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Abstract: Finding the roots of non-linear and transcendental equations is an important problem in en-
gineering sciences. In general, such problems do not have an analytic solution; the researchers resort
to numerical techniques for exploring. We design and implement a three-way hybrid algorithm that is
a blend of the Newton–Raphson algorithm and a two-way blended algorithm (blend of two methods,
Bisection and False Position). The hybrid algorithm is a new single pass iterative approach. The
method takes advantage of the best in three algorithms in each iteration to estimate an approximate
value closer to the root. We show that the new algorithm outperforms the Bisection, Regula Falsi,
Newton–Raphson, quadrature based, undetermined coefficients based, and decomposition-based
algorithms. The new hybrid root finding algorithm is guaranteed to converge. The experimental
results and empirical evidence show that the complexity of the hybrid algorithm is far less than that
of other algorithms. Several functions cited in the literature are used as benchmarks to compare and
confirm the simplicity, efficiency, and performance of the proposed method.
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1. Introduction

The construction of numerical solutions for non-linear equations is essential in many
branches of science and engineering. Most of the time, non-linear problems do not have
analytic solutions; the researchers resort to numerical methods. New efficient methods
for solving nonlinear equations are evolving frequently, and are ubiquitously explored
and exploited in applications. Their purpose is to improve the existing methods, such
as classical Bisection, False Position, Newton–Raphson, and their variant methods for
efficiency, simplicity, and approximation reliability in the solution.

There are various ways to approach a problem; some methods are based on only
continuous functions while others take advantage of the differentiability of functions. The
algorithms such as Bisection using midpoint, False Position using secant line intersection,
and Newton–Raphson using tangent line intersection are ubiquitous. There are improve-
ments of these algorithms for speedup; more elegant and efficient implementations are
emerging. The variations of continuity-based Bisection and False Position methods are
due to Dekker [1,2], Brent [3], Press [4], and several variants of False Position including
the reverse quadratic interpolation (RQI) method. The variations of derivative based
quadratic order Newton–Raphson method are 3rd, 4th, 5th, 6th order methods. From
these algorithms, the researcher has to find a suitable algorithm that works best for every
function [5,6]. For example, the bisection method for a simple equation x − 2 = 0, on
interval [0, 4], will get the solution in one iteration. However, if the same algorithm is used
on a different, smaller interval [0, 3], iterations will go on forever to get to 2; it will need
some tolerance on error or on the number of iterations to terminate the algorithm.

For derivative based methods, several predictor–corrector solutions have been pro-
posed for extending the Newton–Raphson method with the support of Midpoint (mean
of endpoints of domain interval), Trapezoidal (mean of the function values at the end-
point of the domain), Simpsons (quadratic approximation of the function) quadrature
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formula [7], undetermined coefficients [8], a third order Newton-type method to solve a
system of nonlinear equations [9], Newton’s method with accelerated convergence [10]
using trapezoidal quadrature, fourth order method of undetermined coefficients [11], one
derivative and two function evaluations [12], Newton’s Method using fifth order quadrature
formulas [13], using Midpoint, Trapezoidal, and Simpson quadrature sixth order rule [14].
Newton–Raphson and its variants use the derivative of the function; the derivative of
the function is computed from integrations using quadrature-based methods. The new
three-way hybrid algorithm presented here does not use any variations or quadrature or
method of undetermined coefficient, and still, it competes with all these algorithms.

For these reasons, a two-way blended algorithm was designed and implemented
that is a blend of the bisection algorithm and regula falsi algorithm. It does not take
advantage of the differentiability of the function [15]. Most of the time, the equations
involve differentiable functions. To take advantage of differentiability, we design a three-
way hybrid algorithm that is a hybrid of three algorithms: Bisection, False Position, and
Newton–Raphson. The hybrid algorithm is a new single pass iterative approach. The
method does not use predictor–corrector technique, but predicts a better estimate in each
iteration. The new algorithm is promising in outperforming the False Position algorithm
and the Newton–Raphson algorithm. Table 1 is a listing of all the methods used for test
cases. It is also confirmed [Tables 2–5] that it outperforms the quadrature based [7,13,14],
undetermined coefficients methods [8], and decomposition based [16] algorithms in terms
of number of function evaluations per iteration as well as overall number of iterations,
computational order of convergence (COC), and efficiency index (EFF). This hybrid root
finding algorithm performs fewer or at most that many iterations as these cited methods
or functions. The bisection and regula falsi algorithms require only continuity and no
derivatives. This algorithm is guaranteed to converge to a root. The hybrid algorithm
utilizes the best of the three techniques. The theoretical and empirical evidence shows that
the computational complexity of the hybrid algorithm is considerably less than that of
the classical algorithms. Several functions cited in the literature are used to confirm the
simplicity, efficiency, and performance of the proposed method. The resulting iteration
counts are compared with the existing iterative methods in Table 2.

