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Abstract: Aggregates are generally thought of as inert filler within a concrete mix, and a typical
concrete mix is comprised of as much as 70–80% of them. They play an essential role in the properties
of both fresh and hardened concrete. Nowadays, scientists are aiming to use waste materials, thereby
replacing natural aggregates for economic and environmental considerations. This study investigates
the effect of the utilization of steel slag by-product aggregates (air- and water-cooled slag) as concrete
aggregates on the behavior characteristics of concrete. Various concrete mixtures, with different levels
of replacement of slag aggregate (50, 75, and 100%), were conducted in order to find the optimum
percentages to improve the microstructure and different properties of concrete (fresh and hardened).
The results showed that increasing the fine aggregate replacement percentage led to a decrease in
compressive strength values, in contrast with coarse aggregate replaced with slag aggregate. The steel
slag aggregates showed potential to be used as replacement for natural aggregate with comparable
compressive strength and acceptable workability.

Keywords: waste management; water-cooled slag (WCS); air-cooled slag (ACS); slump; compressive
strength; tensile strength

1. Introduction

Concrete is considered to be one of the most used construction material all over the world. It is
estimated that the production of concrete will reach about 18 billion tons/year by 2050 [1–3]. Concrete
manufacturing consumes a massive amount of raw material, such as natural aggregate and lime
stone, which are among the basic and main components involved in concrete production and the
cement industry, and these materials may soon be subjected to vanishing. Many researchers found
that aggregates represent about 70–80% of concrete volume, and they have a vital role in various
concrete characteristics such as consistency, strength and durability [4–6]. The increasing demand on
concrete raises the alarm on the future availability of the natural aggregate resources for the coming
generations, as natural aggregates were extracted by 28.6 gigatons in 2010 only and became the most
extracted materials worldwide [7]. Many countries put a restriction and additional taxes on using
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virgin aggregate resources [8,9], so it becomes a crucial issue to find a suitable substitutional as a
replacement of natural aggregate in concrete without affecting the concrete characteristics [10–14].

Various entities encourage the use of waste materials for their social, environmental and economic
impact [15,16]. Using waste material decreases concrete cost by using unexploited waste sources,
in addition saving both the cost of the natural source extraction and eliminating the cost of waste
disposal [17,18]. Many researchers studied various waste and by-product materials that are available in
the local market to find a proper substitute for natural aggregate while eliminating the transportation
pollution and expenses [19,20]. For example, recycled concrete aggregate [21–27], recycled tires [28–32],
post-consumer glass [33–36], recycled plastic [37–39], and steel by-product aggregate have been
suggested a replacement for fine or coarse aggregate [40–47]. Steel slag aggregate, a by-product of the
steel manufacturing process, is another possibility. Reports indicate that over 400 million tons of steel
slag by-products were produced worldwide according to the World Steel Association [48]. Steel slag is
usually available in two forms: the fine granulated form like water -cooled slag (WCS), and the coarse
form like air-cooled slag (ACS) after being crushed and screened [49–57]. Several studies investigated
the possibility of using WCS and ACS to replace natural aggregate (sand and crushed dolomite).
The studies showed that using the steel slag aggregate in concrete mainly enhance the physical and
mechanical properties of concrete [58–67].

Air-cooled slag (ACS), or blast furnace slag (BFS), is produced when raw steel materials (iron pellets
or iron ore, coke and a flux) are melted together in a blast furnace. After the fusion process is finished,
the lime in the flux combines chemically with the silicates and aluminates of the ore, and coke ash
produces a non-metallic product named blast furnace slag. Then, blast furnace slag is cooled slowly by
ambient air. In contrast, water-cooled slag (WCS), or ground granulated blast furnace slag (GGBFS),
is sand-type slag produced by applying high-pressure water jets on a molten blast-furnace slag [67–69].

