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Abstract: In the numerical analysis of the Laplace equation, which is the governing equation of the
seepage phenomena of homogeneous, isotropic earth dams, it has been confirmed that numerical
analysis with high accuracy is possible by using the interpolation finite difference method (IFDM).
In a previous paper, based on this numerical analysis method, the equivalent Kozeny (KZ) flow
method was proposed as a new empirical method to calculate the seepage discharges and free surface
locations of earth dams. Although this method is generally a highly accurate method compared with
the empirical method of A. Casagrande, owing to calculating the seepage problems within a few
percentages of discharge relative errors, several additional studies are necessary. By integrating the
finding of this study to the previous literature, an empirical seepage calculation system with high
accuracy, the equivalent KZ flow method, is created. Owing to the finally proposed empirical method,
called “interpolation-equivalent KZ flow method”, the discharge and free surface location can be
predicted with high accuracy in a wide range.

Keywords: unconfined seepage analysis; interpolation finite difference method (IFDM); arbitrary
domain; empirical method; interpolation-equivalent KZ flow method

1. Introduction

Conventionally, high-accuracy numerical analyses of seepage problems of earth dams have been
implemented using the finite element method. Numerical analyses using the finite difference method
(FDM) have been limited to cases where the calculation domains are comparatively simple. However,
by applying the interpolation finite difference method (IFDM), two- and three-dimensional elliptic
partial differential equations (PDEs) over complex domains with high speed and high accuracy can
be freely solved [1–3] The IFDM is composed of two kinds of methods [3] (1) Algebraic Polynomial
Interpolation Method (APIM), where finite difference schemes are formulated instantaneously over
equally or unequally spaced grid points, and (2) Boundary Polynomial Interpolation Method (BPIM),
where numerical calculations are executed only over equally spaced grid points, and the boundary
interpolation is performed to match the boundary conditions. In the paper, the numerical calculations
are executed by the IFDM-BPIM.

This method is adopted as a numerical analysis method for solving confined/unconfined seepage
problems. In such problems, because of the adoption of IFDM-BPIM using the quadratic interpolation
at the boundary, it has been shown that highly accurate numerical calculations are possible even in the
FDM [4,5].

Empirical methods proposed in the first half of the previous century—(1) A. Casagrande method,
(2) Schaffernak–Van Iterson method, and (3) L. Casagrande method—have been adopted in design
standards [6,7] without sufficient verifications. Fukuchi (2018) [5] summarized the critique of these
empirical methods as follows.
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“Many researchers have pointed out various problems in A. Casagrande’s method, and some have
proposed alternatives (Uginchus, 1960 [8]; Lo, 1971 [9]; Browzin, 1976 [10]). Several issues have since
been raised. Shrivastava (2015) [11] suggested a modified equation for the phreatic line in an earthen
dam, which is much more accurate than that given by A. Casagrande. Salmasi and Jafari (2016) [12]
computed the locations of the free surface for 28 examples using the SEEP/W software (GEO-SLOPE
2009) [13] and found that, in most cases, the Schaffernak–Van Iterson method has more than 20% error
and A. Casagrande’s method has more than 30% error. Using SEEP/W, Jamel (2016) [14] computed the
discharges for 729 examples without a drain and found that A. Casagrande’s solution has more than
15% error.” Despite many criticisms of these empirical methods, attempts to construct a new empirical
method have not yet been made.

The author has also confirmed that with these methods, even if the permissible error is set to
10%, sufficient calculation accuracy is not guaranteed. These empirical methods should be critically
examined by comparing them with numerical calculation at its current state. In this study, an empirical
estimation with a permissible error of a few percent is considered. With respect to discharge, it is
defined that the absolute relative error of an empirical discharge (qe) to the numerically calculated
discharge (qn) is within 3%; thereafter, the criterion is the numerically calculated discharge, specifically,∣∣∣qe − qn

∣∣∣/qn × 100% ≤ 3%. With respect to the location of the free surface, the maximum calculation error
usually occurs at the discharge point B and is evaluated by its vertical y-coordinate yB. The absolute
relative error of an empirical discharge point yBe to the numerically calculated discharge point yBn is
within 3%; thereafter, the criterion is the entrance face head H, specifically,

∣∣∣yBe − yBn
∣∣∣/H × 100% ≤ 3%.

The error-within-three-percent estimation means that both conditions are satisfied. In a previous
paper [5], we mainly focused on the estimated discharge and discussed the calculation accuracy of the
empirical method. In this study, the estimation accuracy, including the discharge point, is evaluated.

Even at this point in time, when the governing differential equations are instantaneously numerically
analyzed, the author believes that highly accurate empirical methods are required to grasp the overall
picture of seepage phenomena [5]. If conventional empirical methods have structural defects and a
highly accurate prediction is impossible, then it is necessary to establish a better rule of thumb. From this
viewpoint, an empirical method, the equivalent Kozeny (KZ) flow method, was proposed in the previous
paper. The theory presented in this paper is inseparably associated with this concept.

In the following, Section 2 outlines the governing equation and its finite differential equation (FDE);
regarding the detail numerical calculation method, refer to the previous two papers [4,5]. Section 3
shows the basic results of the equivalent KZ flow confirmed in the previous paper [8]. The empirical
method of A. Casagrande was discussed in detail in the previous paper. Section 4 newly describes the
numerical calculation results for (2) Schaffernak–Van Iterson method and (3) L. Casagrande method.
Section 5 details the interpolation-equivalent KZ flow, which is the main subject of this paper. Section 6
summarizes the basic results of this paper and discusses the effectiveness of the proposed method. It is
confirmed that the results of the proposed empirical methods agree with the numerical calculation
results with high accuracy in almost all usual type isotropic homogeneous earth dams.

2. Governing Equation of Numerical Calculation

In our previous papers [4,5], numerical calculation methods based on the IFDM-BPIM were
explained in detail. Here, the governing partial differential equation (PDE) and its FDE are verified.
In the IFDM, the PDE for the potential calculation is the following parabolic PDE:

∂h
∂t

=
∂2h
∂x2 +

∂2h
∂y2

(
≡ ∇

2h
)

(1)

where h is the total head (position head, y,+pressure head, p) and t denotes time; then, ∂h/∂t is the
pseudo-acceleration term [5,15]. The x-direction is horizontal and the y-direction is vertical. Under a
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fixed boundary condition, as t→∞ , ∂h/∂t→ 0, the equation reduces to the Laplace equation,∇2h = 0.
The following expression describes the stream function, s:

∂s
∂t

=
∂2s
∂x2 +

∂2s
∂y2

(
≡ ∇

2s
)

(2)

The numerical calculation methods for Equations (1) and (2) are the same; consider Equation (1).
The Laplace equation, ∇2h = 0, is usually calculated using the successive over relaxation (SOR) scheme.
On the other hand, Equation (1) is usually solved by the forward time, centered space (FTCS) scheme.
The FDE of the FTCS scheme is expressed as follows [4]:

hn+1
i, j = hn

i, j + ϕi, j∆t
[
F′′x

(
hn

i, j

)
+ F′′y

(
hn

i, j

)]
, ϕi, j ≡

(
lwi, j

)pw
(3)

F′′x
(
hn

i, j

)
=

hn
i−1, j − 2hn

i, j + hn
i+1, j

(∆x)2 (3a)

F′′y
(
hn

i, j

)
=

hn
i, j−1 − 2hn

i, j + hn
i, j+1

(∆y)2 (3b)

In the FTCS scheme, calculated variables are replaced simultaneously. However, if we are only
interested in the convergence state, successive displacement of variables accelerates the convergence.
This scheme is the time marching successive displacement (TMSD) scheme [2,4,15]. Changes from the
former to the latter are carried out easily and instantaneously. Moreover, it has been confirmed that the
TMSD scheme is exactly equivalent to the SOR scheme [16] limited as using the second-order centered
space finite difference scheme [2,15]. In the paper, all calculations are carried out using the TMSD scheme.

In Equation (3), ϕi, j is the time-interval adjustment factor, and lwi, j is the wall-distance factor.

In the definition of ϕi, j ≡
(
lwi, j

)pw
in Equation (3), pw = 1 is defined under the condition that the

calculation element of concern is the near-wall element with 0 < lwi, j < 1, and the boundary condition
is the Dirichlet condition. In all other cases, ϕi, j = 1 (namely, pw = 0) and Equation (3) reduce to the
usual FDE [4]. The time interval is defined as follows:

∆t = αb∆tc, ∆tc ≡
1
2

/ 1

(∆x)2 +
1

(∆y)2

, 0 < αb < αbmax (4)

where αb is the acceleration factor of the TMSD scheme, and αbmax is the theoretical maximum
acceleration factor. The stability condition 0 < αb < αbmax (= 2) ensures that the calculation has a
convergent solution. It is advantageous to use the optimum acceleration factor, αb = αbopt, to achieve
the fastest convergence [2]. However, in this study, αb = 1.80 is adopted because this value guarantees
stable convergence without exception.

3. Concept of Equivalent KZ Flow

In the previous paper [5], the concept of equivalent KZ flow was presented in detail. Because the
theory employed in this study is intertwined with the concept, this section begins by confirming the
basic contents presented in the previous paper. Kozeny (1931) [17] derived an analytical solution of
the seepage phenomenon with a discharge angle α = 180◦ (see Figure 1) by conformal mapping and
showed that the free surface becomes a parabola. A. Casagrande (1937) [18] introduced this theory
to his method—the basic parabola method. Even with the proposed equivalent KZ flow method,
the Kozeny flow is considered as the basis of the theory; however, there are several variations in defining
this flow, which is presumed to be beyond the range intended by Kozeny (1931) [17]. Furthermore,
considering the simplicity of frequently appearing the expression, the Kozeny flow, it was referred to
as the KZ flow in the previous paper [5].
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Figure 1 shows an example of the flow net of a KZ flow [5]. In this figure, 𝑆 is defined as follows: 𝑆 = 𝑑 + 𝐻 − 𝑑 (5)

The free-surface parabola (FSP) of this flow is expressed in the coordinate system (i.e., KZ 
coordinate system) specified in Figure 1, as follows: 𝑥 = 𝑦 − 𝑆2𝑆 = 𝑦2𝑆 − 𝑆2 (6)

On the other hand, the boundary-potential parabola (BPP) is expressed as follows: 

𝑥 = − 12(2𝑑 + 𝑆) 𝑦 + 2𝑑 + 𝑆2 ≡ 𝑦 − 𝐹2𝐹 , 𝐹 = −(2𝑑 + 𝑆)  (7)

When 𝑦 = 0, 𝑥 = 𝑑 + 𝑆 2⁄ ; therefore, |𝐺𝐺 | = 𝑆 2 = 2.5⁄  in Figure 1. Both are parabolas with focus 
at the origin, O. The potential and stream functions in the domain are expressed by the following 
analytical solution [5]. ℎ = 𝑑 + 𝐻 − 𝑑 𝑥 + 𝑦 + 𝑥  (8)

𝑠 = 𝑑 + 𝐻 − 𝑑 𝑥 + 𝑦 − 𝑥  (9)

In the unconfined seepage problem, it is extremely infrequent to obtain a simple theoretical 
solution in a finite domain using the conformal mapping method. Therefore, in order to confirm the 
accuracy of numerical analysis, the KZ flow is an effective numerical analysis target.  