Even though the classical methods have been developed and used for decades, en-
hancements are made to improve the performance of these methods. A method may
perform better than other methods on one dataset, and may produce inferior results on
another dataset. We have seen an example just above that different methods have their own
strengths/weaknesses. A dynamic new hybrid algorithm is presented here by taking ad-
vantage of the best in the Bisection, False Position, and Newton–Raphson methods to locate
the roots independent of Dekker, Brent, RQI, and 3rd–6th order methods. Its computational
efficiency is validated by comparing it with the existing methods via complexity analysis
and empirical evidence. This new hybrid algorithm outperforms all the existing algorithms;
see Section 4 for empirical outcomes validating the performance of the new algorithm.

This paper is organized as follows. Section 2 describes background methods to support
the new algorithm. Section 3 is the new algorithm. Section 4 is experimental analysis using
a multitude of examples used by researchers in the literature, results, and comparison with
their findings. Section 5 is on the complexity of computations. Section 6 is the conclusion
followed by references.

2. Background, Definitions

In order to review the literature, we briefly describe methods for (1) root approxi-
mation, (2) error calculation and error tolerance, and (3) algorithm termination criteria.
There is no single optimal algorithm for root approximation. Normally we look for the
solution in the worst-case scenario. The order of complexity does not tell the complete
detailed outcome. The computational outcome may depend on implementation details,
the domain, tolerance, and the function. No matter what, for comparison with different
algorithms accomplishing the same task, we use the same function, same tolerance, same



Eng 2021, 2 82

termination criteria to justify the superiority of one algorithm over the other. When we
are faced with competing choices, normally the simplest one is the accurate one. This is
particularly true in this case. We provide a new algorithm that is simpler and outperforms
all these methods. For background, we will briefly refer to two types of equations: (1) those
requiring only continuous functions, and (2) those requiring differentiable functions along
with the desired order of derivative in their formulations.

There are two types of problems: (1) continuity based with no derivative requirement,
such as Bisection, False Position, and their extensions; and (2) derivative based, such as
Newton–Raphson and its variations. For simulations, we use error Tolerance ε = 0.0000001,
tolerance coupled with iterations termination criteria as (|xk − xk−1| + |f(xk)|) < ε, and
upper bound on iterations as 100: for function f:[a, b]→ R, such that

(1) f(x) is continuous on the interval [a, b], where R is the set of all real numbers, and
(2) f(a) and f(b) are of opposite signs, i.e., f(a)·f(b) < 0, then there exists a root r ∈ [a, b]

such that f(r) = 0, or
(2′) the function f(x) is differentiable with g(x) = x − f(x)/f′(x) and |g′(x) < 1, then

there exists a root r ∈ [a, b] such that f(r) = 0.
Since the solution is obtained by iterative methods, the definition of convergence is

as follows:

Definition (Convergence) [10,12,17]. Let xn, and α ∈ R, n ≥ 0. Then, the sequence {xn} is said
to converge to α if

lim
n→∞
|xn − α| = 1

Definition (Order of Convergence). Let xn, and α ∈ R, n ≥ 0, sequence {xn} converge to α.

In addition, [12,18] if there exists a constant C > 0 (C 6= 0, C 6= ∞) and an integer p ≥ 1
such that

lim
n→∞

(
|xn+1 − α|
|xn − α|p

)
= C

then the sequence {xn} is said to converge to α with convergence order p, and C is the
asymptotic error constant [10,12,18,19].

Since xn = α + en, the error equation becomes

en+1 = C en
p + O(en

p+1)

If p = 1, 2, or 3, the convergence is called linear, quadratic, or cubic convergence,
respectively.

These theoretical criteria do not take into consideration how much computation the
function values perform in each step. The order of convergence p can be approximated by
the Computational Order of Convergence (COC) that takes into account the combinatorial
cost of the method.
Definition (Computational Order of Convergence). Suppose three iterations xn−1, xn, xn+1
are closer to the root α; then, the order of convergence is approximated by [10,12,14]

COC = lim
n→∞

 log | |xn+1−α|
|xn−α| |

log | |xn−α|
|xn−1−α|

|


Additionally, since α is not known a priori, there are other ways to compute COC, namely,

using four iterations [8] instead of three iterations [10,12,17].

