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Abstract: Superstatistical approaches have played a crucial role in the investigations of mixtures
of Gaussian processes. Such approaches look to describe non-Gaussian diffusion emergence in
single-particle tracking experiments realized in soft and biological matter. Currently, relevant progress
in superstatistics of Gaussian diffusion processes has been investigated by applying χ2-gamma and
χ2-gamma inverse superstatistics to systems of particles in a heterogeneous environment whose
diffusivities are randomly distributed; such situations imply Brownian yet non-Gaussian diffusion.
In this paper, we present how the log-normal superstatistics of diffusivities modify the density
distribution function for two types of mixture of Brownian processes. Firstly, we investigate the time
evolution of the ensemble of Brownian particles with random diffusivity through the analytical
and simulated points of view. Furthermore, we analyzed approximations of the overall probability
distribution for log-normal superstatistics of Brownian motion. Secondly, we propose two models for
a mixture of scaled Brownian motion and to analyze the log-normal superstatistics associated with
them, which admits an anomalous diffusion process. The results found in this work contribute to
advances of non-Gaussian diffusion processes and superstatistical theory.

Keywords: non-Gaussian diffusion; superstatistics; Langevin equation; scaled Brownian motion;
random diffusivity

1. Introduction

According to the history of diffusion processes, Brownian motion was reported for the first time
in 1828, during experiments with tiny particles contained in pollen grains, immersed in water [1].
This investigation was realized by Robert Brown, and for that reason, it became known as Brownian
motion (BM). Nevertheless, only in 1905, after Einstein’s research [2,3], was the cause of BM justified
by a model that presupposes that there are many collisions of atoms and molecules on a Brownian
particle surface. Thereafter, Einstein constructed a diffusion equation, and showed that diffusion of
tiny particles (BM) can be characterized by two remarkable features: (i) the probability density function
is associated with a Gaussian kernel, as follows

G(x, t|D) =
1√

4πDt
exp

[
− x2

4Dt

]
, (1)

in which D is the diffusion coefficient (diffusivity); and (ii) the mean square displacement (MSD) has a
linear growth in time, i.e.,

〈(∆x)2〉 = 2Dt, (2)
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where ∆x = x − 〈x〉. Einstein’s research paved the way for other models like that;
as examples of important names that contributed to distinct formalisms of BM, we can mention:
Sutherland [4], Langevin [5] and Smoluchowski [6,7], among others [8]. In subsequent years,
sophisticated experiments validated the Brownian models [9]

Prior to the Brownian model’s emergence, some experiments revealed that the Brownian diffusion
features fail in turbulent flows [10], and charge transport in semiconductors [11], among others [12].
The violation of Brownian features occurs for non-Gaussian shapes of probability density distributions
or a nonlinear growth of MSD behavior in time, i.e., 〈(∆x)2〉 ∝ tα [12,13]. The latter is classified
as anomalous diffusion: (i) sub-diffusion for α < 1, which is associated with slow diffusion
(ii) super-diffusive for α > 1, which is associated with a faster diffusion. The anomalous diffusion
phenomena are present in complex systems, whose mechanisms are particular to each problem.
Among the most useful formalisms to anomalous diffusion are fractional, non-linear, scaled and
heterogeneous diffusion processes [14]. Each one includes a vast quantity of tools that are important to
approaching anomalous diffusion in different physical scenarios.

Recent experimental insights on single-particle tracking, realized in a variety of animate
and inanimate systems, have reported non-Gaussian shapes for distribution, which maintain
the MSD growing linearly in time [15]. This new diffusion process is called Brownian yet
non-Gaussian diffusion [16,17]. This process was found from the motion of biological macromolecules,
proteins and viruses along lipid tubes; and through actin networks [18], swimming Eukaryotic
microorganisms [19], diffusion in compartmentalized media [20] and colloidal nanoparticles adsorbed
at fluid interfaces [21,22]. Among the main formalisms that admit the approach of Brownian yet
non-Gaussian diffusion are superstatistics and subordination [17,23,24]. Furthermore, this formalism
assumes a fluctuating diffusivity, though superstatistics can admit fluctuation on different intensive
parameters (temperature, viscosity, etc.). In this sense, superstatistics consider an independent
probability distribution function (PDF) of a fluctuating parameter that will be used in a new overall
PDF which describes the general class of non-Gaussian processes [25].

