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Abstract: The problem of natural convection in a binary mixture subject to realistic boundary
conditions of imposed zero mass flux on the solid walls shows solutions that might lead to unrealistic
negative values of the mass fraction (or solute concentration). This anomaly is being investigated
in this paper, and a possible way of addressing it is suggested via a mass-fraction-dependent
thermodiffusion coefficient that can have negative values in regions of low mass fractions.
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1. Introduction

Setting specified arbitrary values of the mass fraction (or solute concentration) on
the boundaries of a binary mixture is extremely difficult, if not impossible, to accomplish
experimentally. A more realistic boundary condition for the mass fraction (solute concentra-
tion) is a zero-flux boundary condition accounting for thermodiffusion via thermophoresis
(Soret effect). Brand et al. [1] also indicated that varying the temperature and mass fraction
(concentration) gradients independently is “ . . . a condition, which is difficult to meet in
practice due to cross-coupling (thermodiffusion) between the gradients, which exist in
real fluids”.

A binary fluid mixture is a general form of a mixture consisting typically of two-phases
with one phase being fluid and the other phase being either another fluid (miscible, e.g.,
water and alcohol, or immiscible like emulsions, e.g., oil in water), or solid particles either
dissolved in the fluid (solution, e.g., salt in water, in this case, this will be one single-
phase), or suspended in the fluid (colloids, e.g., aluminum powder in water, aerosols in
the air). Natural convection in a binary fluid mixture placed between two vertical walls
and differentially heated from the sides is being considered. The extreme difficulty or even
impossibility in setting specified values for the mass fraction (solute concentration) on the
boundaries led to applying zero mass flux boundary conditions on these walls combined
with the thermodiffusion flux. The thermal boundary conditions are of a constant heating
heat flux on one wall and a constant cold (ambient) temperature on the other wall. Note
that it is also extremely difficult to apply in practice a cooling heat flux boundary condition,
while a heating heat flux can easily be applied by taping a film of electrically conducting
material and passing an electric current through it. The Ohm’s heating in the film will
produce the required heat flux into the fluid. Both the Soret (Bird et al. [2]) as well as the
Dufour effects are being considered. The Dufour effect is negligibly small in liquids, but it
is substantially strong in gases [3–7].

The mass flux that includes the Soret effect of thermodiffusion is typically represented
in the form [4,8–14]:

j* = −Dm∗∇∗C∗ − C∗(1− C∗)DT∗∇∗T∗, (1)
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where j* is the species mass flux, C∗ is the mass fraction, T∗ is temperature, Dm∗ is the
molecular diffusivity arising from Fick’s law of diffusion, and DT∗ is the thermodiffusion
coefficient arising due to the Soret effect (thermophoresis). The argument for introducing
the coefficient C∗(1− C∗) is that it forces the mass flux to be zero when the mass fraction
is zero, C∗ = 0, or when the mass fraction is one C∗ = 1. This formulation in Equation (1)
excludes solutions of a component dissolved in a fluid, such as salt in water, as then the
units in Equation (1) are incompatible and need correction to account for the latter. In
addition, a common approximation is to set the values of C∗ in this coefficient equal to a
constant Co, leading to:

j* = −Dm∗∇∗C∗ − Co(1− Co)DT∗∇∗T∗. (2)

The subscripts * and o identify dimensional variables and constants, while the quan-
tities without these subscripts are dimensionless. In addition, the subscript o represents
dimensional reference values.

There has been an extensive experimental effort in order to evaluate the thermodif-
fusion coefficient [4,8–17]. Experimental results aimed at evaluating the thermodiffusion
coefficient DT∗ have identified that its value can become negative in some cases [4,8–12,14],
apparently for small mass fractions of the lighter component. Madriaga et al. [11] found
experimentally that the thermodiffusion coefficient is composition-dependent and mea-
sured this dependence. Costesèque et al. [13] indicate that the thermodiffusion coefficient
is also temperature-dependent, and Geelhoed et al. [8], Putnam et al. [17], and Dhur and
Braun [18] show experimental results identifying negative thermodiffusion coefficient
values at lower temperatures (between 5 ◦C and 40 ◦C). Mojtabi et al. [19] also considered
a temperature-dependent negative thermodiffusion coefficient in their analysis of the onset
of natural convection.