COC = lim
n→∞

 log | |xn+1−xn|
|xn−xn−1|

|

log | |xn−xn−1|
|xn−1−xn−2|

|
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Definition (Efficiency Index). If the power p is the order of convergence and q is the number
of function evaluations per iteration, then p1/q is called the efficiency index and is denoted by
EFF [10,12].

2.1. Bisection Method

The Bisection method (1) is a binary approach for eliminating subintervals, (2) is
virtually a binary search, and (3) converges slowly to the root. Without regard to the
function, an upper bound on the root error is fixed at each iteration and it can be computed
a priori. By specifying the tolerance on root error, the upper bound on the number of
iterations is predetermined.

2.2. False Position (Regula Falsi) Method

The poor performance of the Bisection method led to the False Position method. It
finds zeros of the function by linear interpolation. The False Position uses the location
of the root for better selection. Unfortunately, this method does not perform as well as
expected for all functions; see Figure 1 [15] for four types of concavity in the function.
Iterations are terminated at ten to keep the plots clean. The figures show that the False
Position method performs poorly as compared to the Bisection method.

Eng 2021, 2, FOR PEER REVIEW 4 
 

 

Definition (Efficiency Index). If the power p is the order of convergence and q is the number of 
function evaluations per iteration, then p1/q is called the efficiency index and is denoted by EFF 
[10,12]. 

2.1. Bisection Method 
The Bisection method (1) is a binary approach for eliminating subintervals, (2) is vir-

tually a binary search, and (3) converges slowly to the root. Without regard to the function, 
an upper bound on the root error is fixed at each iteration and it can be computed a priori. 
By specifying the tolerance on root error, the upper bound on the number of iterations is 
predetermined. 

2.2. False Position (Regula Falsi) Method 
The poor performance of the Bisection method led to the False Position method. It 

finds zeros of the function by linear interpolation. The False Position uses the location of 
the root for better selection. Unfortunately, this method does not perform as well as ex-
pected for all functions; see Figure 1 [15] for four types of concavity in the function. Itera-
tions are terminated at ten to keep the plots clean. The figures show that the False Position 
method performs poorly as compared to the Bisection method. 

 
(a) (b) 

 
(c) (d) 

Figure 1. (a) Convex function concave up, left endpoint fixed. (b) Convex function concave up, right endpoint fixed.
(c) Convex function concave down, left endpoint fixed. (d) Convex function concave down, right endpoint fixed.
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2.3. Dekker’s Method

Dekker algorithm [2] was designed to circumvent the shortcomings of the slow speed
of the Bisection and the uncontrolled iteration count of the False Position method. It is
a combination of two methods: Bisection and False Position. First of all, it assumes that
f(x) is continuous on [a, b] and f(a)f(b) < 0. It maintains that |f(b)| < |f(a)|; otherwise, a
and b are exchanged to ensure that b is the “best” estimate of the approximate root. The
algorithm maintains that {bk} is the sequence of best estimates, and the root enclosing
interval is always [ak, bk] or [bk, ak]. Dekker’s algorithm maintain three values: b is the
current best approximation, c is the previous approximation bk−1, and a is the contrapoint
so that the root lies in the interval [ak, bk] ∪ [bk, ak]. Both the secant point, s, and midpoint,
m, are computed; bk is s or m, whichever is closest to bk−1. Though it is better than the
False position method, nonetheless, it has some road blocks, handled by Brent.

2.4. Brent’s Algorithm

Brent’s algorithm [3] evolved from the failures of Dekker’s algorithm; it is a step
towards the improvement of Dekker’s algorithm. It is a slight improvement at the cost
of extra test computations. It is a combination of four methods, Bisection, False Position,
Dekker, and reverse (a.k.a. inverse) quadratic interpolation (RQI), described next. Reverse
quadratic interpolation is based on the method of Lagrange polynomials and it leads to
extra calculations. Thus, it may take more iterations to circumvent pathological cases.
It uses three estimates to derive the next estimate. This algorithm is more robust and
more costly.