Numerous researchers study the effect of replacing the natural coarse aggregates with ACS
aggregates. There was not a specific replacement ratio, as the optimum percentage varied among
studies. K. Thangaselvi [68] and Vasanthi1 [67] found that steel slag aggregate could replace up to 60%
by-weight of the natural aggregate. Hiraskar et al. [51] stated that the replacement ratio is 50% from
the total weight of aggregates. In contrast, Devi et al. [69] reported that the optimum replacing ratio
is 30% of the weight of the aggregate, while for fine aggregate replacement, Y. Guo et al. [64] stated
that the optimum replacement ratio of sand by WCS was 20% of the total weight of fine aggregate.
However, other researchers reported that the optimum replacement ratio of sand was 30% and 40%,
depending on the type and the finesses of the slag used [55,69]. Generally, the results indicated that
increasing the replacement percentage to a certain limit positively affected the compressive strength
and increased the workability of the mixes to certain limit.

Few researchers studied the effect of using both WCS and ACS combined in concrete instead of
natural sand and dolomite as a fine and coarse aggregate replacement, and the results showed the
possibility of partial or full replacement of natural aggregates by steel slag aggregates with comparable
features to traditional concrete [40–42,66].

Many researchers discussed the impact of using slag as a partial or total replacement for natural
aggregate, and the results were not in agreement. In contrast, in this study, the effect of using slag as a
fine and coarse aggregate was investigated individually. In addition, a combination of two types of
aggregates was also studied. Sixteen concrete mixes were casted to study the effect of replacement on
the consistency through a slump test, and on the mechanical properties by testing the compressive and
tensile strength of concrete. The cement content and water-to-cement ratio were the same for all the
mixes, while those for the replacing aggregate ratios were different percentages: 50, 75, and 100% from
the total weight of the aggregates.
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2. Materials and Methods

2.1. Material

Ordinary Portland cement (CEM I) was used in this study, achieving ASTM C150 [70] requirements.
The chemical components of Portland cement are listed in Table 1. Local, natural, siliceous and clean
sand with a particles size smaller than 5 mm, complying with ASTM C33 [71], was used as a fine
aggregate. Clean crushed dolomite with a maximum size of 12 mm was used as a coarse aggregate.
Table 2 shows the properties of the natural aggregate used in the control mix. Air-cooled slag (ACS),
Figure 1, and water-cooled slag (WCS), Figure 2, were obtained from Iron and Steel Company, Helwan,
Egypt. Figures 3 and 4 show the sieve analysis for ACS and WCS, respectively, according to the
Egyptian code ES 1109/2002. The superplasticizer used was naphthalene sulfonate with a synthetic
polymer, which allowed for the mixing water condensate to be de-foamed; admixture (Adicrete PVF)
was used with a fixed percentage of 1.6% in relation to the cement weight.

Table 1. Chemical composition of cement and slag.

Constituents SiO2 Al2O3 CaO Fe2O3 MgO Na2O K2O SO3 TiO2 P2O5 MnO Cl Ignition Loss

Cement 20.13 5.32 61.63 3.61 2.39 0.37 0.13 2.87 - - - - ≤0.01

Slag 38.25 7.64 34.2 0.53 7.73 1.14 1.35 3.01 0.54 ≥0.01 5.17 0.18

Table 2. Physical properties of natural and steel slag aggregates.

Property Sand Gravel ACS WCS

Specific Weight 2.89 2.76 3.54 2.5
Bulk Density 1.67 1.82 1.9 1.52

Fineness Modulus 2.75 - - -
Water Absorption (%) - 1.85 0.922 2

Crushing Value (%) - 14.3 - -
Clay and Fine Dust Content (%) 1.95 0.55 - -
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Figure 2. Water-cooled slag aggregate (WCS).
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Figure 3. Air-cooled slag (ACS) sieve analysis.
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Figure 4. Water-cooled slag (WCS) sieve analysis.

2.2. Mix Design, Preparation of Samples, and Curing

The absolute volume method was used to calculate the mix design. The cement content and the
water-to-cement ratio remained constant for all mixes with 390 kg/m3 and 0.45, respectively. In this
study, 6 cubes of 10 × 10 × 10 cm were casted for each mix to measure the compressive strength,
while 4 cylinders with a height of 30 cm and a diameter of 20 cm were casted to measure the tensile
strength of the concrete mixes. The mixtures were prepared with different replacement percentages of
slag aggregate of 50%, 75% and 100% by weight of coarse and fine aggregate in the mix. The mixtures’
constituents are represented in Table 3.
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Table 3. Mixtures constituents (kg/m3).

