]− q
q−1

, (6)

where the chemical potential does not appear explicitly.
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Corresponding to the volumes V and V0 defined in Equations (1) and (5) we also introduce the
correponding radii R and R0

V =
4π

3
R3, (7)

V0 =
4π

3
R3

0. (8)

It is to be noted that most previous analyses have confused the two Equations (2) and (6) and
reached conclusions that are incorrect, namely that at LHC energies, different hadrons, π, K, p, ... cannot
be described by the same values of T and V. As we will show this is based on using T0 and V0 and
not T and V. Many authors have followed this conclusion because at LHC energies equal numbers
of particles and antiparticles are being produced and, furthermore, at chemical equilibrium, one has
indeed µ = 0 MeV for all quantum numbers. However the equality of particle and antiparticle yields,
at thermal freeze-out, only implies that e.g., π+ and π− have the same chemical potential but they are
not necessarily zero. We emphasize that Equations (2) and (6) carry a different meaning, notice the
difference in parameters: T0 is not equal to T and neither is V equal to V0. Notice also that we do not
have µ in Equation (6).

It is the purpose of the present paper to resolve this issue. The procedure we choose is
the following:

1. Use Equation (6) to fit the transverse momentum distributions. This determines the three
parameters T0, q and V0.

2. Fix the parameter q thus obtained.
3. Perform a new fit to the transverse momentum distributions using Equation (2) keeping q as

determined in the previous step. This determines the parameters T and V and the chemical
potential µ.

4. Check the consistency with Equations (4) and (5).

Each step in the fitting procedure thus involves only three parameters to describe the transverse
momentum distributions. This procedure was presented in [13] and the present paper is an extension
with more details in this paper, some of the entries in Table 2 have been corrected.

We emphasize that the chemical potentials at kinetic freeze-out (described here with a Tsallis
distribution), are not related to those at chemical freeze-out. At chemical freeze-out, where thermal
and chemical equilibrium have been well established the chemical potentials are zero. At kinetic
freeze-out however, there is no chemical equilibrium and the observed particle-antiparticle symmetry
only implies that the chemical potentials for particles must be equal to those for antiparticles. However,
due to the absence of chemical equilibrium they do not have to be zero. The only constraint is that
they should be equal for particles and antiparticles.

We remind the reader here of the advantage of using the above distribution as they follow a
consistent set of thermodynamic relations (see e.g., [17]). From this, it is thus clear that the parameter T
can indeed be considered as a temperature in the thermodynamic sense since the relation below holds

T =
∂E
∂S

∣∣∣∣
V,N

, (9)

where the entropy S is the Tsallis entropy.
In the next section we include the chemical potential parameter in the Tsallis fits to the transverse

momentum spectra. Previously, it was first noted by [17] that the variables T, V, q and µ in the Tsallis
distribution function Equation (1) have a redundancy for µ 6= 0 MeV and recently [18] considered the
mass of a particle in place of chemical potential. This necessitates work on determining the chemical
potential from the transverse momentum spectra.
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3. Comparison of Fit Results

As mentioned in the introduction, we reproduce here for completeness the values extracted from
the results published by the ALICE Collaboration [19–22]. The data at the centre-of-mass energy√

s = 0.9 TeV had the smallest range in pT (for all the ALICE Collaboration results considered here),
of about an order of magnitude less than the experimental data at

√
s = 2.76 GeV and

√
s = 7 TeV

with ALICE.
In general the data were described very well; the figures showing the actual fits results are not

included in this paper since they form part of previous publications. The least squares method was
performed by the Minuit package [23] as part of the fitting procedure in the code. There was no manual
selection in the choice of parameters, all parameters were initialized at the beginning and the code
returned the best fit parameter values. We did not particularly fix the value of T and tried to obtain the
other parameters. In particular, the value of µ did not affect V.

We did not observe any trend which suggested a deterioration of the fits with the centre-of-mass
energy. In Tables 1 and 2; we give the χ2 values. Comparing the values of χ2 from 2.76 to 7.0 TeV,
in Tables 1 and 2, there was no clear trend with increasing energy.

Table 1. Fit results at
√

s = 0.9 [19], 2.76 [20], 5.02 [21] and 7 TeV [21,22], using data from the ALICE
Collaboration using Equations (6) and (7).