Detour to Reverse Quadratic Interpolation

Let a, b, and c be three distinct points, and f(a), f(b), and f(c) be corresponding distinct
values of the function f(x); there is a unique quadratic polynomial through three points (a,
f(a)), (b, f(b)), (c, f(c)). The Lagrange form of polynomial is most suitable for evaluation of
the polynomial for values of x and inverse value of y. In fact, there is a direct formula for a
reverse quadratic interpolating (RPI) polynomial that can be evaluated from values of y.

x =
(y − f(b))(y − f(c))

(f(a) − f(b))(f(a) − f(c))
a +

(y − f(a))(y − f(c))
(f(b) − f(a))(f(b) − f(c))

b +
(y − f(a))(y − f(b))

(f(c) − f(a))(f(c) − f(b))
c

or

xk+1 =
af(b)f(c)

(f(a) − f(b)) (f(a) − f(c))
+

bf(c)f(a)
(f(b) − f(c)) (f(b) − f(a))

+
cf(a)f(b)

(f(c) − f(a)) (f(c) − f(b))

The derivative based methods depend on the initial start point, x0. The simplest such
technique is the Newton–Raphson method, which is slower than its variations. These algo-
rithms outperform the conventional Newton–Raphson method. The variations include de-
composition based [16], quadrature based, and undetermined coefficients based [11,13,14].
These methods are quite complex and detailed. The reader may wish to refer to the full
papers for details. For completeness, we describe the iteration formulas to show how these
methods iterate to get to the root.

2.5. Newton-Raphson (1760)

Let f be differentiable on an open interval containing a, b. By Taylor series expansion
of f,

f(b) = f(a) + (b − a)f′(a) +
1
2!

(b − a)2f′′ (a) + . . .+

By retaining the first derivative term only, linear approximation of order one

f(b) ∼= f(a) + (b− a)f′(a)
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Assuming the value of b to be close to the root of f, further leads to

0 ∼= f(a) + (b− a)f′(a)

b = a− f(a)
f′(a) which is standard Newton–Raphson method.

Thus, for function f, Newton–Raphson [17] successive estimates for the solution are

xn+1 = xn −
f (xn)

f ′(xn)
(1)

with quadratic order of error, O(ε2), where ε= |xn+1 − xn|.
This amounts to two function evaluations for each iteration. However, if we write

g(xn) = xn −
f(xn)

f′(xn)

then
xn+1 = g(xn)

amounts to one function evaluation for each iteration. It is just a matter of how we count
the number of function evaluations. It is of theoretical interest, but really, we have to
consider the combinatorial cost of the function, too. In fact, we can write

xn+1 = xn −
f(xn)(xn − xn−1)

(f(xn) − f(xn−1))

That results in one function evaluation f(xn) in every iteration. We use this form in
the algorithm.

2.6. Oghovese-John Method (2014)

The Oghovese–John sixth order method approximates the iteration estimates by using
the average of Midpoint and Simpson quadrature, and it is shown to have approximation
accuracy of order six.

The expression for Oghovese–John’s estimates [7] is as follows.
Let

u0 = x0 −
f(x0)

f′(x0)
v0 = u0 −

f(u0)

f′(u0)

Then, for n ≥ 0

un+1 = un −
f(un)

f′(un)
(2)

vn+1 = vn −
12 f(vn)

f′((vn) + 10 f′( (vn+ un+1
2 ) + f′(un+1)

(3)

(Based on the average of Midpoint and Simpsons 3/8 rule.)
Then, the iterates, xn+1, are defined in terms of vn instead of xn

xn+1 = vn −
f(vn)

f′(vn)
for n ≥ 0 (4)

instead of Newton–Raphson formula xn+1 = xn– f(xn)
f′(xn)

Convergence and stopping criteria are specified with error tolerance and upper bound
on iterations for termination. In fact, the algorithm terminates considerably much earlier
than it reaches any termination condition in the algorithm.

The derivation of the Oghovese–Emunefe [7] method uses the average of Midpoint
and Simpson quadrature. We briefly describe its derivation in Appendix A.
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The following variations are very interesting and challenging. It is a historical perspec-
tive [18–24] of development of innovations in the improvement of the Newton–Raphson
method and its variants for solution to non-linear equations. We will compare the hy-
brid algorithm with these. First, we describe their iteration recurrence relations without
derivations and defer their derivations to references for simplicity.