Interestingly, in the KZ flow, let us refer to the ratio, 𝑅 = 𝑑 𝐻⁄ , as the basic Ratio. Then, it is 
clear that two KZ flows with the same basic aspect ratio are similar. The validity of this proposition 
is directly confirmed by deriving the dimensionless potential, h/H from Equation (8) and the 
dimensionless stream function s/H from Equation (9). They become as follows: 

ℎ∗ = 𝑅 + 1 − 𝑅 𝑥∗ + 𝑦∗ + 𝑥∗ , ℎ∗ = ℎ 𝐻, 𝑥∗ = 𝑥 𝐻,⁄  𝑦∗ = 𝑦 𝐻⁄⁄  

 

(10)

Figure 1. Example of flow net of a Kozeny (KZ) flow [5].

Figure 1 shows an example of the flow net of a KZ flow [5]. In this figure, S is defined as follows:

S =
√

d2 + H2 − d (5)

The free-surface parabola (FSP) of this flow is expressed in the coordinate system (i.e., KZ coordinate
system) specified in Figure 1, as follows:

x =
y2
− S2

2S
=

y2

2S
−

S
2

(6)

On the other hand, the boundary-potential parabola (BPP) is expressed as follows:

x = −
1

2(2d + S)
y2 +

2d + S
2

(
≡

y2
− F2

2F
, F = −(2d + S)

)
(7)

When y = 0, x = d + S/2; therefore,
∣∣∣GGd

∣∣∣ = S/2 = 2.5 in Figure 1. Both are parabolas with focus
at the origin, O. The potential and stream functions in the domain are expressed by the following
analytical solution [5].

h =

√(√
d2 + H2 − d

)(√
x2 + y2 + x

)
(8)

s =

√(√
d2 + H2 − d

)(√
x2 + y2 − x

)
(9)

In the unconfined seepage problem, it is extremely infrequent to obtain a simple theoretical
solution in a finite domain using the conformal mapping method. Therefore, in order to confirm the
accuracy of numerical analysis, the KZ flow is an effective numerical analysis target.

Interestingly, in the KZ flow, let us refer to the ratio, Rb = d/H, as the basic Ratio. Then, it is clear
that two KZ flows with the same basic aspect ratio are similar. The validity of this proposition is directly
confirmed by deriving the dimensionless potential, h/H from Equation (8) and the dimensionless stream
function s/H from Equation (9). They become as follows:

h∗ =

√(√
R2

b + 1−Rb

)(√
x∗2 + y∗2 + x∗

)
, h∗ = h/H, x∗ = x/H, y∗ = y/H (10)
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s∗ =

√(√
R2

b + 1−Rb

)(√
x∗2 + y∗2 − x∗

)
, s∗ = s/H, x∗ = x/H, y∗ = y/H (11)

So, if we reduce Figure 1 to 1/10, this is the KZ flow at H = 1, and the discharge also becomes 1/10.
This concept of similarity is important in this paper.

The potential calculation is obtained irrespective of the permeability coefficient under the
assumption of homogeneous material. In the stream function, Equation (9) must be multiplied by the
permeability coefficient in order to correspond to the real discharge. However, in this paper, the result
of setting the permeability coefficient kc = 1 is formally assumed; then, no problem occurs and the
discharge of the KZ flow is expressed as q = S = y0, the ordinate value of point D in Figure 1.

Equation (6) is expressed as x = ay2 + c. That is, if two independent conditions are given,
this expression is determined. The KZ flow is determined by the point A(d, H) and the focal point
O(0, 0). This is described as KZ0(A, O)—the basic expression of the KZ flow. There are three other
definitions of the KZ flow under the condition that point A is given: (1) the area of the KZ flow,
AK, is given, and this is described as KZ1(A, AK); (2) the other arbitrary point B(xB, yB) is given,
and this is described as KZ2(A, B); (3) the discharge is given, and this is described as KZ3(A, q) where
q = S; finally (iv) both the discharge and discharge point are given, and this is described as KZ4(q, B).
For KZ1(A, AK), the area of KZ flow, AK, must be determined. In Figure 1, the KZ flow area is divided
into two: A(I) and A(II). Using Equation (6), area A(I) is obtained as follows:

A(I) =
2d + S

2
H −

H3

6S
(12)

Using Equation (7), we have the following:

A(II) =
S
2

H −
H3

6(2d + S)
(13)

Therefore, the total area is as follows:

AK ≡ A(I) + A(II) =
2
3

√
d2 + H2H (14)

This yields the following:

d =

√
9
4

(AK

H

)2
−H2 (15)

Then, the focal point, O1, is determined, that is, the KZ flow is determined.
For KZ2(A, B) in the KZ coordinate system, the parabola is expressed as x = ay2 + c; thereafter,

the condition that points A(d, H) and B(xB, yB) are on the parabola determines the values of a and c.
From parabola theory, the focal point and discharge are O2(c + (1/4a), 0) and S = 1/2a, respectively.

For KZ3(A, q), q(= S) is given. In the parabola x = ay2 + c, d = aH2 + c because point A is on
the parabola. The discharge q = 1/2a is given. Then, the parabola and focal point O3(c + (1/4a), 0)
are determined.

Finally, for KZ4 (q, B), in the parabola x = ay2 + c, xB = ayB2 + c because point B is on the
parabola. The other description is the same as that of KZ3(A, q), and the focal point O4 is determined.

All the definitions, (1), (2), (3), and (4), are simply different expressions of KZ0(A, O); however,
each of them has a significant function in the equivalent KZ flow method.

In Figure 1, when the drain is inclined, such as OG′, the analytical solution of KZ flow becomes
invalid. The free surface location moves downward as it approaches the discharge point, B′, which is
not on the FSP. As an approximate rule of thumb, we found that the concept of area-equivalent KZ flow
is effective [5]. The deficit area, Ade(OFB′), cut by the inclined line OG′ is determined depending on the
discharge angle, α = ∠GOG′. Let the equivalent area be defined as Ae = Ak −Ade. Then, the equivalent
KZ flow having the entire area, Ae, is determined with point A as a fixed point. By substituting Ae
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for Ak in Equation (15), the equivalent distance, de, is determined; specifically, the equivalent origin is
determined, and the area-equivalent KZ flow, KZ1(A, Ae), is defined. In the previous study, KZ1(A, Ae)
proved to be a substantially more advantageous empirical method than A. Casagrande’s basic parabola
method. However, with the goal of approximately 3% permissible error in this study, this rule of thumb
must be reconsidered, especially in the range of α < 90◦. Figure 2 shows the numerical calculation result
of the case shown in Figure 1 (Fukuchi, 2018). Along ˆP∗1P∗11, the theoretical solution of BPP is discretely
given. The position coordinates of the points of P∗k, k = 1, 2, · · · , 13 and the length of the horizontal
drain are input. In the definition of Pk, k = 1, 2, · · · , P35, Pk = P∗k, k = 1, 2, · · · , 11 and the points
Pk, k = 12, 13, · · · , 35 are determined in the calculation process. In particular, the notation P∗k is used
for defining the dam configuration; on the other hand, the notation Pk is directly used for numerical
calculation. In Figure 2, the equipotential lines are 0.1, 0.2, · · · , 0.9H (division number, Np = 10), and the
streamlines are 0.2, 0.4, · · · , 0.8q (division number, Ns = 5), indicated by solid lines. The theoretical
equipotential lines are indicated by broken lines with Np = 20 and Ns = 10 for streamlines. In the IFDM
calculation, the active calculation elements consist of three kinds of element: normal element (colorless),
near-wall element (yellow), and dummy element (gray). Numerical calculation is performed at grid
points, which are centroids of each calculation element. The numerical solution agrees well with the
theoretical solution. From the result of the potential calculation, the flow velocity in the horizontal
direction (u) is defined at each grid point, such as ui, j = −kc

(
hi+1, j − hi−1, j

)
/(2∆x). Assume that kc = 1.

In the range of |GdO|, 15 individual discharge values are calculated. Each discharge is calculated
by the parabolic numerical integration method [1,5], then the value at either end is obtained by
extrapolating the corresponding quadratic curve; this ensures sufficient accuracy. The discharge
becomes qn = 4.995(−0.09%) ± 0.058(= 3σ); σ is the standard deviation. Although slight dispersions
of individual discharges are inevitable, the relative error of the calculated mean discharge is −0.09%
with respect to the theoretical value qt = 5.00; this is highly accurate, being less than the 0.1% (absolute)
relative error. Such features of the discharge calculation are common in the IFDM calculation.

In the numerical calculation process, it is necessary to estimate the boundary points on the right side
of point O. It is assumed that the curve ˆP23P21P13 is expressed by x = ay2 + c. This equation is derived
from P23(x23, y23) and P21(x21, y21). Each point of P20, P19, · · · , P14 is on the curve. The y-coordinate of
each boundary point is defined as y21 × (i/N), i = N− 1, N− 2, · · · , 0. Here, N = 8; the division number,
N, is defined such that the calculation points are set to have appropriate intervals [5]. However, this is
an example of α = 180◦; if α ≤ 90◦, only one point is estimated. In this case, two equations for
estimating point B are conceived: (1) linear extrapolation, y = ax + b and (2) quadratic extrapolation,
y = ax2 + bx + c. Generally, it makes no large difference as to which one is used; however, in the study,
extrapolation is performed by (3) the KZ flow extrapolation.
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Figure 2. Numerical calculation of the KZ flow, Figure 1 [5]; Calculation elements: normal element
(colorless), near-wall element (yellow), and dummy element (gray).