√
s (TeV) Particle R0 (fm) q T0 (GeV) χ2/NDF

0.9 π+ 4.83 ± 0.14 1.148 ± 0.005 0.070 ± 0.002 22.73/30
π− 4.74 ± 0.13 1.145 ± 0.005 0.072 ± 0.002 15.83/30
K+ 4.52 ± 1.30 1.175 ± 0.017 0.057 ± 0.013 13.02/24
K− 3.96 ± 0.96 1.161 ± 0.016 0.064 ± 0.013 6.21/24
p 42.7 ± 19.8 1.158 ± 0.006 0.020 ± 0.004 14.29/21
p̄ 7.44 ± 3.95 1.132 ± 0.014 0.052 ± 0.016 13.82/21

2.76 π+ + π− 4.80 ± 0.10 1.149 ± 0.002 0.077 ± 0.001 20.64/60
K+ + K− 2.51 ± 0.13 1.144 ± 0.002 0.096 ± 0.004 2.46/55

p + p̄ 4.01 ± 0.62 1.121 ± 0.005 0.086 ± 0.008 3.51/46

5.02 π+ + π− 5.02 ± 0.11 1.155 ± 0.002 0.076 ± 0.002 20.13/55
K+ + K− 2.44 ± 0.17 1.15 ± 0.005 0.099 ± 0.006 1.52/48

p + p̄ 3.60 ± 0.55 1.126 ± 0.005 0.091 ± 0.009 2.56/46

7.0 π+ + π− 5.66 ± 0.17 1.179 ± 0.003 0.066 ± 0.002 14.14/38
K+ + K− 2.51 ± 0.15 1.158 ± 0.005 0.097 ± 0.005 3.11/45

p + p̄ 3.07 ± 0.41 1.124 ± 0.005 0.101 ± 0.008 6.03/43

Table 2. Fit results at
√

s = 0.9 [19], 2.76 [20], 5.02 [21] and 7 TeV [21,22], using data from the ALICE
Collaboration with q from Table 1 following Equations (2) and (8).

√
s (TeV) Particle R (fm) µ (GeV) T (GeV) χ2/NDF

0.9 π+ 3.64 ± 0.21 0.055 ± 0.012 0.079 ± 0.002 3.66/30
π− 3.53 ± 0.21 0.059 ± 0.012 0.080 ± 0.002 2.18/30
K+ 3.76 ± 0.33 0.029 ± 0.017 0.062 ± 0.003 5.31/24
K− 3.89 ± 0.35 0.003 ± 0.018 0.065 ± 0.003 3.38/24
p 3.34 ± 0.27 0.233 ± 0.020 0.057 ± 0.007 7.44/21
p̄ 3.93 ± 0.33 0.097 ± 0.024 0.065 ± 0.002 7.69/21

2.76 π+ + π− 4.32 ± 2.68 0.022 ± 0.130 0.080 ± 0.019 20.48/60
K+ + K− 4.75 ± 0.03 −0.140 ± 0.008 0.075 ± 0.004 2.48/55

p + p̄ 4.47 ± 5.50 −0.071 ± 0.253 0.077 ± 0.030 3.52/46

5.02 π+ + π− 4.19 ± 2.64 0.038 ± 0.134 0.082 ± 0.021 20.14/55
K+ + K− 4.49 ± 0.03 −0.142 ± 0.009 0.078 ± 0.0005 1.52/48

p + p̄ 4.00 ± 4.48 −0.075 ± 0.243 0.081 ± 0.031 2.56/46

7.0 π+ + π− 3.67 ± 0.02 0.081 ± 0.141 0.081 ± 0.003 14.15/38
K+ + K− 3.80 ± 0.22 −0.098± 0.014 0.082 ± 0.002 3.13/55

p + p̄ 4.07 ± 0.27 −0.127± 0.018 0.085 ± 0.002 6.03/43
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The fits to the transverse momentum distributions were then repeated using Equation (2) but
this time keeping the parameter q fixed to the value determined in the previous section and listed
in Table 1. The results are listed in Table 2, where we present the fit results for non-zero chemical
potential for pp collisions at four different beam energies by the ALICE Collaboration.