2.7. Grau-Diaz-Barero (2006)

Grau et al. [18] introduced a new method by correcting Ostrowski’s method [12]:

yn = xn −
f(xn)

f′(xn)
(5)

xn+1 = yn −
f(yn)

f′(xn)

2f(xn)− f (yn)

2f(xn)− 5 f(yn)
(6)

The method uses one derivative and two function evaluations.
The method has a sixth order convergence with the following iterations:

yn = xn −
f(xn)

f′(xn)
(7)

zn = yn −
f(yn)

f′(xn)

f(xn)

f(xn)− 2 f(yn)
(8)

xn+1 = zn −
f(zn)

f′(xn)

f(xn)

f(xn)− 2f(yn)
(9)

2.8. Sharma-Guha (2007)

Sharma and Guha [22] modified and parameterized Ostrowski’s method [12] having
four function evaluations and a sixth order convergence. Their formula is given as follows:

yn = xn −
f(xn)

f′(xn)
(10)

zn = yn −
f(yn)

f′(xn)

f(xn)

f(xn)− 2 f(yn)
(11)

xn+1 = zn −
f(zn)

f′(xn)

f(xn) + af(yn)

f(xn) + bf(yn)
(12)

where a and b are problem dependent parameters, with b = a − 2.

2.9. Khattri-Abbasbandy (2011)

Khattri-Abbasbandy [11] introduced an iterative method having a fourth order con-
vergence using three function evaluations per iteration with the following formula:

yn = xn −
2
3

f(xn)

f′(xn)
(13)

xn+1 = yn − [1 +
21
8

f′(yn)

f′(xn)
+
−9
2

(
f′(yn)

f′(xn)
)

2

+
15
8
(

f′(yn)

f′(xn)
)

3

]
f(xn)

f′(xn)
(14)

2.10. Fang-Chen-Tian-Sun-Chen (2011)

Fang et al. [23] modified Newton’s method with five evaluation functions and pro-
duced a sixth order convergence method having the following iterations:

yn = xn −
f(xn)

an f(xn) + f′(xn)
(15)
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zn= yn −
f(yn)

bn f(yn) + f′(yn)
(16)

xn+1 zn −
f(zn)

an f(zn) + f′(zn)
(17)

where is an, bn, cn are real numbers chosen in such a way that 0 ≤ |an|, |bn|, |cn| ≤ 1,
and sign(anf (xn)) = sign(f ′(xn)), sign(bnf (yn)) = sign(f ′(yn)),

sign(cnf (Zn)) = sign(f ′(zn)),

where n = 1,2, . . . , and sign(x) is a sign function.

2.11. Jayakumar (2013)

Jayakumar generalized Simpson–Newton’s [14] method for solving nonlinear equa-
tions. His algorithm has third order convergence and four function evaluations per iteration.

Let a be a root of the function (1) and suppose that xn−1, xn, xn+1 are three successive
iterations closer to the root a. This is a third order convergence formulation.

Recall the Simpson 1/3 iteration formula

xn+1 = xn −
6 f(xn)

f′(xn) + 4 f′( xn+yn
2 ) + f′(yn)

(18)

There is no end in sight from the extensions; the arithmetic mean f′(xn) + f′(yn)
2 is

implicit Equation (21). Harmonic–Simpson–Newton’s method (HSN): In Equation (21),
using harmonic mean instead of arithmetic mean f′(xn)+ f′(yn)

2 , the Harmonic–Simpson–
Newton’s method becomes

xn+1 = xn −
3 f(xn)

2 f′(xn) f′(y)
f′(xn)+ f′(yn)

+ 2 f′( xn+yn
2 )

(19)

2.12. Nora-Imran-Syamsudhuha (2018)

This is a very interesting and complex analysis paper [8], the order of convergence is
still six. In this article, the authors present a combination of the Khattri and Abbasbandy [11]
method with Newton’s method using the principle of undetermined coefficients method.

Furthermore, using the fourth order method derived by Khattri and Abbasbandy, they
propose the following iterative method.

yn = xn −
2
3

f(xn)

f′(xn)
(20)

zn = yn − [1 +
21
8

f′(yn)

f′(xn)
+
−9
2

(
f′(yn)

f′(xn)
)

2

+
15
8
(

f′(yn)

f′(xn)
)

3

]
f(xn)

f′(xn)
(21)

xn+1 = zn − [
ab(a− b)f(zn)

m f′(xn)− a3 f′(yn) + 2b(2a− b)(f(zn)− f(xn))′
] (22)

with m = a(b2 − 3ab + a2), a = zn − xn, b = yn − xn.