The present paper shows that using a constant thermodiffusion coefficient DT∗ in
the problem of natural convection of binary mixtures in a vertical fluid layer subject to
differential heating leads to unrealistic negative values of mass fraction when flux boundary
conditions are being used. As a remedy, it is suggested that a mass-fraction-dependent
thermodiffusion coefficient, which can take negative values, is to be used in order to
prevent this anomaly. While the latter transforms the diffusion terms and introduces a
nonlinearity, it will be shown that it is not this nonlinearity that resolves the anomaly as
suggested by Gorban et al. [20], but rather the specific characteristics of the thermodiffusion
coefficient, which weakens or even changes the direction of the Soret effect in places where
the mass fraction is low.

2. Problem Formulation

A binary mixture consisting of a vertical tall, fluid layer, having suspended (or dis-
solved) particles distributed within, is heated by a constant heat flux qo > 0 on one of its
sides and exposed to a constant low temperature on the other side, as presented graphically
in Figure 1. Mass cannot cross the solid boundaries at x∗ = 0 and x∗ = L∗, and therefore,
the mass flux of the suspended particles (or of the solute) is zero on these boundaries. The
mass flux within the binary mixture is driven by the Soret effect due to the temperature
gradients. The Soret effect for positive values of the thermodiffusion coefficient manifests
itself by producing a mass flux in the direction down the temperature gradient, i.e., causing
suspended particles to move from hot to cold regions.
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Figure 1. A vertical tall, fluid layer consisting of a binary mixture, heated by a constant heat flux 
qo > 0  on one side and exposed to a constant low temperature on the other side. 
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Figure 1. A vertical tall, fluid layer consisting of a binary mixture, heated by a constant heat flux
qo > 0 on one side and exposed to a constant low temperature on the other side.

The mass flux of the suspended particles (or of the solute) j* is represented by a
combination of the Fick’s law flux and a Soret flux in the form:

j* = −Dm∗∇∗C∗ − CoDT∗∇∗T∗, (3)

where, Dm∗ carries units of m2/s, and DT∗ is in units of m2/(s K).
The heat flux q* is a combination of a Fourier law heat flux and a DuFour flux in

the form:
q* = −k∗∇∗T∗ −

ρoToDT∗
cs∗

∇∗C∗, (4)

where k∗ is the thermal conductivity of the mixture, To and ρo are dimensional reference
values of mixture temperature and density, respectively, and cs∗ is the mass fraction (con-
centration) susceptibility, carrying units of s2/m2 in the case suspensions, and kg/(m s2)
in the case of solutions when the units of C∗ are kg/m3.

The energy and mass balance equations are:

ρocp∗

[
∂ T∗
∂ t∗

+ V*·∇∗T
]
= −∇∗·q*, (5)

∂ C∗
∂ t∗

+ V*·∇∗C = −∇∗·j*, (6)

respectively, where cp∗ = (∂h∗/∂T∗)p∗ is the specific heat capacity at constant pressure,

while h∗ is the specific enthalpy, and V∗ = u∗
^
ex + v∗

^
ey + w∗

^
ez is the velocity vector, while

^
ex,

^
ey,

^
ez are unit vectors in the x∗, y∗, and z∗ directions, respectively. Dividing Equation (5)

by the constant product ρocp∗ and substituting Equation (4) in the resulting equation, and
Equation (3) in Equation (6) yields:

∂ T∗
∂ t∗

+ V*·∇∗T = α∗∇2
∗T∗ +

ToDT∗
cs∗ cp∗

∇2
∗C∗, (7)

∂ C∗
∂ t∗

+ V*·∇∗C = Dm∗∇2
∗C∗ + CoDT∗∇2

∗T∗, (8)
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where α∗ = k∗/ρocp∗ is the thermal diffusivity. The fluid flow is governed by the Navier–
Stokes equations for an incompressible fluid via the continuity and momentum equations:

∇∗·V* = 0, (9)

ρo

[
∂ V∗
∂ t∗

+ (V*·∇∗)V∗
]
= −∇∗p∗ + µ∗∇2

∗V∗ + ρ∗g∗
^
eg, (10)

where p∗ is pressure, µ∗ is the dynamic viscosity, g∗ is the scalar value of the acceleration

due to gravity,
^
eg is a unit vector in the direction of the acceleration due to gravity, and ρ∗

is the mixture’s density expressed as a linear approximation in the form:

ρ∗ = ρo[1− βT∗(T∗ − To) + βC∗C∗], (11)

where βT∗ = −(∂ρ∗/∂T∗)/ρo and βC∗ = (∂ρ∗/∂C∗)/ρo are thermal expansion and mass
fraction contraction coefficients, respectively. The Boussinesq approximation [21] was used
in presenting the energy, mass transfer, continuity and momentum equations in the form
(7), (8), (9), (10). Equation (11) is not part of the Boussinesq approximation, but rather a
linear approximation that follows the former. The boundary conditions applicable to the
vertical layer presented in Figure 1 are as follows:

x∗ = 0 : T∗ = TC∗ , jx∗ = 0 , V* = 0, (12)

x∗ = L∗ :
∂T∗
∂x∗

=
qo

k∗
, jx∗ = 0 , V* = 0, (13)

where qo > 0 is the heat flux imposed on the right wall.
The governing Equations (7)–(11) and boundary conditions (12), (13) are being con-

verted into a dimensionless form by using as scales for density, length, velocity, time,
pressure, temperature difference, and mass fraction, the reference value of density ρo, a
characteristic length as the gap between the vertical walls L∗, a characteristic velocity α∗/L∗,
a characteristic time L2

∗/α∗, a characteristic pressure µ∗α∗/L2
∗, a characteristic temperature

difference ∆Tch = qoL∗/k∗, and a reference value of the mass fraction Co, respectively (also
To = TC∗ in Equation (11)). The heat flux is also converted into a dimensionless form
by using qo as a characteristic heat flux, leading to q = q∗/qo, and the mass flux is con-
verted in the form j = j*L∗/(DmCo). Consequently (x, y, z) = (x∗, y∗, z∗)/L∗, t = t∗α∗/L2

∗,
V = V*L∗/α∗, p = p∗L2

∗/µ∗α∗, ρ = ρ∗/ρo, T = (T∗ − TC∗)k∗/(qoL∗), C = C∗/Co. The
value of Co is the average mass fraction of the suspension. Equations (3), (4) and (7)–(11)
converted into a dimensionless form become:

j = −∇C− So∇T, (14)

q = −∇T − Du∇C, (15)

∂ T
∂ t

+ V·∇T = ∇2T + Du∇2C, (16)

∂ C
∂ t

+ V·∇C =
1

Lem
∇2C +

So
Lem
∇2T, (17)

∇·V = 0, (18)

1
Pr

[
∂ V
∂ t

+ (V·∇)V
]
= −∇p +∇2V + Gcρ

^
eg, (19)

ρ = 1− βTT + βCC, (20)

where the following dimensionless groups emerged:

So =
DT∗∆Tch

Dm∗
, Du =

ρoToCoDT∗
cs∗L∗qo

, Lem =
α∗

Dm∗
, Pr =

ν∗
α∗

, Gc =
g∗L3

∗
ν∗α∗

, (21)
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as the Soret, DuFour, Lewis, Prandtl and gravitational convection numbers. Furthermore,

βT = βT∗∆Tch = βT∗
qoL∗

k∗
; βC = βC∗CO (22)

emerged as dimensionless thermal expansion and mass fraction contraction coefficients,
respectively.

The following identity is useful for the further derivations [22]:

^
eg = ∇

(
^
eg·X

)
, (23)

where the position vector X is defined in the form X = x
^
ex + y

^
ey + z

^
ez. Substituting

Equation (20) into Equation (19), replacing
^
eg = −^

ez by being consistent with the problem
presented in Figure 1, and using identity (23) renders Equation (19) into the following
final form:

1
Pr

[
∂ V
∂ t

+ (V·∇)V
]
= −∇pr +∇2V + RaT T

^
ez −

RaC
Lem

C
^
ez, (24)

where the two Rayleigh numbers emerged as two additional dimensionless groups, i.e.,

RaT =
βT∗∆Tchg∗L3

∗
ν∗α∗

, RaC =
βC∗Cog∗L3

∗
ν∗Dm∗

, (25)

and the reduced pressure pr was defined in the form:

pr = p− Gc
(

^
eg·X

)
. (26)

The boundary conditions (12) and (13) converted into a dimensionless form are:

x = 0 : T = 0 , jx = 0 , V = 0, (27)

x = 1 :
∂T
∂x

= 1 , jx = 0 , V = 0. (28)

The mass flux boundary condition jx = 0 implies by using Equation (14) ∂C/∂x =
−So∂T/∂x converting Equations (27) and (28) into:

x = 0 : T = 0 ,
(

∂ C
∂ x

)
x=0

= −So
(

∂ T
∂ x

)
x=0

, V = 0, (29)

x = 1 :
∂T
∂x

= 1 ,
(

∂ C
∂ x

)
x=1

= −So
(

∂ T
∂ x

)
x=1

= −So , V = 0. (30)

Equations (16)–(18) and (24) are to be solved subject to the boundary conditions (29)
and (30).