“Superstatistics” is a term proposed by C. Beck and E.G.D. Cohen in physical contexts that
stands for superposition of statistics [26,27]. An analogous idea of the heterogeneous diffusion
approach was reported by Kärger [28]. Moreover, other similar mathematical approaches in
statistical theories are known as hierarchical or multilevel meddling [29], which is also similar
to the Bayesian inference method. In the superstatistics theory framework, there are three main
classes of superstatistics [30], which describe a vast quantity of complex systems: χ2 superstatistics,
χ2-inverse superstatistics and log-normal superstatistics. Each one is fitting for elucidating a
different category of physical problems. The first one, χ2 superstatistics, describes the processes
connected to Tsallis statistics [26,31]. The second one, χ2-inverse superstatistics, has applications in
random matrix theory [32,33]. Finally, the third one, log-normal superstatistics, appears associated
with turbulent flows [34–36], and in population fluctuations [37] (out of superstatistical context).
Particularly, the log-normal superstatistics is associated with a well known log-normal probability
distribution function as follows:

p(D) =
1√

2πσD
exp

[
− (log[D]− µ)2

2σ2

]
, (3)

where σ is the standard deviation, µ is the mean and 〈D〉 = eµ+ σ2
2 . Motivated by large amount

of research in theoretical and experiment systems with fluctuating diffusivity [20,28,38–43], we
investigated the log-normal superstatistics of BM to describe Brownian yet non-Gaussian diffusion,
and in the following we consider the log-normal superstatistics associated with scaled Brownian
motions to include anomalous diffusion.

This work brings results associated with the superstatistics approach on diffusive systems with
fluctuating diffusivity under a new look at log-normal superstatistics. Thereby, it is organized as
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follows. In Section 2, we investigate the overall probability for a mixture of Brownian motion and the
grey Brownian motion in log-normal superstatistics. We compare the analytical results and simulation
results to distribution evolution, including MSD. In the Section 2.1, we consider two approximations
of the overall distribution to log-normal superstatistics, and discuss the limitations of each one.
In Section 3, we introduce two models for scaled grey Brownian motion and their superstatistics
to investigate a mixture of BM in the log-normal superstatistics framework. These models admit
diffusion processes that are non-Gaussian and anomalous. Finally, we present the conclusions together
with new directions (open problems) associated with the obtained results.

2. From Log-Normal Superstatistics to Brownian Yet Non-Gaussian Diffusion

Let us begin the discussion considering an ensemble of Brownian particles in a complex
environment that is constituted by a large amount of patches, each one with a particular diffusivity
value [44–46]. This approach changes the diffusivity value for each time-step of the Brownian
trajectory; the physical interpretation of this depends on the physical problem. Examples of fluctuating
diffusivity systems include the particles walking in a biological environment (such as within cells)
in which incorporated distinct places have different diffusivity values that are not evenly dispersed
within the cell [47–49]. Another interpretation in the cell environment occurs by considering the
fluctuation of particle size due to the fragmentation and agglomeration processes. During these
processes, the Brownian particle changes size, and it implies a different reading on the instantaneous
diffusivity. Such processes can be associated with superstatistics, which involve Arrhenius’ law,
the Stokes–Einstein–Flory law or others [50,51]. The fluctuating diffusivity systems (see Figure 1)
typically consider a PDF to describe the random choice of D, i.e., p(D), to complete the ensemble
average of tracer particles [25]. In this sense, the superstatistics of a mixture of many Brownian
diffusion process is defined through an overall PDF as follows [17]:

P(x, t) =
∫ ∞

0
p(D)

1√
4πDt

exp
[
− x2

4Dt

]
dD, (4)

where P(x, t) is the probability density function that describes the spatial-temporal behavior of an
ensemble of Brownian particles in a heterogeneous environment whose diffusivities are randomly
distributed [25], which implies a Non-Gaussian diffusion with linear growth of MSD in time.
Equation (4) can be also interpreted as a heterogeneous ensemble of Brownian particles, such that each
particle has its own diffusivity [52].