2.13. Weerakon et al. (2000)

Weerkoon–Fernando [10] used trapezoidal quadrature to achieve third order conver-
gence with the following iteration forms

The trapezoid rule is

(b − a)
{

f′(a) + f′(b)
}

/2 ∼= −f(a)
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b ∼= a − 2 f(a)
{f′(a) + f′(b)} (23)

The Weerakoon–Fernando formula becomes

yn = xn −
f (xn)

f′(xn)
(24)

xn+1 = xn −
2 f (xn)

f′(xn) + f′ (yn)
or

xn+1 = xn −
f (xn)

(f′ (xn) + f′ (yn))/2
(25)

This is also called the Arithmetic mean formula. If arithmetic mean is replaced with
Harmonic mean, another variation is called the Harmonic mean formula

xn+1 = xn −
f (xn)

2
( 1

f′(xn)
+ 1

f′(yn)
)

(26)

xn+1 = xn −
1
2 f (xn)( f′(xn) + f′(yn))

f′(xn) f′(yn)
(27)

2.14. Edmond Halley (1995)

Halley [24] improved Newton’s method. Halley’s method (1995) requires that the
function be C3, three times continuously differentiable. The root iterations have cubic
convergence. The function f(x) is expanded to approximate the quadratic in two ways and
cancelling the second degree term to arrive at the linear formula

0 = f(xn+1) = f(xn) + (xn+1 − xn)f′(xn) +
(xn+1 − xn)

2

2
f′ ′(xn) + O((xn+1 − xn)

3) (28)

0 = f(xn+1) = f(xn) + (xn+1 − xn)f′(xn) +O((xn+1 − xn)2) (29)

Multiply (28) by (xn+1 − xn)f”(xn), (29) by 2f′(xn),
and subtract the resulting (28) from (29); we get

xn+1 = xn −
2 f(xn) f′(xn)

2 f′(xn)
2 − f(xn) f′′ (xn)

(30)

Halley’s algorithm has convergence of order three. This completes our discussion of
the derivative based formulas.

In summary, the methods defined in Sections 2.5–2.14 are several variations of the
Newton–Raphson method. Table 1 is a descriptions of the symbols used in the Tables 2–5,
to identify the methods: MN_R stands for Newton–Raphson method, MOJmis stands
for Oghovese–John method; (it uses Midpoint_Simpson1/3 method), MGDB stands for
Grau-Diaz–Barero method, MSG stands for Sharma–Guha method, MKA stands for Khattri–
Abbasbandy method (which uses the method of undetermined coefficients), FCTSC stands
for Fang–Chen–Tian–Sun–Chen method, MJKms, MJKhs stand for JayaKumar method, two
versions (he uses mean and Simpson1/3 rule; also, he uses harmonic mean with Simpson
1/3 rule), MNIS stands for Nora–Imran–Syamsudhuha method (it extends Khattri and
Abbasbandy method), NWFhm3 stands for Weerakon et al. method using harmonic mean,
NHAL stands for Edmond Halley method using second derivatives, Hybridn stands for
hybrid method using Bisection, False Position, and Newton’s methods. Hybrid method is
the three way method described next in Section 3.
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Table 1. Methods used in Tables 2–5 with Efficiency Index (EFF).

Method Year Name in Tables 2–5 EFF

Newton–Rapson 1760 MN_R 1.4142
Edmond Halley 1995 NHAL 1.4422

Weerkoon–Fernando 2000 NWFhm3 1.4310
Grau–Diaz–Barero 2006 MGDB 1.5651

Sharma–Guha 2007 MSG 1.5651
Fang–Chen–Tian–Sun–Chen 2011 FCTSC 1.3480

Khattri–Abbasbandy 2011 MKA 1.4860
Jayakumar 2013 MJKs 1.3161
Jayakumar 2013 MJKhs 1.3161

Oghovese–John 2014 MOJmis 1.2599
Nora–Imran–Syamsudhuha 2018 MNIS 1.5651

Hybrid Method 2021 Hybridn 1.5874

3. Three Way Hybrid Algorithm

The three way algorithm is an extension of the two way algorithm [15] used for
continuous functions. The three way algorithm takes advantage of the differentiability
of the function, also. First, the bisection and false position methods compete for a more
accurate approximate root; then, the algorithm computes the smaller enclosing interval for
it. At the next step, the better of the approximate root and Newton root are processed to
get the better of the three methods. The algorithm is as follows and the Matlab code for the
hybrid algorithm in given in Appendix B.