Figure 3 shows the case of a trapezoidal dam in which the entrance face is a straight line.
The global coordinate values of input points and boundary conditions of the potential and stream
function calculations are shown in the input data. In the potential calculation, along P1P2

(
≡ AP∗2

)
,

the Dirichlet condition (8.00) is given; along P2P3
(
≡ P∗2O

)
, the Neumann condition (N), where the

equipotential line is orthogonal to the boundary line, is given. Along P3P4, the Dirichlet condition is
also given; however, when the discharge angle is 90◦ < α < 180◦, it is a position-dependent variable
and is designated (DV). Along P4A, although the condition is the Neumann condition, it is denoted as
NS to indicate that it is a free surface part. Regarding the stream function, the Neumann condition
(N) is specified along P1P2, and the Dirichlet condition (0.00) is designated along P2P3. Along P3P4,
a Neumann condition orthogonal to the equipotential line is set; it is generally expressed as NV because
the equipotential line at the boundary point of concern must be individually calculated according
to each position. The discharge should be given as Dirichlet condition along P4A, but there is no
problem specifying 1.00 as the Dirichlet condition. By multiplying the numerically calculated discharge,
qn (as the result of the potential calculation), the correct conclusion is always obtained.Eng 2020, 1, FOR PEER REVIEW 8 of 39 
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Figure 3. Seepage flow of trapezoidal dam, θ = θc = 78.14◦, Rb = 1.43, α = 180◦, in input data, PT:
potential calculation condition, SF: stream function calculation condition (a) numerical calculation,
(b) criteria KZ flow, KZc(A, OC), Bn(27.18, 0.00), BCa(27.22, 0.00), Bc(27.26, 0.00)(= Fc)x = ay2 + c,
in order to be a consistent calculation method. This in itself is a hypothesis; nevertheless, it is considered
to be a reasonable one based on several numerical calculation results.

Both FSP(c) and BPP(c) are determined from the KZ flow, KZc(A, Oc)(≡KZ0(A, O)). In Figure 3b,
the point Ac is given so that the areas of A(II) (Figure 1) and triangle AAcGd are equal; this practically
coincides with P∗2. Then, the entrance angle, θ = θc, is defined as the criterion entrance angle.
The starting point C of FSP(c) matches point A. Moreover, the free surface of numerical calculation,
FS(n), and FSP(c) coincide and the discharges would be the same. It is confirmed that the results
are qn = 2.51± 0.06, qc(= yc) = 2.52 (0.5%). On the other hand, in A. Casagrande’s basic parabola
method, it becomes qCa = 2.44(−3.1%) [5]. It is understood that his method determining point Ca,∣∣∣CaA

∣∣∣ = 0.3
∣∣∣P∗2Gd

∣∣∣ is incorrect.
Figure 4 is a general case where point P∗2 does not match point Ac; fundamental results are shown

in the caption. In A. Casagrande’s method, the position of point Ca is determined based on
∣∣∣P∗2Gd

∣∣∣;
however, to be correct, it should be determined on the basis of Lc =

∣∣∣P∗2Ac
∣∣∣, as shown in Figure 4b. As a

result of the detailed examination, in the definition
∣∣∣CA

∣∣∣ = mvLc, mv is determined as follows [5]:

mv = 0.0287Rc
2
− 0.1734Rc + 0.3993, Rc = Lc/H ≥ 0 (16)

mv = 0.49, Rc = Lc/H < 0 (16a)

Therefore, point C is determined, and the basic KZ flow, KZb(C, O), is defined. Because qb = 1.85
(−0.1%) for the numerically calculated discharge, qn = 1.86± 0.05, it can be seen that the calculation is
highly accurate. (In this paper, the exact solution is defined only for the KZ flow and “rectangular dam
flow” (described later). Therefore, the relative errors in the empirical methods below are evaluated
by the value of the numerical calculation result.) If the entrance angle is θ = 90◦, Rc = Lc/H < 0,
then Equation (16a) is used. Through the calculations up to this point, the discharge q and discharge point
B were calculated. Let us define this as the empirical QB estimation. The estimation of A. Casagrande
is of course an empirical QB estimation.
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Figure 4. Seepage flow of trapezoidal dam,θ = 33.69◦, Rb = 1.75,α = 180◦, (Fukuchi, 2018), (a) numerical
calculation, (b) basic KZ flow: KZb(C, Ob), Bn(26.84, 0.00), BCa(26.87, 0.00), Bb(26.93, 0.00)(= Fb).

A remaining problem is to express accurately the free surface from FSP(b). In Figure 4b, let the
deviation width of FSP(b) at point A be δH; moreover, L =

∣∣∣GdBb
∣∣∣. In this case, Bb matches Fb.

Then, the deviation must be corrected between 0 ≤ l < L; that is, the FSP(b) must be modified to
conform to the FS(n), called the modified FS(b). The modification equation is defined in the previous
paper [8] as follows:

δh∗l∗ = δH
(1

2

)l∗/L∗h
− l∗δh

(
δh ≡ δH

(1
2

)1/L∗h
)

(17)

where δh∗l∗ is the modification value, l∗ = l/L is the dimensionless distance, and L∗h ≡ Lh/L is the
dimensionless half-decrease distance (Lh is the half-decrease distance). In this expression, at l∗ = 0,
it becomes δh∗0 = δH; at l∗ = 1, it becomes δh∗1 = 0. The dimensionless half-decrease distance, L∗h,
generally depends on the ratio, Rh ≡ L/H; L∗h is defined as follows:
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L∗h = f (Rh) = 0.5exp[−1.5(Rh − 0.5)], Rh ≡ L/H (18)

The detail is described in the previous paper [5]. Equation (18) is formulated based on the
numerical calculation results of the rectangular dam with Rb ≥ 0.2. It should be noted that in the case
of other cross sections, some deviation may occur. In Figure 4b, it is confirmed that the green line
ÂFb : modi f ied FS(b) practically coincides with the calculated free surface FS(n). The discharge was
calculated and at the same time the free surface was defined by modifying FSP(b). Let us define this as
the empirical QF estimation. The empirical QB estimation becomes the corresponding empirical QF
estimation by using the modification Equation (17). The parabola FSP(b) is called the “basic parabola”
in the equivalent KZ flow method as well.

When α = 50◦ in Figure 4, the calculation result is shown in Figure 5. The numerical calculation
yields qn = 2.00± 0.01 and yBn = 2.84. In A. Casagrande’s method, the calculation gives qCa = 1.73
(−13.3%) and yBCa = 2.49(−4.3%). As α decreases, the results given by A. Casagrande’s method
rapidly deteriorate. The position of point C in Figure 5b is the same as that in Figure 4b. Using the
area-equivalent KZ flow, KZ1(C, Ae), the results are q1 = 1.96(−2.0%) and yB1 = 3.29(5.7%). In terms
of discharge, the result is considerably better than A. Casagrande’s method; however, as a whole,
their (absolute) relative errors are too large. In the range 90◦ ≤ α ≤ 180◦, KZ1(C, Ae) yields good results;
however, as α decreases from 90◦, it gradually yields poor conclusions [8]. Here, it should be noted that
q2 = 2.01(0.3%) in the discharge point-equivalent KZ flow, KZ2(C, Bn). The position of point C varies
by nature depending on the change in α; however, it can be observed that the change is practically
negligible in this example.

Figure 5c shows the numeric-equivalent KZ flow, KZn(qn, Bn). The calculated free surface FS(n)
is almost precisely expressed by the modified FS(n). In the figure, the equivalent vertical face, CEC′E,
is shown, which is set in order that the area of A(II) of KZn(qn, Bn) is equal to the area of the rectangle
CEC′EC′nCn. The discharge (qE) and discharge point (yBE) of the equivalent cross section, CEC′EOG,
which are shown in detail later, practically coincide with those of KZn(qn, Bn). The numerical calculation
yields the results qE = 1.99(−0.7%) and yBE = 2.79(−0.6%); their relative errors are both within 1%.

The equivalent aspect ratio of this equivalent trapezoidal dam is RE =
∣∣∣∣C′EO

∣∣∣∣/H = 2.130. The concept
of equivalent aspect ratio has an important role in the following discussion.
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Figure 5. Seepage flow of trapezoidal dam, θ = 33.69◦, Rb = 1.75, α = 50◦, (a) numerical calculation,
(b) area-equivalent KZ flow: KZ1(C, Ae), (c) numeric-equivalent KZ flow: KZn(qn, Bn), cf. discharge
and discharge point calculated from the equivalent cross-section, CEC′EOG: qE = 1.99(−0.7%),
yBE = 2.79(−0.6%).

4. Calculation Accuracy of Conventional Empirical Methods

As for the calculation accuracy of A. Casagrande’s method, because of confirming the calculation
accuracy for each calculation example in the previous paper [5], it was generally found that
non-negligible deviations from the numerical calculation results occur. In this paper, the methods of
Schaffernak–Van Iterson and L. Casagrande regarding the seepage phenomenon of the trapezoidal
dam with a vertical entrance face are discussed. These methods are included in the calculation system
of A. Casagrande’s method [18]. The governing formulae and numerical calculation techniques of
both these methods are shown in detail in Appendices A and B. Regarding discharge angle, the scope
of the Schaffernak–Van Iterson method was set to α < 30◦, and the scope of L. Casagrande’s method
was set to α ≤ 90◦. Here, apart from such an empirical rule, the theoretical characteristics when both
equations are applied to the seepage of a trapezoidal cross section α ≤ 90◦ are considered.

In general, the discharge, q, and y-coordinate, yB, of discharge point B can be expressed by the
following functional definitions:

q = fq(H,θ, Rb,α) = H fq(1,θ, Rb,α) (19)

yB = fyB(H,θ, Rb,α) = H fyB(1,θ, Rb,α) (20)
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Here, θ is the entrance angle, Rb(= d/H) is the basic aspect ratio, and α is the discharge angle
(Figure A1). These equations show the (geometrical) similarity law of seepage problems. From now
on, let us set H = 1.0. Under the conditions θ = 90◦ and α ≤ 90◦, let us investigate the characteristics
of the calculation error when using the two types of empirical methods: the Schaffernak–Van Iterson
method and L. Casagrande’s method. As already mentioned, the similarity law holds in KZ flow.
This must be true for all the empirical methods as well.