D1 D2

D3 D4

1

Figure 1. A Brownian particle in a random environment.

The superstatistics of BM ensure that particles explore places within a complex environment with
different transport characteristics, such as diffusion coefficient; see reference [53]. Thereby, the overall
probability defines the superstatistics of Gaussian statistics corresponding to different diffusivity
packets. The above overall probability (Equation (4)) was analyzed in different scenarios in diffusion
theory: (i) p(D) as a χ2 gamma distribution in the context of random diffusivity, to compare
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with the diffusive diffusivity model [44], or to describe the movement of many individual small
organisms that move with different diffusivities [54]; (ii) p(N) as a χ2-inverse gamma distribution
that depends on particle size to investigate the aggregation and fragmentation process in the
context of Laplace diffusion [50]; (iii) p(D) as a stretched exponential to construct a stretched
Gaussian diffusion [17,55]; (iv) p(D) Lévy distribution to construct a Lévy process caused by
large fluctuations in environment [52]; (v) p(β ∝ 1/T) as a Mittag–Leffler function to construct
generalized Maxwell–Boltzmann distributions [56] and other generalized distributions [57,58], even as
truncated-Mittag–Leffler function [59], which was applied in the analysis of the time series of oil price.

In this wide range of scenarios, we consider the probability density function p(D) as a
log-normal distribution. An easy feature that we can verify is the linear behavior of MSD in time,
i.e., 〈(∆x)2〉 = 〈x2〉 (symmetric distribution around origin), as follows:

〈x2〉 = 2t
∫ ∞

0
Dp(D)dD (5)

= 2Deff × t,

where Deff = eµ+ σ2
2 is an effective diffusivity to log-normal superstatistics. The effective diffusivity

changes the MSD associated with single Brownian processes (see Equation (2)). Considering µ = 0
and small σ values, we obtain

〈x2〉
∣∣∣∣
σ∼0
' 2t + σ2t. (6)

This is a special approximation that will be discussed in detail in Section 2.1 in the context of a
closed-form approximation to the integration defined in Equation (4) in Fourier space.

The equivalent probability distribution in Equation (4) can be computed by generalized grey
Brownian motion (ggBM) [60–63], which here we refer to simply as grey Brownian motion, which obeys
the following stochastic equation [44]

Xt =
√

2Dt ×Wt, (7)

in which Wt =
∫ t

0 ξ(t′)dt′ (ξ(t) is white noise) is the Wiener process, and Dt is an independent random
variable chosen from a log-normal probability density function. A correspondence between ggBM and
overall probability in Equation (4) was proven in Refs. [44,64]. The fluctuating diffusivity is shown in
Figure 2 for log-normal distribution with two different σ standard deviation values; the dashed thin
line represents the standard diffusivity (constant) associated with Brownian motion. In this context,
the trajectory generated for Equation (7) possesses fluctuating diffusivity that “smudges” the white
noise, allowing the rise of a grey Brownian trajectory (examples in Figure 3).
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Figure 2. Fluctuating diffusivity of log-normal distribution with µ = 0 and different σ values.
The dashed line represents the constant diffusivity case D = 1 (implies usual Brownian motion).
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Figure 3. (a) The grey Brownian trajectory (D in Equation (7) chosen in log-normal PDF) versus
Brownian trajectory (D = 1); (b) two grey Brownian trajectories (D in Equation (7) for different
variance values).