Hybrid Algorithm

Output: root r, k-number of iterations used, bracketing interval [ak+1, bk+1]
//initialize
k = 0; a1 = a, b1 = b
Initialize bounded interval for bisection and false position
fa is false position a, ba is bisection method a
fak+1 = bak+1 = a1; fbk+1 = bbk+1 = b1
n1 = a1 − f(a1)/ f′(a1);

repeat
fak+1 = bak+1 = ak; fbk+1 = bbk+1 = bk
nk+1 = nk − f(nk)/f′(nk)
/compute the midpoint
m =

ak+ bk
2 , and ∈m = |f(m)|

compute the False Position secant line point,
s = ak −

f (ak) (bk−ak)
f (bk) − f (ak)

− and ∈f = |f(s)|
r = s
∈a = ∈f
if |f(m)| < |f(s)|,

f(m) is closer to zero, Bisection method determines bracketing interval [bak+1,
bbk+1]

r = m, ∈m = f(m)
∈a = ∈m
if f(ak)·f(r) > 0,
bak+1 = r; bbk+1 = bk;
else
bak+1 = ak; bbk+1 = r;

else
f(s) is closer to zero, False Position method determines bracketing interval

[fak+1, fbk+1]
r = s, ∈f = f(s)
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∈a = ∈f
if f(ak)·f(r) > 0,

fak+1 = r; fbk+1 = bk;
else

fak+1 = ak; fbk+1 = r;
endif

endif
Since the root is bracketed by both [bak+1, bbk+1] and [fak+1, fbk+1], define

[ak+1, bk+1] = [bak+1, bbk+1] ∩ [fak+1, fbk+1]
ak+1 = max(bak+1, fak+1);
bk+1 = min(bbk+1, fbk+1);
//if f is differentiable
//use nk+1 if f(nk+1) < min(f(ak+1), f(bk+1))
//replace ak+1. or bk+1 by nk+1 resulting in further smaller interval, with new

root r = nk+1
outcome: iteration complexity, root, and error of approximation

iterationCount = k
rk+1 = r
k = k + 1
error = ∈a = |f(rk)|+|bk − ak|

until ∈a < ∈ or k > maxIterations

In Section 5, for comparisons, this algorithm is labelled hybridn and its implementation
Matlab code is given in the Appendix B.

4. Convergence of Hybrid Algorithm

The new hybrid algorithm is an improvement over the Newton–Raphson algorithm
and a blend of two algorithms: Bisection algorithm and False Position algorithm, and
is independent of any other algorithm. The new algorithm differs from all the previous
algorithms by tracking the best root approximation in addition to the best bracketing
interval. The number of iterations to find a root depends on the criteria used to determine
the root accuracy. The complexity of the new algorithm is better that the bisection. In other
words, it uses fewer iterations than the bisection algorithm by retaining the root bracketed,
whereas other algorithms use more iterations than the Bisection method. If f(x) is used,
then complexity depends on the function as well as the method, because we want to ensure
that the function value at the estimate is tolerable.

If relative error is used, it does not work for every function because it gets stuck for
the case where relative error is constant. Most of the time, absolute error, ∈s, is used as
the stopping criteria. For the Bisection method, on interval [a, b], the upper bound nb(∈)
on the number of iterations can be found from b−a

2n < ∈s and is lg ((b − a)/∈s). Since
en+1 = 1/2 en, it has linear convergence. For the False Position method, it depends on
the location of the root near the endpoint of the bracketing interval and the convexity of
the function. Thus, the bound nf(∈s) for the number of iterations for the False Position
method cannot be predetermined, it can be less, nf(∈s) < nb(∈) = lg ((b − a)/∈s), or can be
greater, nf(∈s) > nb(∈s) = lg ((b − a)/∈s). The number of iterations, n(∈s), in the hybrid
algorithm is less than min(nf(∈s), nb(∈s)). The introduction of the Newton–Raphson in the
Hybrid further reduces the complexity of computations, resulting in fewer iterations. The
Newton–Raphson algorithm of the quadratic order of convergence is given in Section 2.5:
The convergence analysis of Newton is trivial; however, for completeness it is as follows.

Proposition. α is a simple real root of a sufficiently differentiable function f on an open interval (a,
b) of real line. If, then, the initial estimate x0 is sufficiently close to α, then the Newton-Raphson as
defined in Section 2.5 has second order convergence.

Proof. It is trivial; for completeness, we derive the formula formally.
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If α is a root, xn is the approximation, then f(α) = 0, xn = α + en with error en. Let ck =
1
k!

f (k)(α)
f ′(α) , then by Taylor series

f(xn) = f′(α)[en + c2 en
2 + O(en

3)]
f′(xn) = f′(α)[1 + 2c2 en + 3Cc en

2 + O(en
3)]

Since α is a simple root f′(α) 6= 0.
By dividing we get,

f(xn)

f′(xn)
= en − c2 en

2 + O(en
3)

From Newton–Raphson recurrence

xn+1 = xn −
f(xn)

f′(xn)
xn − en + O(en

2) = α + O(en
2).