Occasionally, the overall physical phenomena image becomes distinct by considering the extreme
states. Under the condition Rb = 2.0, the numerical analyses are conducted, shown in Figures 6–9,
and the two extreme states of Figures 6 and 9 are obtained. In Figures 7–9, the calculation results using
A. Casagrande’s method are also presented. Figure 6 shows the one extreme state, where the discharge
angle (α) is the minimum: α = αmin = arctan(1/Rb) � 26.6◦; accordingly, the entrance point (A) and
discharge point (B) agree. This problem is a special confined seepage problem, and the numerically
calculated discharge becomes qn = 0.500. In the figure, equipotential lines and streamlines are shown.
The calculation area is X[0.0, 2.0], Y[0.0, 1.0], and the finite difference width is ∆x = ∆y = 0.05. In the
calculation examples of H = 1.0 presented in this paper, the calculation element disposition and finite
difference width are always used in this specification. Except for Figure 6, illustrations of calculation
element dispositions are not presented. Despite the theoretical importance of this seepage problem,
no description pertaining to its analytical solution in the leading references (e.g., Polubarinova-Kochina,
1962 [19], Harr, 1991 [20]) is found. However, this problem is regarded as part of the seepage
phenomenon, particularly in the case where the head of

∣∣∣P1P2
∣∣∣ is 1.00 and that of

∣∣∣P3P4
∣∣∣ is 0.00 in

the confined seepage problem of domain P1P2P3P4; accordingly, no contradiction occurs. Therefore,
its theoretical solution is qt = 1/Rb = 0.500. Equation (A2), which is the discharge expression in the
Schaffernak–Van Iterson method, would also be effective in this case. Then, this equation becomes
qSV = a sinα tanα = a/a tanα = 1/Rb = 0.500 (0.0%), which agrees with the theoretical solution.
Even in L. Casagrande’s method, Equation (A12) would be an effective definition of the discharge;
accordingly, qLC = a sin2 α = sinα = 0.447(−10.6%). Each method represents a one-dimensional
approximation of the seepage phenomenon. The physically reasonable equation in the extreme state of
Figure 6 is evidently the former expression. When Rb →∞ , qLC → qSV(sinα→ tanα) , and, generally,
qLC < qSV holds true.

Figures 7 and 8 show the results when α = 30◦ and α = 60◦, respectively. In the figures, the values
of Ru ≡

∣∣∣P∗1P∗4
∣∣∣, referred to as up-side aspect ratio, are shown. In the process of Ru → 0 , it has been

confirmed that the discharges and discharge points from numerical calculation and empirical methods
(Schaffernak–Van Iterson and L. Casagrande methods) change rapidly.

Figure 9 shows the other extreme pattern. The discharge point calculated by the Schaffernak–Van
Iterson method coincides with P∗3. The free surface distinctly deviates from the numerically calculated
free surface FS(n). Nevertheless, its discharge, qSV = 0.250(0.0%), agrees with the theoretical solution,
qt = 0.250 (Appendix A). In this method, qSV is equal to the theoretical solution at both extreme
states of Figures 6 and 9. Even when the free surface is not correct, if a strict discharge is defined in
this method, then a proper result can be obtained by the discharge-equivalent KZ flow, KZ3(C, qSV).
However, in the range αmin � α� 90◦, such a result is not guaranteed. In L. Casagrande’s method
in Figure 9, qLC = 0.222(−11.4%) and the discharge point separate upward. In general, when paying
attention to the free surface, the accuracy is superior to that of the Schaffernak–Van Iterson method,
but the discharge error always occurs depending on Rb and α (almost the same relative error when
α = αmin). A. Casagrande (1937) [18] recommends L. Casagrande’s method as an alternative method
when his basic parabola method cannot be used. However, it cannot be used from a strict viewpoint.
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Tables 1 and 2 summarize the results of the above empirical methods. From the viewpoint of 
error-within-a-few-percent estimation, none of the empirical methods shown here can be adopted. 
Therefore, we must establish some new empirical rules. 

Table 1. Discharge calculated from empirical methods, 𝜃 = 90, 𝑅 = 2.0. 

(A) (B) Discharge (C) R.E. (%) 𝛼() 𝑅  𝑞  𝑞  𝑞  𝑞  𝑞  𝑞  𝑞  

26.6 0.000 0.500  0.500 0.447 *** 0.0 -10.6 
30 0.268 0.350 0.236 0.333 0.308 -32.4 -4.5 -11.9 
60 1.423 0.259 0.236 0.255 0.234 -8.8 -1.3 -9.7 
90 2.000 0.250 0.236 0.250 0.222 -5.7 0.0 -11.5 
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Figure 9. Empirical methods, rectangular dam.

Tables 1 and 2 summarize the results of the above empirical methods. From the viewpoint of
error-within-a-few-percent estimation, none of the empirical methods shown here can be adopted.
Therefore, we must establish some new empirical rules.

Table 1. Discharge calculated from empirical methods, θ = 90◦, Rb = 2.0.

(A) (B) Discharge (C) R.E. (%)

α(◦) Ru qn qCa qSV qLC qCa qSV qLC
26.6 0.000 0.500 0.500 0.447 *** 0.0 −10.6
30 0.268 0.350 0.236 0.333 0.308 −32.4 −4.5 −11.9
60 1.423 0.259 0.236 0.255 0.234 −8.8 −1.3 −9.7
90 2.000 0.250 0.236 0.250 0.222 −5.7 0.0 −11.5

*** A. Casagrande’s method applicable range: 30◦ ≤ α ≤ 180◦.

Table 2. yB -value calculated from empirical methods, θ = 90◦, Rb = 2.0.

(A) (B) yB-Value (C) R.E. (%)

α(◦) Ru yBn yBCa yBSV yBLC yBCa yBSV yBLC
26.6 0.000 1.000 *** 1.000 1.000 *** 0.0 0.0
30 0.268 0.781 0.562 0.578 0.615 −21.8 −20.3 −16.6
60 1.423 0.300 0.281 0.148 0.270 −1.9 −15.2 −3.0
90 2.000 0.173 0.176 0.000 0.222 0.2 −17.4 4.8

*** A. Casagrande’s method applicable range: 30◦ ≤ α ≤ 180◦.

5. Interpolation-Equivalent KZ Flow

5.1. Creating Basic Tables

Figure 10 shows the calculation examples of Rb = 1.00. In Figure 10a, whenα = 60◦,
∣∣∣ACn

∣∣∣ = 0.136.
The starting point of the parabola defined by the basic parabola of the basic KZ flow is expressed as∣∣∣AC

∣∣∣ = 0.135 (using Equation (16a)), which is almost equal to
∣∣∣ACn

∣∣∣. In Figure 10b, when α = 120◦,∣∣∣ACn
∣∣∣ = 0.154; moreover, it is confirmed that the location of Cn changes depending on α. On the other

hand, by definition,
∣∣∣AC

∣∣∣ is a quantity unique to the value of Rb under a fixed value of θ, so it is the
same as in Figure 10a. In Figure 10a, the modification method of FSP(n) is the same as that in Figure 4b.
The only difference is that the modified value becomes negative.
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Using the system adopted in Figure 10, Rb and α are systematically changed to develop the tables
for qn, yBn, and Cn. The results are listed in Tables 3–5. Figure 11a–c show the range of Rb ≤ 3.50 listed
in the Tables. In Figure 11a,b, the theoretical values in the case of α = αmin are also shown. In Figure 11c,
each value of Rb −

∣∣∣AC
∣∣∣ is shown by a red solid line. When Rb = 1.00 and α ≥ 60◦, it is found that

Rb −
∣∣∣AC

∣∣∣ � Rb −
∣∣∣ACn

∣∣∣. When Rb ≥1.25, this practically holds true regardless of α. In Figure 11c, it is
noted that if

∣∣∣ACn
∣∣∣ is adopted instead of −

∣∣∣ACn
∣∣∣, the above simple relationship is not found. Parts of

the parenthesized value (#. ###) listed in Tables 3–5 are those that cannot be numerically calculated
under the fixed value of ∆x = ∆y = 0.05 (relatively it is too large, namely, the calculation element
(near-wall element) cannot be defined on the right side of point O, and calculation becomes impossible).
Usually, these values may be unnecessary; however, they can be estimated from the values at α = 90◦.
In Tables 3 and 5, each value would be regarded as the value at α = 90◦. On the other hand, in Table 4,
each value (#. ###) is linearly decreasing from the value at α = 90◦ to 0 at α = 180◦ (Figure 11b).
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Table 3. Basic table, Discharge qn depending on Rb and α.

Rb αmin qmax 20 30 40 50 60 70 80 90 120 150 180

0.50 63.4 2.000 1.367 1.115 1.000 0.872 0.822 0.797
0.75 53.1 1.333 0.920 0.768 0.703 0.668 0.620 0.599 0.580
1.00 45.0 1.000 0.722 0.588 0.540 0.515 0.500 0.480 0.468 0.455
1.25 38.7 0.800 0.487 0.441 0.420 0.408 0.401 0.389 0.383 0.375
1.50 33.7 0.667 0.441 0.378 0.356 0.344 0.338 0.334 0.327 0.323 0.320
2.00 26.6 0.500 0.350 0.284 0.267 0.259 0.255 0.252 0.250 0.248 0.246 0.244
2.50 21.8 0.400 0.237 0.216 0.208 0.206 0.202 0.201 0.200 0.198 0.197 0.197
3.00 18.4 0.333 0.245 0.185 0.175 0.171 0.169 0.168 0.167 0.167 0.166 0.165 0.165
3.50 15.9 0.286 0.179 0.154 0.148 0.146 0.145 0.144 0.143 0.143 0.142 0.142 0.142
4.00 14.0 0.250 0.146 0.132 0.128 0.127 0.126 0.126 0.125 0.125 (0.125) (0.125) (0.125)
4.50 12.5 0.222 0.125 0.116 0.114 0.113 0.112 0.112 0.112 0.111 (0.111) (0.111) (0.111)

Table 4. Basic table, Discharge point yBn depending on Rb and α.