MIX ID Cement Fine Agg.
(Sand)

Coarse Agg.
(Dolomite) WCS ACS Water S.P (1.6%)

Control (C) 390 714 1071 0 0 175.5 6.24

F50 390 357 1071 357 0 175.5 6.24

F75 390 178.5 1071 535.5 0 175.5 6.24

F100 390 0 1071 714 0 175.5 6.24

C50 390 714 535.5 0 535.5 175.5 6.24

C75 390 714 267.75 0 803.25 175.5 6.24

C100 390 714 0 0 1071 175.5 6.24

F50 + C50 390 357 535.5 357 535.5 175.5 6.24

F50 + C75 390 357 267.75 357 803.25 175.5 6.24

F50 + C100 390 357 0 357 1071 175.5 6.24

F75 + C50 390 178.5 535.5 535.5 535.5 175.5 6.24

F75 + C75 390 178.5 267.75 535.5 803.25 175.5 6.24

F75 + C100 390 178.5 0 535.5 1071 175.5 6.24

F100 + C50 390 0 535.5 714 535.5 175.5 6.24

F100 + C75 390 0 267.75 714 803.25 175.5 6.24

F100 + C100 390 0 0 714 1071 175.5 6.24

F: Fine slag aggregate, F00: the number refers to the percentage of fine slag in relation to the total weight of the fine
aggregate. C: Coarse slag aggregate, C00: the number refers to the percentage of coarse slag in relation to the total
weight of the coarse aggregate.

All mixtures were prepared by mixing the coarse aggregates, fine aggregates and cement in dry
conditions for 2 min in a concrete drum mixer. Then, the superplasticizer with water was added to the
mix and mixing continued for another 2 min. The specimens were demolded after one day and cured
in water at room temperature until the day of the test.

2.3. Testing

The slump test was used to measure the consistency of the mixes according to ASTM C143 [72].
While the compressive strength test was measure after 7 and 28 days of casting in accordance with
ASTM C39 [73], the tensile strength test was tested only after 28 days in accordance with ASTM
C496 [74].

3. Results and Discussion

3.1. Consistency

The slump test was carried out to measure the effect of using ACS and WCS on the consistency of
concrete. Generally, using ACS as a coarse aggregate in concrete improves the workability. However,
using WCS as a fine aggregate had a negative effect on the workability, as shown in Figure 5a,
while replacing the coarse aggregate with ACS with a constant ratio, and increasing the percentages of
WCS with ratios from 50% to 100% showed the same behavior of reducing the workability of concrete,
as shown in Figure 5b–d. Generally, the reduction in the workability due to the addition of WCS to
concrete was due to increasing the surface area of the aggregate, resulting in higher water absorption
and water demand than that of using natural aggregate as a fine aggregate, and typically the mix
became stiffer. These results agree with the results reported by Nataraja et al. [57].
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As shown in Figure 5a, increasing the content of WCS results in a reduced consistency of the
concrete mixes; this can be attributed to the highly specific surface area of WCS, which increases the
high water demand of the aggregate. In contrast, the value of consistency was improved at 75% ACS.
This can be attributed to that the high angularity, porosity of ACS and the rougher surface texture than
that of the natural aggregate, which improves the workability of concrete at a certain value. Following
this, the value reduced at 100% replacement due to the high volume of slag aggregate, which increased
the high water demand of the concrete mixes [75].