Our next step is analyzing the numerical integration of the log-normal superstatistics average
of BM (i.e., Equation (4)), and the correspondence to log-normal grey Brownian motion simulations.
To do this, we consider 4× 106 particles where each one moves according to Equation (7) for simulating
the dynamical behavior of grey Brownian motion. In addition, for a short (and a long )time regime
we consider steps dt = 0.01 (dt = 1) with variance and mean of noise equal to one (both). Figure 4
presents the analytical versus simulation results for short and long-time values. We observe that
the analytical model (solid curves) agrees perfectly with the simulation data. Figure 5 confirms the
previous graphical results for different standard deviation values (case a) and different mean values
(case b). Finally, Figure 6 shows the linear time relation of the MSD for two situations, setting one
of the parameters (σ, µ) and ranging another. All these graphical results confirm the simulation and
analytical agreement. Thereby, the results suggest that the log-normal superstatistics approach of a
mixture of Gaussian process implies heavy-tailed distributions, which maintain one of the Brownian
features, the linear time relation for MSD.
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Figure 4. The simulated (pentagon-form symbols) and analytical (solid and dashed) curves to compare
the superstatistical average (Equation (4)) with grey Brownian motion where σ = 1 and µ = 0: (a) the
PDF evolving for short periods of time; (b) the PDF evolving for long periods of time.
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Figure 5. The simulated (pentagon-form symbols) and analytical (solid and dashed) curves for the
changes of σ and µ the parameters: (a) the PDF with σ = 2 and µ = 0; (b) the PDF with σ = 1 and
µ = 2.
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Figure 6. Figures show different MSD behaviors. (a) The MSD evolves in time considering µ = 0 and
different σ values; (b) the MSD evolves in time considering σ = 1 and different µ values.

2.1. Two Approximations for Log-Normal Superstatistics of Brownian Particles in a
Heterogeneous Environment

One of the great challenges in log-normal superstatistics is finding a closed expression for overall
density probability. That was not considered until here, because there is not a closed expression for
a Laplace transform of log-normal distribution. However, currently, an analysis of closed-form
approximation reported by Rojas–Nandayapa [65] for a Laplace transform (leading β to s) of a
log-normal PDF has been analyzed through statistical theory. The approximation of the Laplace
transform of the log-normal distribution to s is valid for the whole complex domain and µ = 0 is
obtained by saddle-point methodology, which implies [66]

L{p(β)} =
∫ ∞

0

1√
2πσβ

exp

[
− (log[β])2

2σ2

]
e−sβdβ

' 1√
1 +W(σ2s)

exp
[
− 1

2σ2

(
W(σ2s)2 + 2W(σ2s)

)]
, (8)

where L{p(β)} =
∫ ∞

0 p(β)e−sβdβ is the Laplace transform and W(z) is the Lambert function;
this function is the solution of the equation WeW = z. The Rojas–Nandayapa approximation of
the Laplace transform to log-normal PDF for s restricted on the real axis is given by the expression
of Equation (8). When restricted to the imaginary axis, it coincides with the approximation of the
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characteristic function given by Holgate [67]. Physically, for β = 1/kBT (with T and kB being the
temperature and Boltzmann constant, respectively) and s = E (energy) we find an approximate closed
expression for generalized Boltzmann factor given by Equation (8) in the log-normal superstatistics
context, which for large energy values (E → ∞) implies p(E) ∝ (log[E]))−

1
2 exp[−(log[E])2] in the

Rojas–Nandayapa sense [65], which differs from the approximation realized in Holgate’s point of view
in Refs. [68,69]. Both results are particular cases of Equation (8), when s is a complex number.

Now, within this rich context, we approach two closed approximations for log-normal
superstatistics of Brownian particles, one in k-Fourier space and another in x space. The first one
applies the Rojas–Nandayapa approximation and Gaussian distribution for Brownian particles in
Fourier space. The second one is obtained through the application of the Laplace approximation [70]
(or modified Laplace approximation) to approach the overall integration in Equation (4).