Rb αmin yBmax 20 30 40 50 60 70 80 90 120 150 180

0.50 63.4 1.000 0.885 0.752 0.624 0.402 0.204 0.000
0.75 53.1 1.000 0.855 0.683 0.563 0.472 0.291 0.148 0.000
1.00 45.0 1.000 0.866 0.654 0.523 0.441 0.351 0.237 0.113 0.000
1.25 38.7 1.000 0.665 0.508 0.414 0.337 0.278 0.188 0.091 0.000
1.50 33.7 1.000 0.745 0.531 0.415 0.337 0.277 0.228 0.153 0.079 0.000
2.00 26.6 1.000 0.781 0.495 0.378 0.300 0.253 0.212 0.174 0.118 0.057 0.000
2.50 21.8 1.000 0.540 0.379 0.293 0.238 0.197 0.166 0.132 0.091 0.047 0.000
3.00 18.4 1.000 0.800 0.429 0.306 0.240 0.198 0.169 0.135 0.114 0.079 0.041 0.000
3.50 15.9 1.000 0.614 0.352 0.257 0.204 0.170 0.139 0.114 0.088 0.068 0.037 0.000
4.00 14.0 1.000 0.479 0.307 0.226 0.184 0.153 0.128 0.099 0.082 (0.055) (0.027) (0.000)
4.50 12.5 1.000 0.414 0.277 0.201 0.162 0.142 0.115 0.089 0.066 (0.044) (0.022) (0.000)

Table 5. Basic table, starting point of FSP(n) Cn depending on Rb and α, shown in the value Rb −
∣∣∣ACn

∣∣∣.
Rb αmin Rb−|AC| 20 30 40 50 60 70 80 90 120 150 180

0.50 63.4 0.298 0.402 0.327 0.306 0.253 0.229 0.209
0.75 53.1 0.587 0.640 0.596 0.585 0.582 0.569 0.560 0.576
1.00 45.0 0.865 0.900 0.864 0.863 0.860 0.869 0.846 0.861 0.880
1.25 38.7 1.135 1.130 1.135 1.137 1.146 1.151 1.130 1.139 1.148
1.50 33.7 1.401 1.393 1.396 1.400 1.409 1.414 1.419 1.406 1.403 1.399
2.00 26.6 1.923 1.910 1.920 1.925 1.931 1.929 1.931 1.936 1.923 1.928 1.919
2.50 21.8 2.437 2.431 2.437 2.442 2.444 2.446 2.444 2.453 2.451 2.451 2.453
3.00 18.4 2.947 2.932 2.942 2.950 2.952 2.950 2.947 2.959 2.954 2.932 2.959 2.952
3.50 15.9 3.454 3.430 3.454 3.458 3.458 3.457 3.456 3.460 3.466 3.451 3.447 3.443
4.00 14.0 3.960 3.930 3.959 3.961 3.960 3.959 3.960 3.969 3.967 (3.967) (3.967) (3.967)
4.50 12.5 4.464 4.435 4.458 4.464 4.461 4.454 4.454 4.454 4.472 (4.472) (4.472) (4.472)

There is a slight discrepancy between FS(n) and modified FS(n). As previously described,
Equation (18) is identified by the rectangular dam and is calculated as L∗h = 0.42 · · · . If L∗h = 0.20
is specified in Equation (17) as an individual value in this case, both of them visually match.
However, in this paper, we consider this degree of deviation as an acceptable deviation.
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Figure 11. (a) Discharge qn depending on Rb and α. (b) Discharge point yBn depending on Rb and α.
(c) Starting point of FSP depending on Rb and α, red line: Rb −

∣∣∣AC
∣∣∣.

From the information listed in Tables 3–5, the discharge, discharge point, and starting point of the
FSP corresponding to any two conditions, Rb and α, can be estimated using interpolation methods.
There are several two-dimensional mathematical interpolation methods—the bilinear and bicubic
interpolation methods (Web-Interpolation, 2017) may be fundamental. The details are described
in Appendix C. In the interpolation in Tables 3–5, the bicubic interpolation method is used as a
whole; however, in the range of 90◦ < α < 180◦, the bilinear interpolation method would give
sufficient accuracy.

By interpolation, three estimation values are obtained: discharge, qe, y-coordinate value of
discharge point, yBe, and starting point, Ce. The discharge point, Be, is defined from yBe and its
discharge angle α. The following five methods are conceivable as the interpolation-equivalent KZ
flow methods. Under using point C, (i) KZI(C, Be), (ii) KZI(C, qe) are thought. Estimation values
are qe, yBe, and Ce, then the three kinds of KZ flow can be obtained: (iii) KZI(qe, Be), (iv) KZI(Ce, Be),
and (v) KZI(Ce, qe). In the interpolation values, the value yBe is a key factor; therefore, in the above
combinations, it is conceivable to use (i), (iii), and (iv). Here, we will confirm the results of (i) KZI(C, Be)

and (iii) KZI(qe, Be) directly for a brief description.
Figure 12a shows the results of KZn(qn, Bn) when Rb = 1.125 and α = 65◦. As for KZI(qe, Be) and

KZI(C, Be), only the calculated results are shown in the inset table of the figure to avoid the complexity
of the illustration; they are within an error of 1%. Figure 12b shows the results of KZn(qn, Bn) when
Rb = 1.125 and α = 135◦. The numerical results of KZI(qe, Be) are within an error of 1%, but in the
calculation of KZI(C, Be), the calculated discharge is q∗e = 0.422(−1.5%). In the range Rb ≥ 1.00, all the
calculations of KZE(C, Be) almost become the error-within-a-few-percent estimation. This is because
in the range, point C practically almost agrees with point Cn (see Figure 11c). On the other hand, in the
range Rb ≤ 1.00 KZI estimation accuracy becomes poor. The examples of Figure 13 with Rb = 0.625
show this fact. In Figure 13a, α = 75◦ and so Ru

(
≡

∣∣∣AG
∣∣∣) = 0.357. When Rb is small and as Ru → 0 ,

both discharge and discharge point change rapidly. Therefore, the accuracy of interpolation estimation
deteriorates. Figure 13b is the example of α = 135◦. The result of KZI(qe, Be) shows good accuracy.
However, the calculated value of the discharge of KZI(C, Be) is q∗e = 0.673(−6.1%). In conclusion,
in order to secure the accuracy in the case of Rb ≤ 1.00, it is necessary to set the calculation points
densely; such examples are described later.
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5.2. Application Examples of Basic Tables to General Dams

Here, a usual trapezoidal dam without a drain is considered. Figure 14a shows the numeric-equivalent
KZ flow, KZn(qn, Bn). The method of setting the equivalent vertical face, CeC′e, is explained in Figure 5c.
It is assumed that the trapezoidal cross section, CEC′EP∗3G, yields the same discharge and discharge point.
However, the vertical face has to be estimated without using the numeric-equivalent KZ flow. This is
expressed by using the interpolation-equivalent KZ flow, KZI(C, Be). To obtain yBe by the functional
definition, Equation (20), it is necessary to create a three-dimensional table with the parameters θ, Rb,
and α; however, this is not a promising idea because it requires many calculation points. Let yBe be
estimated by a two-dimensional interpolation using Table 4. For this purpose, a trapezoidal cross section
with a vertical entrance face corresponding to this seepage phenomenon has to be found.

In Figure 14b, first, point C of the basic parabola is located. Thereafter, BPP(b)(≈ BPP(e)) and the
position of Gb(≈ Ge) are determined, and the corresponding equivalent vertical face, CEC′E, is defined

(see Figure 5c). According to this definition, the equivalent aspect ratio becomes RE =
∣∣∣∣C′EP∗3

∣∣∣∣/H = 2.738.
With Rb = RE, yBe is determined by finding yBe/H by two-dimensional interpolation from the list in Table 4;
FSP(e) is determined from KZI(C, Be). The numerical calculation result is qn = 1.71± 0.01 and yBn = 3.50,
and KZI(C, Be) yields q∗e = 1.71(−0.01%) and yBe = 3.58(0.9%). The asterisk of q∗e means that the value is
calculated from KZI(C, Be), not directly the interpolated value. The discharge of the cross section, CEC′EP∗3G,
is interpolated as qE = 1.72(0.5%). In this example, under the definition of P∗3(45.00, 0.00)(α = 20.3◦),
it yields qn = 1.18± 0.01, yBn = 3.82, and q∗e = 1.18(−0.1%), yBe = 3.79(−0.3%); these results have
sufficient accuracy.
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Figure 15 shows an example of another interpolation-equivalent KZ flow, KZI(𝐶, 𝐵𝑒), which 

corresponds to Figure 5. A precise conclusion, 𝑞𝑒
∗ = 2.01(0.4%) and 𝑦𝐵𝑒 = 2.82(−0.1%), is obtained. 

Many other cases were examined for KZI(𝐶, 𝐵𝑒). Concerning the discharge angle, the applicable range 
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Figure 14. Trapezoidal dam, difference width, ∆x = ∆y = 0.50, (a) numeric-equivalent KZ flow,
(b) interpolation-equivalent KZ flow, qE = 1.72(0.5%) in Figure 14b.

Figure 15 shows an example of another interpolation-equivalent KZ flow, KZI(C, Be),
which corresponds to Figure 5. A precise conclusion, q∗e = 2.01(0.4%) and yBe = 2.82(−0.1%), is obtained.
Many other cases were examined for KZI(C, Be). Concerning the discharge angle, the applicable
range is 20◦ ≤ α < 180◦, and regarding the entrance angle, the applicable range is 20◦ ≤ θ ≤ 90◦.
However, the equivalent aspect ratio, RE, must be smaller than 4.5 (Tables 3–5).
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By the above formulation, it seems that the target of error-within-a-few-percent estimation has
practically been reached. However, the combination of θ and α where Rb and Ru (Rb ≥ Ru) are
exceedingly small must be eliminated.

5.3. Special Cases When the Basic Table Cannot Be Used

When the up-side aspect ratio, Ru, is small in the trapezoidal dam with a vertical entrance face,
the calculation accuracy is poor, as shown in Figure 13a. To improve this, a table for qn and yBn is
developed by systematically changing Ru and Rb; the results are listed in Tables 6 and 7. Because the
defined interval is small, bilinear interpolation can be used (Appendix C). The tables are utilized
for analyzing the case of Rb ≥ Ru; however, for the continuous analysis with Ru ≥ 0.20, the values
in parentheses (Rb < Ru) are also prepared by numerical calculation. Figure 16 shows a calculation
example. In the defined region of the tables, KZI(qe, Be) ensures that the error-within-one-percent
estimation is achieved.