In the first case, we set the chemical potential as the mass of the respective particle and compare
our results to [18] for pp collisions at 0.9 TeV with the CMS Collaboration, secondly we set the chemical
potential as a free parameter to fit the data and analysis of the fit results and lastly, we calculated the
chemical potential directly from Equation (12).

In Table 3 we present the extracted values of T, q , R and µ at four different energies with the
CMS Collaboration.

Table 3. The extracted values of T, q , R, µ and χ2/NDF parameters, using the data published
in [24–26] for pp collisions with the CMS experiment.

√
s (TeV) Particle T (MeV) q R (fm) µ (MeV) χ2/NDF

0.9 [24] π+ 77± 1 1.164± 0.004 0.070± 0.102 66± 4 8.111/18
K+ 74± 1 1.158± 0.008 3.724± 0.126 −25± 9 2.123/13
p+ 71± 1 1.139± 0.003 3.536± 0.105 94± 9 9.596/23

2.76 [25] π+ 76± 1 1.189± 0.005 3.906± 0.100 80± 5 5.711/18
K+ 78± 1 1.162± 0.008 3.883± 0.019 −5± 1 2.447/13
p+ 67± 1 1.166± 0.004 3.508± 0.099 107± 9 27.43/23

7.0 [25] π+ 77± 1 1.203± 0.005 3.994± 0.105 89± 1 14.29/18
K+ 87± 1 1.152± 0.009 3.900± 0.135 −96± 11 2.074/13
p+ 67± 1 1.184± 0.004 3.509± 0.099 84± 9 12.22/23

13.0 [26] π+ 76± 2 1.215± 0.008 3.932± 0.157 88± 3 3.546/18
K+ 88± 3 1.142± 0.0150 4.044± 0.27 −124± 22 1.828/13
p+ 59± 1 1.213± 0.008 3.135± 0.130 191± 14 8.892/22

In Figure 1 we compare the values for T0 and T at four different beam energies. The results
obtained for T were consistently more stable for different particle types than the values obtained for
T0. We will come back to this with more detail later in this paper.

An interesting proposal to determine the chemical potential was made in [27], where the
observation was made that the radius R0 given in Table 1 is larger than the one obtained from a
femtoscopy analysis [28] by a factor κ estimated to be about 3.5, i.e.,

Rfemto ≈
1
κ

R0. (10)

Hence in [27] the suggestion is made to identify the corresponding volume Vfemto with the volume
V appearing in Equation (1).

Hence
V0 ≈ V · κ3. (11)

Combining this with Equations (4) and (5) this leads to a chemical potential given by

µ =
T0

q− 1

(
κ3(q−1)/q − 1

)
, (12)

Hence, using this proposal, a knowledge of T0 would lead to a determination of µ.
We compared the resulting values of the chemical potential µ using this proposal [27] to the

values using the procedure outlined above starting Equation (2) and concluded that the results are
very different; hence, our results do not support this assumption and thus the volume V appearing in
Equation (2) cannot be identified with the volume determined from femtoscopy. The volume V must
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be considered to be specific to the Tsallis distribution as is the case with all the other variables used in
this paper.

A clearer picture of the energy dependence emerges when including results from the
NA61/SHINE Collaboration [14] for π−’s. The procedure outlined above was repeated in this case
using the data published in [14], first we used Equation (6) and collect the results in Table 4. Next we
fix the values of q obtained this way and repeat the fits using Equation (1); the results are then collected
in Table 5.
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Figure 1. A comparison of the values of temperatures T and T0 of different hadron species for pp
collisions at

√
s = 0.9 [19], 2.76 [20], 5.02 [21] and 7 [22] TeV.

Table 4. The extracted values of T0, q , R0 and χ2/NDF parameters, using the data published in [14]
for pp collisions with the NA 61 Collaboration.

√
s (GeV) Particle T0 (MeV) q R0 (fm) χ2/NDF

20 π− 98± 6 1.042± 0.015 2.55± 0.14 4.454/15
31 π− 95± 3 1.057± 0.008 2.72± 0.09 4.561/15
40 π− 96± 2 1.055± 0.006 2.76± 0.06 8.423/15
80 π− 95± 2 1.064± 0.006 2.90± 0.06 6.775/15

158 π− 93± 3 1.069± 0.006 3.07± 0.08 2.176/15

Table 5. The extracted values of T, µ , R and χ2/NDF parameters, using the data published in [14] for
pp collisions with the NA 61 Collaboration.