To realize the first approximation, we use the Rojas–Nandayapa approximation (8) in the context
of mixture of Gaussian processes, considering the Gaussian process in Fourier space as follows:

G̃(k, t|D) = exp[−tDk2], (9)

the Fourier transform is defined byF{ f (x)} =
∫ ∞
−∞ e−ixk f (x)dx. The integration of overall distribution

in Fourier space is written as ensues:

P̃(k, t) =
∫ ∞

0
exp[−Dtk2]

exp

[
− (log[D])2

2σ2

]
√

2πσD
dD. (10)

Applying the approximation (8) to Equation (10), one obtains:

P̃1(k, t) =
1√

1 +W(tk2σ2)
exp

[
− 1

2σ2

(
W(tk2σ2)2 + 2W(tk2σ2)

)]
, (11)

where P̃(k, t) ' P̃1. This closed-form allows us to assume an asymptotic limit for the Lambert function.
For tk2 � 1 that impliesW(tk2σ2) ∼ tk2σ2, which leads to

P̃ST
1 (k, t) ' 1√

1 + tk2σ2
exp

[
− 1

2σ2

(
(tk2σ2)2 + 2tk2σ2

)]
' exp

[
−tk2

]
, (12)

which implies that a Gaussian diffusion profile is present in a very short times (ST).
However, the approximation in Equation (11) is not adequate to determine the analytical behavior of
large deviations in space. Furthermore, although this approximation does not perform a perfect match
with simulated data, as shown in Figure 7, it provides a suitable background and tools to propose the
second approximation over the Gaussian kernel (1) in x space.

To realize the second approximation we have rewritten the overall PDF (4) by use of variable
change y = log(D), which implies

P(x, t) =
∫ ∞

−∞

exp
[
−y

2
− y2

2σ2 − e−y x2

4t

]
√

2πσ(
√

4πt)
dy. (13)
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Applying the modified Laplace method (see Equations 2.5 and 2.19 of reference [70]), we obtain

P2(x, t) =

exp

[
− 1

2σ2

(
W
(

e
σ2
2 σ2λ

)2
+ 2W

(
e

σ2
2 σ2λ

))
+

σ2

8

]
√

4πt

√
1 +W

(
e

σ2
2 σ2λ

) , (14)

where λ = x2/4t and P(x, t) ' P2(x, t). For more details about computation of Equation (14),
see Appendix A. Figure 7 reveals that approximation two performs better than approximation one.
Furthermore, we can analyze two limits that consist of small and large deviations of Equation (14).
For small deviations, i.e., eσ2

σ2λ� 1 and consideringW(z) ∼ z, we obtain

PSD
2 (x, t) ∼

exp
[
− x2

4t
e

σ2
2

]
√

4πt
. (15)

For large deviations, we have eσ2
σ2λ� 1 andW(z) ∼ log(z), which leads to

PLD
2 (x, t) ∼

exp
[
− (log(x2/t))2

2σ2

]
√

4πt log(x2/t)
, (16)

and represents a distribution with a heavy tail.
The approximations presented are fitting for the simulation data, as shown in Figure 7.

Particularly, for short times (small deviations) both approximations present Gaussian behavior.
Nevertheless, only the second approximation provides a complete description for large deviations of x
value, revealing that log-normal superstatistics in Equation (4) are heavy tailed.
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Figure 7. Different probability distributions for simulation data (pentagon-form symbols), the inverse
Fourier transform of the first approximation (11) in violet (solid and dashed) curves and the second
approximation in Equation (14) in orange (solid and dashed) curves: (a) the PDF evolves for short
times; (b) the PDF evolves for long times.