3. Method of Solution and Results for Positive Thermo-Diffusion Coefficient

As the fluid domain is very tall, we assume developed flow, developed temperature,
and developed mass fraction in the z-direction, implying: ∂V/∂z = ∂2V/∂z2 = ∂T/∂z =

∂2T/∂z2 =∂C/∂z = ∂2C/∂z2
= 0. We also assume two-dimensional flow, heat and mass

transfer, i.e., v = 0, ∂(·)/∂y = ∂2(·)/∂y2 = 0, as well as steady-state, i.e., ∂(·)/∂t = 0
simplifying Equations (16)–(18) and (24) to yield:

∂ u
∂ x

= 0, (31)
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∂ pr

∂ x
= 0,

∂ pr

∂ y
= 0⇒ pr 6= f (x, y), (32)

∂ pr

∂ z
=

∂2 w
∂ x2 + RaT T − RaC

Lem
C. (33)

The boundary condition V = 0 at x = 0 and x = 1 applied in particular to u together
with Equation (31) implies that u = 0 at the boundaries x = 0 and x = 1, and does
not change in between, meaning that u = 0 everywhere. In lieu of the two-dimensional
assumption producing v = 0, one may conclude that the convective flow is restricted to the
vertical component of the velocity w. This result has a profound impact on the solution as
natural convective flow emerges, but it has no impact on the heat and mass transfer because
now V·∇T = 0 and V·∇C = 0. The right-hand side of Equation (33) is at most a function
of x-only, due to the steady-state, two-dimensional and developed flow assumptions (see
text before Equation (31)). The left-hand side of Equation (33) can be, however, at most a
function of z-only due to the results from Equation (32). The only way the two sides of
Equation (33) can then be equal is when they both are constants, i.e.,

Pz =
∂ pr

∂ z
= constant, (34)

d2 w
d x2 + RaT T − RaC

Lem
C = Pz. (35)

By applying the same assumptions and conclusions on Equations (16) and (17), it
produces the following result:

d2T
dx2 + Du

d2C
dx2 = 0, (36)

d2C
dx2 + So

d2T
dx2 = 0. (37)

Multiplying Equation (37) by Du and subtracting it from Equation (36) leads to:

(1− So Du)
d2T
dx2 = 0, (38)

which for So Du 6= 1 produces:
d2T
dx2 = 0, (39)

and yields subject to the boundary conditions (29) and (30) the solution:

T = x. (40)

Substituting Equation (40) into Equation (37) produces:

d2C
dx2 = 0, (41)

that yields a linear solution too, which subject to the boundary conditions (29) and (30)
takes the form:

C = −So ·x + c1. (42)

The two boundary conditions (29) and (30) were sufficient to evaluate one of the
integration constants, but not both. The reason for the latter is that both boundary condi-
tions are of a flux form (i.e., derivatives of the mass fraction), and for a linear solution, it
cannot determine the free constant. However, this constant can be evaluated by applying
the simple condition of conservation of the total amount of suspended particles, i.e., the
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integral of the mass fraction should remain constant. In the dimensional form, the latter
implies

∫ L∗
0 C∗dx∗ = Co and in the dimensionless form:

1∫
0

Cdx = 1. (43)

Substituting Equation (42) into Equation (43) and integrating produces an algebraic
equation that determines the value of c1 in the form:

c1 = 1 +
So
2

(44)

and, consequently, the solution (42) becomes:

C = 1 + So
(

1
2
− x
)

. (45)

Note that should we have used an imposed value of mass fraction on at least one of
the boundaries, there would not have been a need for using condition (43) to evaluate the
second constant. The solutions for the basic temperature and basic mass fraction profiles
are presented in Figure 2a,b, respectively.
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Substituting these solutions (40) and (45) into Equation (35) yields:

d2 w
d x2 = Pz − RaT x +

RaC
Lem

[
1 + So

(
1
2
− x
)]

. (46)

Integrating twice Equation (46) produces the solution:

w = −1
6

(
RaT +

RaCSo
Lem

)
x3 +

1
2

[
Pz +

RaC
Lem

(
1 +

So
2

)]
x2 − 1

2

[
Pz +

RaC
Lem

(
1 +

So
6

)
− RaT

3

]
x. (47)

In Equation (47), the constant Pz is still undefined. To find its value, we use the
condition of no net flowrate can occur over any horizontal cross-section. This condition
accounts for the fact that even for a tall layer, eventually there is a top and a solid bottom,
and therefore, there is no net flow rate over the cross-section, i.e.,
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1∫
0

wdx = 0. (48)