Table 6. Trapezoidal dam with θ = 90◦, and small value of Ru, discharge qn depending on Ru and Rb.

Ru↓,Rb→ 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.20 2.500 1.871 1.501 1.255 1.078 0.945 0.842 0.759 0.691
0.30 (2.201) 1.667 1.350 1.136 0.981 0.862 0.770 0.696 0.634
0.40 *** (1.539) 1.250 1.055 0.914 0.806 0.721 0.652 0.595
0.50 *** *** (1.183) 1.000 0.867 0.766 0.686 0.621 0.567

Table 7. Trapezoidal dam with θ = 90◦, and small value of Ru, discharge point yBn depending on Ru

and Rb.

Ru↓,Rb→ 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.20 0.850 0.849 0.841 0.838 0.833 0.832 0.832 0.831 0.831
0.30 (0.798) 0.774 0.764 0.759 0.754 0.752 0.748 0.747 0.743
0.40 *** (0.723) 0.694 0.682 0.679 0.676 0.674 0.672 0.670
0.50 *** *** (0.646) 0.624 0.622 0.611 0.612 0.608 0.602
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Figure 16. Calculation example of interpolation-equivalent KZ flow, trapezoidal dam with vertical
entrance face and small value of Ru.

Next, when focusing on and analyzing the center core part of an earth dam, dedicated tables are
also prepared. The cross section is bilaterally symmetric. The results are summarized in Tables 8 and 9.
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In this case, the down-side aspect ratio is defined as Rd ≡
∣∣∣P∗2P∗3

∣∣∣. The table is intended for analyzing
the result in the case of Rd ≥ Ru; however, for the continuous analysis with Ru ≥ 0.20, the values
in parentheses (Rd < Ru) are also prepared. Figure 17 shows a calculation example. The bilinear
interpolation is used as well. Using the defined region of the tables, KZI(qe, Be) almost ensures that
the error-within-one-percent estimation is achieved.

Table 8. Dam center core, discharge qn depending on Ru and Rd.

Ru↓,Rd→ 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40

0.20 2.500 1.886 1.526 1.287 1.115 0.986 0.885 0.803 0.737 0.632 0.557
0.30 (2.175) 1.667 1.367 1.163 1.013 0.901 0.812 0.740 0.681 0.589 0.522
0.40 *** (1.515) 1.250 1.071 0.938 0.837 0.757 0.692 0.639 0.555 0.493
0.50 *** *** (1.166) 1.000 0.882 0.788 0.715 0.654 0.605 0.527 0.469

Table 9. Dam center core, discharge point yBn depending on Ru and Rd.

Ru↓,Rd→ 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40

0.20 0.850 0.840 0.835 0.815 0.802 0.792 0.787 0.760 0.751 0.729 0.692
0.30 (0.777) 0.774 0.766 0.757 0.724 0.716 0.707 0.676 0.669 0.634 0.601
0.40 *** (0.706) 0.694 0.686 0.653 0.645 0.641 0.610 0.603 0.568 0.545
0.50 *** *** (0.666) 0.624 0.616 0.580 0.574 0.550 0.543 0.519 0.496
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There may be other particular cases to be investigated. For example, the problems pertaining to 
inclined dam cores and dams with an entrance angle of 𝜃 > 90 have not yet been considered. 
However, in these cases, it has been confirmed that the numeric-equivalent KZ flow, KZn (𝑞 , 𝐵 ), is 
effective as well. In such cases, if necessary, two-dimensional tables for obtaining the interpolation-
equivalent KZ flow could also be prepared. 
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There may be other particular cases to be investigated. For example, the problems pertaining
to inclined dam cores and dams with an entrance angle of θ > 90◦ have not yet been considered.
However, in these cases, it has been confirmed that the numeric-equivalent KZ flow, KZn (qn, Bn), is effective
as well. In such cases, if necessary, two-dimensional tables for obtaining the interpolation-equivalent KZ
flow could also be prepared.

5.4. Theoretical Consideration on the Seepage of Rectangular Dams

Finally, we will consider a rectangular dam where Rb = Ru. Figure 18a shows how yB of the
rectangular dam changes depending on Rb. The regression Equation (21) is as follows [5]:

yB = f (Rb) = 0.3136R2
b − 1.0055Rb + 1.0441 (21)
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The theoretical discharge is qt = H2/(2d) = 1/(2Rb) [19]. Let the discharge point defined by
Equation (21) be B f . Then, the equivalent KZ flow is defined by KZ f

(
qt, B f

)
. Figure 19a shows

that the result of the numerical calculation and the result of KZ f
(
qt, B f

)
agree with high accuracy.

Modified FS(f ) calculated from FSP(f ) by Equations (17) and (18) also almost agrees with the free
surface FS (n) obtained by numerical calculation.
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calculation, (b) numeric value of theoretical solution.
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Figure 19. Calculation example of the equivalent KZ flow, KZ f
(
qt, B f

)
, rectangular dam.

It is clear that Equation (21) is a quadratic equation and has an application limit. In the case
of Rb > 1.4, the calculation is conducted by using the interpolation-equivalent KZ flow, KZI(C, Be),
based on Table 4; however, there is a convenient method specifically used for rectangular dams.
Figure 20a shows the relationship between yB and q in the same data as that shown in Figure 18a. It is
certain that as Rb →∞ , (q, yB)→ (0, 0) . As Rb = 1.4, (q, yB) = (0.357, 0.249). The linear equation
passing through these two points is as follows.

yB = 0.6975q � 0.7q (22)

This seems to hold in the range 0.8 ≤ Rb. Now, q = qt = H2/(2d) = 1/(2Rb), therefore

yB = 0.7/(2Rb) (23)

This equation is shown in Figure 18a, (II). Although the ranges of Equations (21) and (23) overlap,
let us set the application range of Equation (21) as Rb < 1.0 and that of Equation (23) as Rb ≥ 1.0
for convenience.

Here, the condition that the seepage phenomenon in the vicinity of the discharge point becomes
independent of the shape of the entrance face is considered. As shown in Figure 4b, the theoretical
solution of the basic KZ flow, KZb(C, Ob), and that of the numerical calculation are different as a
whole; however, near the discharge point, the two are practically the same. This indicates that when
Rb is increased to some extent, the flow near the discharge point is independent of the shape of the
entrance face. This is an example of the case α = 180◦; nevertheless, the concept seems to hold for any
value of α. Let this concept be called “discharge-independent principle”. Figure 20a implies that the
above concept holds even at α = 90◦. Theoretically, it is presumed that Equation (23) is the asymptotic
line of the function yB = f (q) as Rb →∞(q→ 0) . It may be considered that a discharge point specific
to the discharge is defined in the range Rb ≥ 1.0.
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Figure 20. Relationship between discharge q and discharge point yB, q: theoretical solution, discharge
point yB: (a) numerical calculation, (b) numeric value of theoretical solution.

The accuracy of numerical calculation depends on the difference width. In this paper, as H = 1.00 is
designated, ∆x=∆y = 0.05 is used for all numerical calculations. As using ∆x = ∆y = 0.025, the result is
qn = 1.429(0.0%) + 0.004, and yBn = 0.742. There is almost no difference in the discharge compared to
the former, but the position of the discharge point is calculated slightly higher. The theoretical solution
for the free surface of a rectangular dam was derived by Polubarinova-Kochina [19]. In quantifying the
theoretical solution, a systematic iterative calculation is required, which was detailed in the previous
paper [4]. Figure 19b shows the comparison between the numerical solution and the theoretical solution.
It is observed that the agreement is almost good. It is thought that all of the results in Figure 18a will
be slightly different if ∆x = ∆y = 0.025 is used. Note that the theoretical solution only gives the free
surface, but it requires much more calculation time than the numerical calculation of IFDM.

Finally, let us consider the case of 90◦ < α < 180◦. Figure 21 shows the relationship between yB
and q depending on α: yB = fα(q) obtained from Tables 3 and 4. It is shown in the range 0.5 ≤ Rb ≤ 3.5.
We have already described the case of α = 90◦, here the line of Equation (22), yB = βq (β = 0.7), is also
shown. Corresponding to 90◦ < α < 180◦, it is thought to be 0.7 > β > 0. At α = 180◦, yB = 0,
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but at discharge point (xB, yB), xB = 0.5q, so the discharge point is uniquely determined, see Figure 1.
Now, suppose the following relationship holds.
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In order to confirm the numerical calculation accuracy, we will examine how the above discussion
regarding the rectangular dam changes when theoretical solutions are used for both q and yB. Figure 18a
is changed to Figure 18b. Figure 20a is changed to Figure 20b. There is no change in the theoretical
formation, but there is a 1–2% difference in the calculation of yB. In the numerical calculation,
the discharge calculation error remains within 1%, may be around 0.1%. However, the error of yB
changes depending on the calculation conditions, especially the difference width. Higher-accuracy
numerical calculation is possible if necessary, but it is considered that the numerical calculations
performed in this paper have sufficient accuracy from an engineering point of view.

β = 0.7(180◦ − α)/90◦ (24)

In Figure 21, the line yB = βq is shown regarding α = 120◦ and α = 150◦. Although there is
a slight discrepancy in numerical calculations, Equation (24) seems to be valid. This indicates that
under the conditions of 90◦ < α < 180◦ and Rb ≥ 1.0, the discharge point is uniquely determined
corresponding to q and α. In the range α < 90◦, it is easily confirmed that Equation (24) does not hold.
In such a case, the discharge independent principle still may hold. This is a problem to be solved in
the future.

5.5. Summary of This Section

This section details the new empirical method. In order to provide the benefits of applying
this method to the field, the whole picture is summarized in a compact manner. As expressed by
Equations (19) and (20), the shape determinant of the isotropic seepage phenomenon of earth dam is
(H,θ, Rb,α). However, by applying the similarity law of seepage phenomenon, it is reduced to (1,θ, Rb,α).
Furthermore, by replacing the dam of arbitrary shape with an equivalent vertical-entrance-face trapezoidal
dam, it is reduced to (1, 90◦, Rb,α). The basic process is as follows: (i) To replace a general dam with an
equivalent vertical-entrance-face trapezoidal dam, determine the starting point C of the basic parabola by
Equation (16), (ii) Furthermore, the position of the vertical entrance face is determined in consideration
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of Equation (13) (see Figures 14 and 15). Now we are ready to use Basic Table 4, (iii) The discharge point
Be is determined by Table 4 owing to applying the similarity law, then the empirical QF estimation is
completed by KZI(C, Be).