Now, a new question can be considered: what is a better σ value regime to use in the
approximations (11) and (14) in the superstatistics scenario? The answer can be found through MSD
behavior, considering that for 〈x〉 = 0 we have 〈x2〉 = − limk→0 ∂2

k P̃(k, t) (consider Equation (11)).
For the first approximation, the analytical result is 〈x2〉 = 2t + σ2t, which coincides with the second
moment approximation (see Equation (6)) obtained by assuming small values for standard deviation
(σ � 1) on a non-approximated MSD expression (5) with µ = 0. The MSD behavior for second
approximation can be calculated by numerical integration. The MSD of both approximations are
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confronted with simulation data in Figure 8 for different σ values. This figure shows that for σ < 1
the first approximation became more suitable to address the log-normal superstatistics of BM. On the
other hand, the second approximation is adequate for all σ values simulated.
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Figure 8. The MSD behavior in time for different σ values shown in (a) linear and (b) double-log scales.
The simulation data are represented by the red, blue and violet curves. Approximation 1 is represented
by the black curves, and approximation 2 is represented by the orange curves. For σ = 0.1 all curves are
superposed. Moreover, the second approximation presents a perfect match with the simulation data."

3. Two Models for Scaled Grey Brownian Motion: Log-Normal Superstatistics and
Anomalous Diffusion

The scaled Brownian motion (SBM) [71], admits a variable diffusion coefficient in time,
i.e., D(t), which is considerable to modeling anomalous diffusion phenomena. Currently, the SBM
has been applied in different methods of statistical physics, such as renewal resetting [72], ultra-slow
diffusion [73], weak and non-ergodic systems [74,75] and spectral analyses of single trajectory [76].
Here, we consider a stochastic and deterministic diffusion coefficient in time as follows.

D(t) = Dt × f (t), (17)

considering Dt is a random variable that describes the fluctuation of the diffusivity and f (t) is a
deterministic function in time. We recover the standard situation, i.e., diffusion with time dependence,
realizing an average of D(t) on pD distribution 〈D(t)〉D = Deff f (t). Thereby, the noise strength in
Langevin equation will include a diffusive coefficient with an explicit time dependence that allows us
to write two scaled grey BM (sgBM). The first one is

X(1)
t =

√
2Dt f (t)×Wt,

(
Wt =

∫ t

0
ξ(t′)dt′

)
, (18)

where the exponent notation X(1)
t refers to the random trajectory of the first model and Wt is the Wiener

process. The second model is

X(2)
t =

√
2Dt ×Wt,

(
Wt =

∫ t

0

√
f (t′)ξ(t′)dt′

)
, (19)

in which the exponent notation X(2)
t refers to the random trajectory and ξt is the white noise.

Both models of scaled grey Brownian motion (sgBM) for Dt = constant recover the usual ggBM;
see Equation (7).

To follow our discussion analysis, see the overall probability distribution for a mixture SBM by
way of Lemma 3.1 stated by Pagnini and Paradisi in Ref. [64] (approached before it was in subordination
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laws, see reference [77]). Considering two independent random variables Z1 and Z2 whose PDFs are
p1(Z1) and p2(Z2), with Z1 ∈ R and Z2 ∈ R+, let Z be the random variable corresponding to product
Z = Z1Zγ

2 , and then the PDF p(z) of random variable Z as follows:

p(z) =
∫ ∞

0
p1

( z
λγ

)
p2(λ)

dλ

λγ
. (20)

A particular family of scaled BM that considers tscaled = tα ( f (t) = αtα−1) and D = constant,
has been applied in experimental and theoretical systems [78–80]. This time-scaled choice implies a
second moment that is not linear with time, i.e., 〈x2〉 ∝ tα, that is especially useful in the anomalous
diffusion framework. Therefore, here we consider a family of power-law time scales for both sgBMs (18)
and (19) described by

X(1)
t =

√
2Dtαtα−1 ×Wt, (21)