3.2. Compressive Strength

Figure 6 shows the effect of using WCS and ACS aggregate individually and combined with
different replacing ratios on the compressive strength of concrete. The results show that using ACS as
a partial or total replacement to natural coarse aggregate has the same behavior on concrete as using
natural aggregate, as shown in Figure 6a. This can be attributed to the angularity and the high surface
roughness that improve the cohesion between ACS and the mortar, resulting in a better bond between
them in regard to the higher porosity of ACS. This lowers the free water content in the mix, subsequently
resulting in improved strength of the concrete. However, using WCS as a partial or total replacement
for fine natural aggregate results in lowering the strength of the concrete due to the highly specific
surface area of WCS that absorbs more free water, thus decreasing the water content needed for the
hydration of cement and resulting in lowering of the strength, as can be observed clearly in Figure 5b.
On the other hand, when replacing 50% of WCS with the natural fine aggregate, the compressive
strength did not change; this can be explained by the fact that at lower ratios, the WCS acts as a filler
between the micro voids of the cement matrix and thus improves the strength. The same trend was
obtained by adding WCS with different percentages to the ACS aggregate, as the compressive strength
was reduced due to the lowering of the free water for hydration of cement. This was clearly observed
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in the consistency test, which has a negative effect on the compaction of the concrete on the molds,
as shown in Figure 6c–e. These results agree with the results obtained by different authors [45,50,58,76].
Table 4 shows the standard deviation and the coefficient of variation of the results.Eng 2020, 1, x FOR PEER REVIEW 7 of 13 
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Table 4. Standard deviation and coefficient of variation for concrete mixes.

MIX ID 28-Days Compressive Strength (Mpa) Mean S.D. C.V.

Control (C) 38.6 39.7 38.3 38.9 0.7 0.019

F50 35.4 41.4 38.2 38.3 3.0 0.078

F75 37 41.1 38.8 39.0 2.1 0.053

F100 17.7 17 15.9 16.9 0.9 0.054

C50 43.5 39.1 42 41.5 2.2 0.054

C75 36.9 36.3 36.3 36.5 0.3 0.009

C100 38.6 37 40.2 38.6 1.6 0.041

F50 + C50 34.4 32.1 34 33.5 1.2 0.037

F50 + C75 33.4 32.3 33.3 33.0 0.6 0.018

F50 + C100 22.6 27.8 20.7 23.7 3.7 0.155

F75 + C50 20.8 18.1 21.5 20.1 1.8 0.089

F75 + C75 25 30.6 27.4 27.7 2.8 0.102

F75 + C100 39.2 37.8 35 37.3 2.1 0.057

F100 + C50 24.2 25.1 27 25.4 1.4 0.056

F100 + C75 24 24.9 26 25.0 1.0 0.040

F100 + C100 31.7 30.5 32.5 31.6 1.0 0.032

S.D. = standard deviation. C.V. = coefficient of variation (standard deviation/mean).

3.3. Tensile Strength

The tensile strength results follow the same trend previously found in the compressive strength
results, as shown in Figure 7. The optimum replacement ratio obtained was at 50% of WCS and
50% of ACS of the natural aggregate use, where WCS acts as a micro filler and reduces the voids,
thus improving the strength, while ACS, with its angularity and rough surface, improves the bond
between the aggregate and the cement matrix, resulting in improved mechanical properties of the mix
compared to the control mix.Eng 2020, 1, x FOR PEER REVIEW 9 of 13 
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4. Conclusions

In this the current research, the effect of replacement of both natural sand and dolomite by
water-cooled slag and air-cooled slag (50, 75, and 100% wt.) was studied on the fresh and the hardened
properties of concrete, and the following conclusions were made:

• Increasing the replacement of fine aggregate by water-cooled slag (0–100%) significantly decreases
the workability of concrete. Increasing the replacement of coarse aggregate by air-cooled slag
(0–100%) increases the workability of concrete.

• Replacement of fine aggregate with water-cooled slag up to 50% has no influence on the compressive
strength, as the same compressive strength for both mixes is obtained. Meanwhile, increasing the
replacement up to 100% leads to a significant decrease in compressive strength by 56% than that
of the control mix.

• Replacement of coarse aggregate with slag aggregate up to 50% increases the compressive
strength by 6%, while increasing the replacement over 50% slightly decreases the compressive
strength. This means that the replacement of coarse aggregate alone has trivial influence on
compressive strength.

• The replacement of natural aggregate has an insignificant effect on the tensile strength of mixes.
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