In order to execute the above calculation precisely, it is necessary to create a dedicated system.
However, a rougher approach would be acceptable to approximately know the discharge and the
discharge point. In this paper, the bicubic interpolation method is used in the interpolation of the basic
table, but the results are not so different even in the bilinear interpolation.

This empirical method using the basic Table 4 has a wide applicable range: Rb > 1.0, 20◦ ≤ α < 180◦,
and 20◦ ≤ θ ≤ 90◦. Regarding the three exceptional cases where sufficient accuracy is not ensured by the
above method, (i) vertical-entrance-face trapezoidal dam with small upper side, (ii) symmetrical dam
center core, and (iii) narrow rectangular dam, dedicated tables were created individually. By creating
Tables 6–9 and the insert table of Figure 18, the approximate values of discharge and discharge point
can be instantaneously grasped.

Interestingly, the actual soil material is generally anisotropic. In this case, the governing equation
of the seepage phenomenon is often expressed by the following equation.

kx
∂2h
∂x2 + ky

∂2h
∂y2 = 0

(
or
∂2h
∂x2 +

(
ky/kx

)∂2h
∂y2

)
(25)

kx is the permeability coefficient in the x direction and ky is the permeability coefficient in the y direction.
In this case, the flow net is created geometrically or by numerical calculation from the flow net created
assuming isotropy (Harr, 1991, p. 29 [20]). For this reason, the empirical method proposed in this
paper is also applied to such anisotropic seepage dams.

6. Conclusions and Discussion

In the previous paper [8], the concept of the equivalent KZ flow method was formulated. In this
study, this method is developed as a more accurate empirical method. The contents of this paper are
summarized as follows.

Conventionally, there were three empirical methods stipulated in the design standards regarding
the seepage of earth dam: (i) A. Casagrande’s method, (ii) the Schaffernak–Van Iterson method,
and (iii) L. Casagrande’s method. Theoretical consideration on the method (i) and the evaluation
of the error were shown in the previous paper. In this paper, the methods (ii) and (iii) are newly
considered and the characteristics of the calculation error are confirmed. The investigations revealed
that it is impossible to stably use these methods even if the permissible error is set to 10%. It is clear
that the conventional methods essentially need to be reviewed in order to reach the accuracy within a
few-percent error in a wide range.

For the natural development of the logic from the previous paper [5] to the present paper, the basic
conclusions of the concept of the equivalent KZ flow method presented in the previous paper were
briefly summarized. The area-equivalent KZ flow, KZ1(C, Ae), is an important method reached in
the previous paper. This method powerfully rebuts the basic parabola method of A. Casagrande.
This method obtains good results in the range of 90◦ ≤ α ≤ 180◦, but in the range of α < 90◦,
there is a drawback that the accuracy becomes worse as α becomes smaller. In order to overcome this
difficulty, the concept of the numeric-equivalent KZ flow, KZn(qn, Bn), is important among the several
equivalent KZ flows proposed in the previous paper. By using this KZ flow, the free surface shape that
fits the numerical calculation can be calculated almost accurately in any shape of trapezoidal dam.
A. Casagrande’s method estimates the discharge and discharge point, but no method for accurately
estimating the free surface has been proposed. This is defined as empirical QB estimation. On the other
hand, in the numeric-equivalent KZ flow, the free surface itself can be estimated by modifying the
corresponding free surface parabola FSP(n) using a modification equation. This is defined as empirical
QF estimation. All of the equivalent KZ flow methods in this paper give the empirical QF estimation.
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A set of the determinant factors of the seepage of a trapezoidal dam is (H,θ, Rb,α), but it became
clear that only the case of H = 1.00 should be considered due to the similarity law of seepage.
Therefore, in order to determine the values of q and yB by interpolation method, it is sufficient to
create a three-dimensional “Table” of (θ, Rb,α). It is possible in principle but inconvenient. In this
paper, a two-dimensional table is created by fixing θ = 90◦. As long as θ = 90◦, the interpolation
is completed, and if the estimated values are qe and yBe, the corresponding interpolation-equivalent
KZ flow, KZI(qe, Be), is obtained. However, in the case of θ < 90◦, an empirical method must be
devised separately. A. Casagrande proposed a method to determine the starting point of the basic
parabola Ca. The starting point changes depending on all the factors of θ, Rb, and α, but he defines
the basic parabola drawn when α = 180◦ and even if α changed, he considered the starting point
immutable. The author basically adopted his hypothesis (in this sense, the author’s idea is basically
dependent on A. Casagrande’s method) but with a more rational method for determining the starting
point C of the basic parabola.

For the trapezoidal dam with vertical entrance face, in the range Rb ≥ 1.00, the starting point
C can be applied as a fixed value that does not depend on α (detailed Table 5, Figure 11c). This is
extended to a usual homogeneous dam, and highly accurate discharge and free surface are calculated
(Figures 14 and 15). That is, an equivalent trapezoidal dam with vertical entrance face, which is almost
equivalent to the discharge and the discharge point of the dam itself, is defined, and the discharge point
yBe is estimated from Table 4 based on the similarity law. Finally, interpolation-equivalent KZ flow,
KZI(C, Be), calculates the discharge and free surface. It has been confirmed that KZI(C, Be) almost
has an error-within-one-percent estimation in a wide range of 20◦ ≤ θ ≤ 90◦ and 20◦ ≤ α ≤ 180◦.

Even in the case of the trapezoidal dam with vertical entrance face, if Ru ≤ Rb < 1.00 and as
Ru → 0 , sufficient accuracy cannot be expected in both KZI(qe, Be) and KZI(C, Be). In this case,
a special method needs to be adopted. In general, the three parameters qn, Bn, and Cn rapidly change
in the process such that the up-side aspect ratio of the trapezoidal dam becomes Ru → 0; therefore,
it is necessary to consider focusing on Ru. The following two patterns are investigated:

(i) For a trapezoidal dam with a vertical entrance face, the equivalent KZ flow is KZI(qe, Be);
the applicable ranges are Ru ≤ Rb, 0.20 ≤ Ru ≤ 0.50, and 0.20 ≤ Rb ≤ 1.00.

(ii) For the symmetrical dam center core, the equivalent KZ flow is KZI(qe, Be); the applicable ranges
are Ru ≤ Rd, 0.20 ≤ Ru ≤ 0.50, and 0.20 ≤ Rd ≤ 1.40.

With the above formulations, the calculation which is practically necessary can be almost covered.
In addition to this, it is necessary to consider separately the cases of inclined core or θ > 90◦,

but KZn(qn, Bn) is also effective in such cases. If the corresponding two-dimensional table is created,
it will be possible to perform highly accurate calculation by the same method as that in (1) and (2) above.

Finally, we examined the case of Ru = Rb, that is, a rectangular dam. This is already included as a
special case in (i) and (ii), but there is a problem to be considered independently. For a rectangular
dam, the equivalent KZ flow is KZ f

(
qt, B f

)
; the applicable range is 0.2 ≤ Rb ≤ 1.4; however, it is finally

extended to 0.2 ≤ Rb →∞ according to the concept of “discharge-independent principle”. That is,
when the basic aspect ratio, Rb, increases to some extent, the discharge phenomenon in the vicinity
of the discharge point becomes a phenomenon peculiar to the discharge amount itself, and has no
relationship with the shape of the entrance face. This concept is extended to the case of arbitrary α.
By measuring yB, the discharge may be determined by q = (kc)βyB, in which β depends on α.

The accuracy of the numerical calculation used in this paper was confirmed in the previous paper.
The theoretical solution for generally obtaining the discharge and discharge point of a trapezoidal
dam with vertical entrance face is in the literature [19]), but it is exceedingly difficult. Lo (1971) [9]
numerically evaluated them (discharge and discharge point) and showed this graphically. Based on his
graphs, the author confirmed several cases of seepage and it was judged that they were in agreement
with the author’s numerical calculation results within some error, but there was a reading error and it
could not withstand rigorous evaluation. In relation to this, the graphic display that enables various
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estimations was valuable in an era when the calculation method was insufficient, and it was also useful
for intuitively grasping the whole image. However, now, it is considered that the numeric information
that makes a pair with such a graph is essential, because the computer can instantly perform calculation
processing using an interpolation method.

In this paper, the validity of the numerical calculation in the correspondence with the theoretical
solution is directly confirmed only for the KZ flow and the rectangular dam flow. Regarding the latter,
the numerical calculation result and the theoretical solution agree with the discharge, but there may be
an error of about 1–2% in the discharge point. From the viewpoint of the goal of this paper, within a
few percent of error, it was judged that there is no problem.

Now, let us point out the following. In the calculation of the free surface, there is considerable
freedom in setting the initial surface, but many iterative calculations are required until it converges.
If the high-accuracy initial surface is set, the calculation is completed by repeating the calculation
several times. Theories evolve in stages, from simple to complex, from special to general. As pointed
out in Section 5.5, soil materials generally exhibit anisotropy. The general governing equation for
anisotropic seepage problems including the case of treating full permeability tensor has already been
established (ex. Lei et al. 2015 [21]), and numerical calculation by IFDM-BPIM is possible. Furthermore,
a discontinuous line (or plane) of the soil material is formed in the calculation domain. A general
numerical calculation system in this case will be built based on the findings confirmed in the previous
two papers [4,5] and this paper.
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Abbreviations

APIM Algebraic Polynomial Interpolation Method
BPP boundary potential parabola
BPIM Boundary Polynomial Interpolation Method
VFDM Finite Difference Method
FS Free Surface
FSP Free Surface Parabola
IFDM Interpolation Finite Difference Method
PDE Partial differential Equation
FDE Finite Differential Equation
SOR Successive Over Relaxation
FTCS scheme Forward Time, lefted Space scheme
TMSD scheme Time Marching Successive Displacement scheme
Nomenclature
Ade deficit area
Ae equivalent area (= AK −Ade)