X(2)
t =

√
2Dt ×

∫ t

0

√
αt′α−1ξ(t′)dt′, (22)

respectively. Keep in mind that Dt is an independent stochastic quantity. To find the overall probability
of displacement, we identified Z, Z1 and Z2 quantities. According to the Pagnini–Paradisi Lemma
represented by Equation (20) with p1 being a Gaussian process, we have

p(1)sgBM(x, t) =
∫ ∞

0
G(x, αtα|D)p(D)dD, (23)

p(2)sgBM(x, t) =
∫ ∞

0
G(x, tα|D)p(D)dD, (24)

that correspond to models (21) and (22), respectively. Here, the function G(x, t|D) in the equations
above is the standard Gaussian solution (see Equation (1)) and p(D) is the PDF of fluctuating diffusivity.
The overall distributions of sgBM’s are associated with different scaled diffusion processes, each one
connected with G(x, αtα|D) and G(x, tα|D), respectively. Thus, both general overall PDs are connected
to superstatistics formalism; i.e., psgBM =

∫ ∞
0 pDG(x, t(i)|D)dD (i ∈ {1, 2}, 1 for first sgBM model

and 2 for the second sgBM model) with t(1) = t f (t) or t(2) =
∫ t f (t)dt, which may lead to different

classes of anomalous diffusion processes. A typical application for superstatistics of scaled Gaussian
diffusion processes with exponential diffusivity distribution in the model 2 sense was experimentally
investigated to describe the protein/RNA diffusion in cellular environments [47], and protein crowding
in lipid bilayers [55]. Additionally, for a detailed discussion about previous considerations of SBM in
superstatistics, see reference [81].

Now, we will confront the superstatistical approach with simulations of sgBM models.
Thereby, we consider the simulation (SM) process with 106 trials (particles number) with dt = 1
in Langevin Equation (18) with fluctuating diffusivity following the log-normal distribution (3).
Figure 9a,b compares the distributions (23) and (24) (analytic approach) to simulations of sgBM models
(dt = 1 in SM) for t = 30 and different α = 2 and α = 0.5, respectively. The Figure 10a,b shows how the
second moment (dt = 0.01 in SM) evolves in time for different α = 2 and α = 0.5, respectively. In the
MSD analysis, we clearly perceive that the anomalous diffusion emergence occurs with a difference
between them, yet this difference is more drastic than a multiplicative constant for f (t) functions that
are not power-law functions. The generalized second moment are 〈x2〉 ' 2t f (t) for sgBM model 1,
and 〈x2〉 ' 2

∫ t f (t′)dt′ for sgBM model 2.
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Figure 9. The PDFs associated with two models of scaled grey Brownian motion (sgBM) for t = 30,
with fluctuating diffusivity following the log-normal distribution (3). Specifically, the PDF profiles
for analytical 1 (23) and analytical 2 (24) compared with simulation sgBM 1 (18) and simulation sgBM
2 (19), respectively, are shown. The comparisons are shown for (a) α = 2 and (b) α = 0.5..
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Figure 10. The MSD behaviors associated with two models of scaled grey Brownian motion (sgBM)
with fluctuating diffusivity following the log-normal distribution (3). Specifically, the MSD profiles
are shown for analytical 1 (23) (analytical 2 (24)) compared with simulation sgBM 1 (18) (simulation
sgBM 2 (19)). The comparisons are shown for (a) α = 2 and (b) α = 0.5. The thin blue line in both
figures represents the standard grey Brownian motion, i.e., 〈x2〉 = 2Defft for α = 1.

4. Conclusions

In this work, we investigated the influence of log-normal superstatistics on the ensemble of
Brownian particles in a complex environment whose diffusivities are randomly distributed in space.
We have shown that log-normal superstatistics of Gaussian processes can be obtained from numerical
integration of overall probability and that implies Brownian yet non-Gaussian diffusion associated
with heavy-tailed distributions. This way, we showed that this result agrees with the generalized grey
Brownian motion process. Subsequently, we analyzed two closed-form approximations, each one
proper to the application of the log-normal superstatistics over BM in Fourier space and x-coordinate
space, respectively. The first approximation agrees with simulation results only for small values of
standard variation, i.e., σ < 1 and µ = 0. The second approximation agrees with simulation results for
σ values considered.