Substituting Equation (47) into Equation (48) and performing the integration yields an
algebraic equation for Pz leading to its determination:

Pz =
RaT

2
− RaC

Lem
. (49)

The final form of the solution is then obtained by substituting Equation (49) into
Equation (47) to yield:

w = −Rs
12

x(x− 1)(2x− 1), (50)

where Rs is a Rayleigh-Soret number defined by:

Rs = RaT +
RaC
Lem

So. (51)

The vertical velocity solution obtained in Equation (50) shows that in addition to
being zero at the boundaries x = 0 and x = 1 it has a third zero at x = 0.5, evidence for a
recirculating convective flow. The solution for the velocity expressed by Equation (50) is
presented graphically in Figure 3 in terms of 12w/Rs.
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There is an anomaly in the solution for the mass fraction C as the mass fraction can
never be negative, but the solution (45) clearly produces negative values for the Soret
numbers greater than 2. Therefore, for So > 2 the solution (45) has no physical meaning.
This restriction on the values that the Soret number can take is artificial, and it implies that
the thermodiffusion coefficient must be allowed to vary with the mass fraction and can
take negative values. The solution and the results of incorporating the latter in the model
are presented in the next section.

Note that should we have used imposed mass fraction values on the boundaries, this
anomaly would have been prevented, and the mass fraction values would fall in between
the values imposed on the boundaries. For example, if the boundary conditions for the
mass fraction would have been: for x = 0 : C = Ch and for x = 1 : C = Cl with
Ch > Cl > 0, then the solution to Equation (41) subject to these boundary conditions
would have been C = Ch(1− x) + Cl x and C > 0 everywhere within the domain. Actually
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Cl ≤ C ≤ Ch ∀ x ∈ [0, 1]. However, as indicated in the introduction, imposing set values of
the mass fraction on the boundaries is not practical, and it is most likely even impossible.

4. Method of Solution and Results for Mass Fraction Dependent and Possibly
Negative Thermo-Diffusion Coefficient

By allowing the thermodiffusion coefficient to vary with the mass fraction, including
the possibility of taking negative values, we allow the possibility of the Soret effect to
be weakened and even change direction (i.e., up the thermal gradient, from cold to hot
regions) in places where the mass fraction is low and close to zero. A graph of such a
mass-fraction-dependence is presented qualitatively in Figure 4 for a mass fraction within
limits 0 < C∗ < CL∗. Quantitative data have been presented by Köhler and Morozov [4],
Geelhoed et al. [8], Jawad [9], Lapeira et al. [10], Yan et al. [12], and Mialdun et al. [14].
From Figure 4, it is evident that the thermodiffusion coefficient becomes negative for values
of C∗ < CZ∗, where CZ∗ is the value of mass fraction where the thermodiffusion coefficient
is zero DT∗ = 0. One can represent this function as a linear approximation for a certain
range of mass fraction values in the form:

DT∗ = (C∗ − CZ∗)D̃T∗, (52)

where D̃T∗ is constant. Then the Soret number is redefined in terms of this constant value
in the form:

So =
D̃T∗∆Tch

Dm∗
. (53)
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The mass flux consequently is reformulated in the form:

j* = −Dm∗∇∗C∗ − D̃T∗(C∗ − CZ∗)∇∗T∗ (54)

and, in the dimensionless form, it becomes:

j = −∇C− So(C− CZ)∇T (55)

converting Equation (17) to the form:

∂ C
∂ t

+ V·∇C =
1

Lem
∇2C +

So
Lem
∇·[(C− CZ)∇T], (56)

which subject to the assumptions of a steady-state, two-dimensional solution, and devel-
oped flow, developed temperature and developed mass fraction in the z-direction, and for
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the temperature solution obtained T = x, produces the following equation for the mass
fraction from Equation (56):

d2C
dx2 + So

dC
dx

= 0 (57)

or
d

dx

(
dC
dx

+ So C
)
= 0. (58)

The solution to Equation (58) is obtained by a direct sequence of integrations in
the form:

C = −A1

So
e−So· x + A2. (59)

The boundary conditions (29) and (30) are also modified by using the reformulated
mass flux (55) and the solution for the temperature T = x in the form

x = 0 : T = 0 ,
(

∂ C
∂ x

)
x=0

= −So (C− CZ)x=0 , w = 0, (60)

x = 1 :
∂T
∂x

= 1 ,
(

∂ C
∂ x

)
x=1

= −So (C− CZ)x=1 , w = 0. (61)

Consequently, the integration constant A2 is evaluated by using these boundary
conditions with the solution (59), leading to A2 = CZ and:

C = −A1

So
e−So ·x + CZ. (62)

Again, one cannot determine the value of the integration constant A1 from these
boundary conditions, and we again apply the condition of conservation of the suspended
particles (43) to determine this constant to yield:

A1 = − (1− CZ)

(1− e−So)
So2 (63)

and

C =
(1− CZ)So
(1− e−So)

e−So ·x + CZ (64)

and it is now evident that the solution for the mass fraction is always positive for all values
of the Soret number, i.e., C > 0 for all So > 0. Actually, in the limit C → CZ as So → 0
and C → CZ as So → ∞ . The graphical representation of the solution (64) in terms of
(C− CZ)/(1− CZ)So as a function x is presented in Figure 5.

Note that CZ does not have to be positive for the solution of the mass fraction C to
remain positive. Actually, as long as:

CZ > − So
[eSo − (So + 1)]

, (65)

the mass fraction is always positive. CZ is not an actual value of mass fraction. It stands
only to describe the variation of the thermodiffusion coefficient. For the linear function
(52) considered here, a more negative value of CZ implies a stronger positive Soret effect
at low mass fractions. This last result demonstrates that it is not the nonlinearity that
removed the anomaly as for values of CZ not satisfying inequality (65), the solution for
the mass fraction would still be negative. It is rather the specific characteristic of the
thermodiffusion coefficient, which causes weaker (or even negative) Soret effects in regions
of the low mass fraction that removed the anomaly and rendered the solution into a
physically meaningful form.
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where 

Figure 5. Graphical profile of the solution for the basic mass fraction for different Soret numbers.

Substituting the solution for the mass fraction (64) and for the temperature (40) into
Equation (35) leads to:

d2 w
d x2 = Pz − RaT x +

RaC
Lem

[
(1− CZ)So
(1− e−So)

e−So ·x + CZ

]
. (66)

Integrating twice this equation and using the boundary conditions (60) and (61), stating
that w = 0 at x = 0 and x = 1 yields a solution in terms of the yet undetermined constant
Pz. Applying the condition (48) of no flowrate over any cross-section, i.e.,

∫ 1
0 wdx = 0 leads

to the determination of Pz and produces the solution for the vertical velocity in the form:

w
RaT

=
1
2

x(x− 1)
[(

Pz

RaT
+ RTCCZ

)
− 1

3
(x + 1)

]
+ RTC

(1− CZ)

So

[
x−

(
1− e−So x)
(1− e−So)

]
, (67)

where
RTC =

RaC
LemRaT

=
βC∗Co

βT∗∆Tch
(68)

and (
Pz

RaT
+ RTCCZ

)
=

1
2
+

6RTC(1− CZ)

So2

[
(2− So)− (2 + So)e−So

(1− e−So)

]
. (69)

The limit of Equation (69) as So → ∞ is simply obtained in the form:

lim
So→∞

(
Pz

RaT
+ RTCCZ

)
=

1
2

(70)

that being substituted into Equation (67), produces:

lim
So→∞

(
w

RaT

)
= −1

6
x(x− 1)

(
x− 1

2

)
(71)

showing that velocity also vanishes at x = 0.5, in addition to vanishing on the boundaries
at x = 0 and x = 1.
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The limit of Equation (69) as So → 0 is obtained by applying the L’Hopital rule
to obtain:

lim
So→0

(
Pz

RaT
+ RTCCZ

)
=

1
2

(72)

that being substituted into Equation (67), produces, after applying L’Hopital rule, the same
solution as for So → 0 , i.e.,

lim
So→0

(
w

RaT

)
= −1

6
x(x− 1)

(
x− 1

2

)
. (73)

Therefore, the non-boundary zero of the velocity is located at x = 0.5 in both limits
of the Soret number, i.e., for So → ∞ , and for So → 0 . The graphical representation of
the solution (67) for the velocity profile in terms of w(x)/RaT is shown in Figure 6 for
a constant value of CZ = 0.2 and for different values of the Soret number and different
values of RTC. Each graph in Figure 6 corresponds to a constant value of RTC while the
curves belong to different values of So. By comparing the graphs, it seems that increasing
the value of RTC enhances the strength of the convective flow, while comparing the curves
on each graph shows that generally increasing the Soret number also increases the strength
of the convective flow, but up to a limit. From Figure 6bc, it is evident that the flow
at So = 100 is substantially weaker than the flow at lower values of the Soret number,
reversing the enhancing trend of the impact of the So number on the flow for lower values
of the Soret number.