√
s (GeV) Particle R (fm) µ (GeV) T (GeV) χ2/NDF

20 π− 2.451± 0.399 0.011± 0.046 0.098± 0.003 4.454/15
31 π− 2.529± 0.223 0.020± 0.024 0.096± 0.002 4.561/15
40 π− 2.548± 0.016 0.022± 0.002 0.097± 0.001 8.423/15
80 π− 2.638± 0.171 0.026± 0.018 0.096± 0.001 6.776/15
158 π− 2.785± 0.216 0.025± 0.021 0.095± 0.002 2.179/15
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The values for T0 as a function of beam energy are shown in Figure 2. As one can see a fairly
strong energy dependence was present when comparing the two sets of data.

However, this picture changes when plotting the temperature T as a function of beam energy
as shown in Figure 3. The energy dependence becomes weaker and the values of T decrease with
increasing beam energy from about 10 GeV all the way up to 13,000 GeV. A similar decrease of
the kinetic freeze-out energy was also observed by the STAR collaboration [29] at the Brookhaven
National Laboratory.
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Figure 2. The energy dependence of the temperature parameter T0. The triangular points are values
of T0 extracted from data in pp collisions obtained by the NA61/SHINE [14] Collaboration for pions
(see Table 4). The squares are the T0 values in Table 1. All points were obtained by fits using Equation (6).
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Figure 3. The energy dependence of the temperature T for pions in pp collisions. The triangular points
are values of T extracted from data in pp collisions obtained by the NA61/SHINE [14] Collaboration
for pions (see Table 5). The squares are the T values in Tables 2 and 3. All points were obtained by fits
using Equation (2). The straight line at T = 0.1 GeV is there to guide the eye only.
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Similarly when plotting the results obtained for the radius R0 one sees a strong dependence on
the beam energy as seen in Figure 4.
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Figure 4. The energy dependence of the freeze-out radius R0 of pions in pp collisions. The round
(red) points are obtained from fits to the results of the NA61/SHINE Collaboration [14] (see Table 4),
the square points are for the ALICE Collaboration data (see Table 1). The straight line at R0 = 4 fm is
there to guide the eye only.

However, similarly to the case with the temperatures T and T0, the energy dependence s weakened
when plotting the radius R where only a very mild energy dependence could be noticed, see Figure 5.
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Figure 5. The energy dependence of the freeze-out radius R of pions in pp collisions. The round
(red) points are obtained from fits to the results of the NA61/SHINE Collaboration [14] (see Table 5),
the square (blue) points are for the ALICE Collaboration data (see Table 2), while the round (black)
points are for the CMS Collaboration data (see Table 3). The straight line at R = 4 fm is there to guide the
eye only.
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Finally the parameter which was most influenced by deviations from chemical equilibrium,
namely the chemical potential µ which is shown in Figure 6. Here one sees a very clear increase with
beam energy.
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Figure 6. The energy dependence of the freeze-out chemical potential µ for pions in pp collisions.
The round (red) points are obtained from fits to the results of the NA61/SHINE Collaboration [14]
(see Table 5), the square (blue) points are for the ALICE Collaboration data (see Table 2), while the
round (black) points are for the CMS Collaboration data (see Table 3).

4. Conclusions

In this paper we have taken into account the chemical potential present in the Tsallis distribution
Equation (1) by following a two step procedure. In the first step we used the redundancy present in
the variables T, V, q and µ expressed in Equations (4) and (5) and performed all fits using Equation (6),
i.e., effectively setting the chemical potential equal to zero. The only variable which is common
between Equations (1) and (6) is the Tsallis parameter q; hence, in the second step of our procedure
we fixed the value of q and performed all fits using Equation (1). This way we finally obtained the
set of variable T, V and µ. The results are shown in several figures. It is to be noted that T and R (as
deduced from the volume V) show a weak energy dependence in proton-proton (pp) collisons at the
centre-of-mass energies from

√
s = 20 GeV up to 7 and 13 TeV. This is not the case for the variables T0

and V0. The chemical potential at kinetic freeze-out shows an increase with beam energy as presented
in Figure 6. This simplifies the resulting description of the thermal freeze-out stage in pp collisions as
the values of T and R remain constant to a good approximation over a wide range of beam energies.
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