Further, another relevant approach investigated in this work was to consider the grey generalized
Brownian motion in the context of scaled BM. To do this, we introduced two models of scaled grey
Brownian motion (sgBM) and their respective overall distributions. Then, we presented a series



Physics 2020, 2 582

of diffusive analysis within log-normal superstatistical context through analytical and simulation
results, thereby showing that both sgBM models imply rich classes of non-Gaussian diffusion with
anomalous diffusion.

Our research contributed to this broader scenario of non-Gaussian diffusion processes and
superstatistics. Furthermore, this research opens the ways for investigation of new insights associated
with the results (open problems); some of them include:

• The construction and analysis of a PDF pD(t) for diffusive diffusivity dynamics [82] that for
long times converges to log-normal distribution. Additionally, the analysis of the problem in the
context of a non-equilibrium ggBM model [44].

• The analysis of the closed approximation (8) for log-normal superstatistics into extreme values
theory [69].

• The investigation of the sgBM models for different time-scale ( f (t) functions [73]).
• The analyses of the Langevin equation with fractional noise [83,84] and log-normal superstatistics

for random diffusivity.
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Appendix A

The second approximation made in Equation (14) can be performed through the modified Laplace
method introduced by Butler (see Equations 2.5 and 2.19 of reference [70]) defined by

∫ b

a
exp [−h(y)] dy '

√
2π

h′′(ym)
exp [−h(ym)] , (A1)

where h(y) > 0 and ym is the minimum point of h(y) over (a, b).
Firstly, assuming the variable change y = log(D) in Equation (4) (begin p(D) defined by

Equation (3)), we rewrite it as follows:

P(x, t) =
∫ ∞

−∞

exp
[
−y

2
− y2

2σ2 − e−y x2

4t

]
√

2πσ
√

4πt
dy. (A2)

Hence, for approximation (A1) we have that P(x, t) ' P2(x, t), P2(x, t) being defined by

P2(x, t) =

√
2π

h′′(ym)

exp [−h(ym)]√
2πσ
√

4πt
, (A3)

where h(y) = y
2 −

y2

2σ2 − e−y x2

4t and ym is the minimal point. Thereby, we obtain

h =
y
2
+

y2

2σ2 + e−yλ, (A4)

h′ =
1
2
+

y
σ2 − e−yλ, (A5)

h′′ =
1
σ2 + e−yλ, (A6)
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in which λ = x2/4t. For h(1) = 0 implies ( σ2

2 + y)ey = λσ2, yielding

ym =W
(

e
σ2
2 σ2λ

)
− σ2

2
, (A7)

which is the minimum point and W(z) is the Lambert function. Thereby, rewriting the
approximation (A3) in terms of λ, obtains

P2(x, t) =
(σ
√

4πt)−1√
h′′λ

exp

−
y/2︷ ︸︸ ︷(Wλ

2
− σ2

4

)
− 1

2σ2

y2︷ ︸︸ ︷(
W2

λ − σ2Wλ +
σ4

4

)
−

e−yλ︷ ︸︸ ︷(Wλ

σ2

) , (A8)

whereWλ =W
(

e
σ2
2 σ2λ

)
. That implies

P2(x, t) =

exp

[
− 1

2σ2

(
W
(

e
σ2
2 σ2λ

)2
+ 2W

(
e

σ2
2 σ2λ

))
+

σ2

8

]
√

4πt

√
1 +W

(
e

σ2
2 σ2λ

) , (A9)

This defines the second approximation considered in Section 2.1. As in the first approximation of
Rojas et al. [66], our approximation through the modified Laplace transform method is not restricted
to large λ values.
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