From Figure 6, one can also observe that the location of the non-boundary zero of the
velocity varies with changing the value of the Soret number. To clarify this point further,
we present the velocity profiles in Figure 7 by keeping each graph at a constant value of
So and showing the variation due to changing the value of RTC. From the graphs, it is
evident that the value of RTC does not affect the location of the non-boundary zero of the
velocity, while the So number controls its location. Increasing the value of RTC increases
the strength of the flow, as does increasing the Soret number up to a value of So = 10.
Beyond this value, as it can be observed from Figure 7e, associated with So = 100 the
strength of the flow becomes weaker again.An evaluation to investigate further the impact
of the Soret number on the location of the non-boundary zero of the velocity led to results
of this location as a function of So number as presented in Figure 8 with the Soret axis
on a logarithmic scale, for RTC = 10 and CZ = 0.2. Since we noticed from Figure 7 that
the values of RTC do not affect this location selecting So as the variable parameter seems
adequate. From Figure 8, it is evident that for the Soret number values lower than 50, the
location of the non-boundary zero moves from 0.5 at So → 0 (So = 0.1) to ~0.364 at about
So ∼ 50 and then increases again as the Soret number increases beyond 50, reaching the
value of 0.5 again when So → ∞ (So = 105). This result is consistent with the limits we
evaluated analytically previously.
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5. Conclusions

A more realistic boundary condition for the mass fraction of a binary mixture is
being considered in this paper since setting specified arbitrary values of the mass fraction
(or solute concentration) on the boundaries is extremely difficult, if not impossible, to
accomplish experimentally. This more realistic boundary condition for the mass fraction
(solute concentration) is a zero-flux that accounts for thermodiffusion via thermophoresis
(Soret effect). The problem of natural convection in a binary mixture subject to this realistic
boundary conditions of imposed zero mass flux on the solid walls shows solutions that
may lead to unrealistic negative values of the mass fraction (or solute concentration). This
anomaly is being investigated in the present paper, and a possible way of addressing
it is suggested via a mass-fraction-dependent thermodiffusion coefficient that can have
negative values in regions of low mass fractions. The solution to the basic convection
problem by using such mass-fraction-dependent thermodiffusion coefficient shows that
the anomaly of negative mass fractions is removed. Further analysis of the solution is
undertaken to identify limits for the strength and shape of the recirculating convective flow.

Funding: This research received no external funding.

Data Availability Statement: Any data presented in this paper can be obtained by sending a reason-
able request to the author via email.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Brand, H.R.; Hohenberg, P.C.; Steinberg, V. Codimension-2 bifurcations for convection in binary fluid mixtures. Phys. Rev. A 1984,

30, 2549–2561. [CrossRef]
2. Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena; John Wiley and Sons: New York, NY, USA, 1960.
3. Hollinger, S.T.; Lüke, M. Influence of the Dufour effect on convection in binary gas mixtures. Phys. Rev. E 1995, 52, 642–657.

[CrossRef] [PubMed]
4. Köhler, W.; Morozov, K.I. The Soret effect in liquid mixtures—A review. J. Non Equilib. Thermodyn. 2016, 41, 151–197. [CrossRef]
5. Mortimer, R.G.; Eyring, H. Elementary transition state theory of the Soret and Dufour effects. Proc. Natl. Acad. Sci. USA 1980, 77,

1728–1731. [CrossRef] [PubMed]
6. Postelnicu, A. Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous

media considering Soret and Dufour effects. Int. J. Heat Mass Transf. 2004, 47, 1467–1472. [CrossRef]
7. Weaver, J.A.; Viskanta, R. Natural convection due to horizontal temperature and concentration gradients-2. Species interdiffusion,

Soret and Dufour effects. Int. J. Heat Mass Transf. 1991, 34, 3121–3133. [CrossRef]
8. Geelhoed, P.; Westerweel, J.; Kjelstrup, S.; Bedeaux, D. Thermophoresis. In Encyclopedia of Microfluidics and Nanofluidics; Li, D., Ed.;

Springer: Boston, MA, USA, 2008.
9. Jawad Hussam, K. Natural Convection and Soret Effect in a Multi-Layered Liquid and Porous System, Paper 1512 Digital