AK KZ flow area
d distance defined in Figure 1
H front water level, entrance face head
h total head (position head, y + pressure head, p)
KZ0(A, O) basic expression of KZ flow
KZ1(C, Ae) area-equivalent KZ flow
KZ2(C, Bn) discharge-point-equivalent KZ flow
KZ3(C, qt) discharge-equivalent KZ flow
KZb(C, O) basic KZ flow
KZc(A, O) criteria KZ flow
KZ flow Kozeny flow
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KZI(C1, C2) interpolation-equivalent KZ flow determined by conditions C1 and C2
KZn(qn, Bn) numeric-equivalent KZ flow
Rb basic aspect ratio = H/d
Rd down-side aspect ratio
RE equivalent aspect ratio
Ru up-side aspect ratio
Lc point C determination criteria length
L∗h dimensionless half-decrease distance
lwi, j wall-distance factor
mv point C determination factor
pk Boundary point used in numerical calculation
P∗k dam configuration point
point A entrance point
point Ac point C determination criteria point
point B discharge point
point Bn discharge point defined by numerical calculation
Point Bb discharge point of basic KZ flow, KZb(C, O)

point Be discharge point estimated by interpolation
point C starting point of the basic parabola
point Ca starting point of the basic parabola after A. Casagrande
point Ce starting point estimated by interpolation
point Cn starting point defined by numeric-equivalent KZ flow
point O origin of KZ coordinate system
q discharge
qb discharge of basic KZ flow, KZb(C, O)

qCa discharge calculated from A. Casagrande method
qE discharge of equivalent trapezoidal dam with vertical entrance face
qe discharge estimated by interpolation
q∗e discharge calculated from KZI(C, Be)

qLC discharge calculated from L. Casagrande method
qn numerically calculated discharge
qSV discharge calculated from Schaffernak–Van Iterson method
qt theoretical discharge
s stream function
yB y-coordinate value of point B
yBn y-coordinate value of point Bn

yBe y-coordinate value of point Be

Rb basic aspect ratio=H/d
RE equivalent aspect ratio
α discharge angle
αb acceleration factor of the TMSD scheme
αbmax theoretical maximum acceleration factor of the TMSD scheme (=2.00)
αbopt optimum acceleration factor
∆t time difference width
∆tc criteria time difference
∆x x-direction difference width
∆y y-direction difference width
θ entrance angle
θc criteria entrance angle
ϕi, j time-interval adjustment factor
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Appendix A. The Schaffernak–Van Iterson Method

Based on Dupuit’s assumption (Harr, 1991, pp. 40–61) [20], the discharge is given by the following equation
(see Figure A1):

q = kcy
dy
dx

(A1)

In Equation (A1), the permeability coefficient kc = 1 is used for brevity of expression and without loss of generality.
At point B(xB, yB) = B(a cosα, a sinα), the tangent line gradient is dy/dx = tanα. Therefore, the following relation
holds:

q = a sinα tanα (A2)

If Dupuit’s assumption is applied within the range [xB, d], only the above expression ensures the continuity of the
discharge at point B. The solution of Equation (A1) is as follows:

qx =
y2

2
+ g (A3)

At point A(xA, yA) = A(d, H), the following relationship holds:

qd =
H2

2
+ g (A4)

At point B, the following relationship holds:

qa cosα =
a sin2 α

2
+ g (A5)

From Equations (A2), (A4), and (A5), the following conclusion is obtained:

a =
d

cosα
−

√
d2

cos2 α
−

H2

sin2 α
(A6)

The location of the free surface is calculated numerically; however, under the condition that the curve
passes through points A(xA, yA) and B(xB, yB), the following theoretical solution, which appears in the process
of deriving Equation (A6), can be obtained:

x =
1

2a tanα sinα
y2 + d−

1
2a tanα sinα

H2 (A7)

The condition dy/dx = tanα at point B is only a necessary condition when using this method; it is not related
to the physical validity. From the perspective of the solution of the Laplace equation, ∇2h = 0 does not apply;
specifically, dy/dx , tanα at point B. Assume that points P1(x1, y1), P2(x2, y2), (x1 > x2) are represented by
Equation (A7). Accordingly, the following relationship is obtained:

x1 − x2(≡ L, x1 > x2) =
y1

2
− y2

2

2a tanα sinα
→ q(= a tanα sinα) =

y1
2
− y2

2

2L
(A8)

This is a general conclusion obtained when Dupuit’s assumption is adopted (Polubarinova-Kochina, 1962,
p. 408) [19]. When α = 90◦, Equation (A6) is indeterminate. Using Equations (A2) and (A6), the following
expression is obtained:

q = tan2 αd− tan2 αd

√
1−

1
tan2 α

(H
d

)2
(A9)

As α→ 90 ◦, 1/ tan2 α→ 0 . Therefore, the following relationship holds:

q = tan2 αd− tan2 αd
(
1−

1
2 tan2 α

(H
d

)2)
=

H2

2d
(A10)

This is the discharge when α = 90◦. By applying a similar logic, it can be confirmed that if α→ 90◦ ,
then a→ 0 in Equation (A6). In other words, point B→ point O (Figure A1); the configuration of the free surface
essentially deviates from the real one (Figure 9). The discharge point, B, is a singular point, and its “velocity” is
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infinity, which seems to be an extremely strange conclusion. Nevertheless, the discharge completely agrees with
the theoretical one: qt = H2/(2d) (Polubarinova-Kochina, 1962, p. 282) [19].
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Appendix B. L. Casagrande’s Method

Referring to Figure A1, assume that the governing equation for solving the discharge and location of the free
surface is as follows:

q = y
dy
ds

(A11)

At point B, y = a sinα, dy/ds = sinα. Then the following relationship is obtained (Casagrande, 1937) [18]:

q = a sin2 α (A12)

The solution of Equation (A11) can be expressed as follows:

qs =
y2

2
+ g (A13)

At point A, Equation (A13) takes the following form:

qS0 =
H2

2
+ g (A14)

At point B, the relation given below holds:

qa =
a2 sin2 α

2
+ g (A15)

From Equations (A11), (A14), and (A15), the following conclusion is reached:

a = S0 −

√
S2

0 −
H2

sin2 α
(A16)

Initially, the value of S0 is not known. Let the initial value of S0 be defined as S01 =
√

d2 + H2.
From Equation (A16), calculate the value of a; that is, a1 corresponding to S01. Next, under the condition

S02 =

√
(d− xB)2 + (H − yB)2 + a1, obtain the value of a; namely, a2. After several iterations, the fixed values of

q, S0, and a are obtained. From Equations (A12), (A13), and (A15), the following relationship is obtained:

s =
y2

2a sin2 α
+

a
2

(A17)
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In this method, the continuity of the discharge must be retained at point B. In Equation (A17), because both
sides are differentiated with respect to x, dy/dx = tanα at point B. Although deriving the explicit function of
the free surface location is difficult, Equation (A17) can be numerically solved. Equation (A17) is expressed as
s = by2 + c. Define the points x0(= xB), x1, · · · , xi, · · · , xe(= d) at regular intervals; then for xi, the following
equation applies: √

(xi − x0)
2 + (yi − y0)

2 + a = byi
2 + c, x0 = a cosα, y0 = a sinα (A18)

where y0 = yB. Furthermore, the equation can be rewritten as follows:

(xi − x0)
2 + (yi − y0)

2 =
(
byi

2 + c− a
)2

(A19)

This is a fourth-order equation in yi; therefore, the value of yi in Equation (A18) or (A19) is numerically

solved. In Equation (A18), it is assumed that
∣∣∣P̂B

∣∣∣+ a �
√
(xi − x0)

2 + (yi − y0)
2 + a (Figure A1). This can be

alternatively expressed as follows:(√
(xi − xi−1)

2 + (yi − yi−1)
2 + si−1

)
= byi

2 + c (A20a)

si−1 =
i−1∑
n=1

√
(xn − xn−1)

2 + (yn − yn−1)
2 + a (A20b)

However, in this regard, si−1 = s0 = a at i = 1. This expression ensures a strict numerical solution. Several
iterations are required to solve Equation (A20a) to yield the final strict value of a calculated from Equation (A16);
however, the solution is practically the same as that of Equation (A18). In this paper, the calculation result of
Equation (A18) is presented.

Appendix C. Two-Dimensional Interpolation Methods

There are several two-dimensional (mathematical) interpolation methods. The author investigated some
types of methods; however, the bilinear and bicubic interpolation methods [22,23] may be fundamental techniques.

Figure A2 is an illustration in explaining each method. Let the location and value of P11 be expressed as
P11(α1, Rb1, V11), and accordingly define the other points. At point P0(α0, Rb0, V0), the value V0 is estimated.
The core of the problem is determining the type of interpolation surface that is to be set in the area P22P32P33P23.
Regardless of which interpolation method is adopted, a given value is given at each of the definition points and an
estimated value with less error is given near around each of the definition points. With reference to the example in
Figure A2b, the maximum error would occur near the center, point C, in the rectangular region.
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The bilinear interpolation method is the simplest method. In Figure A2, the value of V2 of P2(α0, Rb2, V2) is
determined linearly from the information of P22(α2, Rb2, V22) and P23(α3, Rb2, V23). The value of V3 is determined
in a similar way. Thereafter, the value of P0, V0 is determined linearly from the information of P2(α0, Rb2, V2) and
P3(α0, Rb2, V3). It has been confirmed that this method is equivalent to the following method. It is assumed that
the curved surface is expressed as V = a1 + a2x + a3y + a4xy where x ≡ α and y ≡ Rb. This equation is solved
based on the information pertaining to P22, P23, P32, and P33. If the local coordinate is adopted as x0 = 0 and
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y0 = 0, that is, P0(α0, Rb0, V0)→ P0(0, 0, V0) , the estimation value becomes a1. Consequently, the programing
becomes considerably easy.

In the case of the bicubic method, the value V1 of P1(α0, Rb1, V1) is determined from the cubic curve going
through P11, P12,P13, and P14; V2, V3, and V4 are calculated in the same way. Then, V0 is determined from the
cubic curve passing through P1, P2, P3, and P4. If P11 is an undefined point, then the calculation range shifts right
and down. There are three other corner points: P14, P41, and P44. The calculation range must be adjusted so that
all the corner points become the definition points; this means that all surrounding points become definition points.

In the above two types of interpolation methods, (i) the bilinear interpolation method is effective when the
definition points are densely set; its algorithm is the simplest, (ii) the bicubic interpolations gives significantly
higher orders of accuracy. In the interpolation of Tables 3–5, (ii) the bicubic interpolation method is used.
In Tables 6–9, because the definition points are densely set, (i) the bilinear interpolation method is used.
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