Commons @ Ryerson. Master’s Thesis, Ryerson University, Toronto, ON, Canada, 2012.
10. Lapeira, E.; Bou-Ali, M.M.; Madariaga, J.A.; Santamaria, C. Thermodiffusion coefficients of water/ethanol mixtures for low water

mass fractions. Microgravity Sci. Technol. 2016, 28, 553–557. [CrossRef]
11. Madariaga, J.A.; Santamaria, C.; Bou-Ali, M.M.; Urteaga, P.; Alonso De Mezquia, D. Measurement of thermodiffusion coefficient

in n-Alkane binary mixtures: Composition dependence. J. Phys. Chem. 2010, 114, 6937–6942. [CrossRef] [PubMed]
12. Yan, Y.; Blanco, P.; Saghir, M.Z.; Bou-Ali, M.M. An improved theoretical model for thermal diffusion coefficient in liquid

hydrocarbon mixtures: Comparison between experimental and numerical results. J. Chem. Phys. 2008, 129, 194507. [CrossRef]
[PubMed]

13. Costesèque, P.; Mojtabi, A.; Platten, J.K. Thermodiffusion phenomena. C. R. Mécanique 2011, 339, 275–279. [CrossRef]
14. Mialdun, A.; Yasnou, V.; Shevtsova, V.; Koniger, A.; Kohler, W.; Alonso de Mezquia, D.; Bou-Ali, M.M. A comprehensive study of

diffusion, thermodiffusion, and Soret coefficients of water-isopropanol mixtures. J. Chem. Phys. 2012, 136, 244512. [CrossRef]
15. Chipman, J. The Soret effect. J. Am. Chem. Soc. 1926, 48, 2577–2589. [CrossRef]
16. Klein, M.; Wiegand, S. The Soret effect of mono- di- and triglycols in ethanol. Phys. Chem. Chem. Phys. 2011, 13, 7090–7094.

[CrossRef] [PubMed]
17. Putnam, S.A.; Cahill, D.G.; Wong, G.C.L. Temperature dependence of thermodiffusion in aqueous suspensions of charged

nanoparticles. Langmuir 2007, 23, 9221–9228. [CrossRef] [PubMed]
18. Duhr, S.; Braun, D. Why molecules move along a temperature gradient. Proc. Natl. Acad. Sci. USA 2006, 103, 19678–19682.

[CrossRef] [PubMed]

http://doi.org/10.1103/PhysRevA.30.2548
http://doi.org/10.1103/PhysRevE.52.642
http://www.ncbi.nlm.nih.gov/pubmed/9963466
http://doi.org/10.1515/jnet-2016-0024
http://doi.org/10.1073/pnas.77.4.1728
http://www.ncbi.nlm.nih.gov/pubmed/16592791
http://doi.org/10.1016/j.ijheatmasstransfer.2003.09.017
http://doi.org/10.1016/0017-9310(91)90081-O
http://doi.org/10.1007/s12217-016-9508-7
http://doi.org/10.1021/jp910823c
http://www.ncbi.nlm.nih.gov/pubmed/20429569
http://doi.org/10.1063/1.2976012
http://www.ncbi.nlm.nih.gov/pubmed/19026066
http://doi.org/10.1016/j.crme.2011.03.001
http://doi.org/10.1063/1.4730306
http://doi.org/10.1021/ja01421a012
http://doi.org/10.1039/c1cp00022e
http://www.ncbi.nlm.nih.gov/pubmed/21409281
http://doi.org/10.1021/la700489e
http://www.ncbi.nlm.nih.gov/pubmed/17655335
http://doi.org/10.1073/pnas.0603873103
http://www.ncbi.nlm.nih.gov/pubmed/17164337


Physics 2021, 3 159

19. Mojtabi, A.; Platten, J.K.; Charrier-Mojtabi, M.C. Onset of free convection in solutions with variable Soret coefficients. J. Non
Equilib. Thermodyn. 2002, 27, 25–44. [CrossRef]

20. Gorban, A.N.; Sargsyan, H.P.; Wahab, H.A. Quasichemical models of multicomponent nonlinear diffusion. Math. Model. Nat.
Phenom. 2011, 6, 184–262. [CrossRef]

21. Boussinesq, J. Theorie Analitique de la Chaleur; Gutheir-Villars: Paris, France, 1903; Volume 2, p. 172.
22. Vadasz, P. Fluid Flow and Heat Transfer in Rotating Porous Media; Springer International Publishing AG: Cham, Switzerland, 2015.

[CrossRef]

http://doi.org/10.1515/JNETDY.2002.002
http://doi.org/10.1051/mmnp/20116509
http://doi.org/10.1007/978-3-319-20056-9

	Introduction 
	Problem Formulation 
	Method of Solution and Results for Positive Thermo-Diffusion Coefficient 
	Method of Solution and Results for Mass Fraction Dependent and Possibly Negative Thermo-Diffusion Coefficient 
	Conclusions 
	References