Hence, the order of convergence is quadratic. �

Since the hybrid algorithm is a combination of three algorithms, no derivatives are
involved in the Bisection and False Position, and Newton’s method can also use the secant
approach to avoid derivatives in computations. The convergence order of the three methods
is one, one, and two; they may be combined to get the composite order of convergence.
The order of convergence that takes into account the combinatorial cost is computed. It
competes with other sixth order methods. Thus, the COC indicates that the order of
convergence is closer to sixth order, Table 5. Even if the order of convergence is taken
as five or four, the efficiency index competes with them. We safely assume the fourth
order for the hybrid algorithm, which is supported by Tables 2–5. We have convergence
order four and three function evaluations as shown in (Section 2.5). The efficiency Index is
computed with convergence order four and three function evaluations per iteration. The
new algorithm complexity is far simpler than the higher order algorithms. This is validated
with the experimental computations based on the number of computational iterations, see
Tables 2–5.

This algorithm guarantees the successful resolution of the roots of non-linear equations.
Other variants of Newton–Raphson converge with 3rd–6th order; they are not guaranteed
to converge without additional constraints on the functions and the initial guess is close
to the root. It differs from all the previous algorithms by tracking the best bracketing
interval in addition to the best root approximation. Instead of brute force application of the
Bisection or False Position or Newton–Raphson methods solely, we select the most relevant
method and use its value at each step to construct the approximate root and bracketing
interval. Thus, we design a new hybrid algorithm that performs better than the Bisection
method, False Position method, and Newton–Raphson methods. Since an equation can
have several roots, the user can appropriately isolate an interval enclosing a single root.
Otherwise, different algorithms will end up reaching different roots, making it difficult to
compart the algorithms. The new algorithm also performs better than the other variants
cited above for continuous functions as long as the f(a)·f(b) < 0 is determined at the end
points of the defining interval. At each iteration, the root estimate is computed from both
midpoint, secant point, tangent point if differentiable, and the better of the three is selected
for the next approximation; in addition, the common enclosing interval is updated to the
new smaller interval. This eliminates the unnecessary iterations in either method. There
is no requirement on differentiability but derivative used only if available as required by
Newton–Raphson and its variants. This is a simple, reliable, and fast algorithm.



Eng 2021, 2 92

5. Empirical Results of Simulations

The new hybrid algorithm has been tested to ensure that it performs better than other
existing methods by optimizing the number of iterations required for approximations, the
computation order of convergence, and the efficiency index for the test cases. There are
various types of functions: polynomial, trigonometric, exponential, rational, logarithmic,
and a heterogeneous combination of these.

The methods defined in Sections 2.5–2.14 are several variations of the Newton–
Raphson method. The symbols used to identify the methods are described in Table 1.
For comparison with the hybrid algorithm, the tables have several parameters: function,
initial value, order of convergence, number of function values per iteration (nofe), Number
of iteration (NIter), overall number of function evaluations (NOFE), computational order
of convergence (COC), efficiency index (EFF), root, error, between the last two iterations
and function value. The hybrid algorithm is labelled Hybridn where [a,b] is the interval of
definition and a is used as the initial start value for all other algorithms. All tables show
that the hybrid algorithm performs better with respect to number of iterations, number
of function evaluations, efficiency index, and computational order of convergence. The
hybrid algorithm computes the root with fewer than or equal to the number of iterations of
other algorithms as evidenced in the tables.

We have compared the hybrid algorithm with most of the functions used in the
literature. These methods were extensively tested on all the functions in Table 2.

Since it is multi-dimensional data, two dimensional table includes a specific feature
related to all other parameters. The 22 functions have been tested on all 10 parameters and
all 12 methods. Table 2 compares one parameter NOFE for all algorithms on all functions.
Instead of 22 displays tables, the next three tables compare all parameters using a different
function for NOFE, COC, and EFF. Table 3 compares NOFE on all algorithms and on
all parameters with one function. Table 4 compares COC on all algorithms and on all
parameters with another function. Table 5 compares EFF on all algorithms and on all
parameters with another different function.

The tables show that the hybrid algorithm performs better than other algorithms with
respect to NOFE, COC, and EFF and the hybrid algorithm comes ahead. In Table 2, for each
function, a different interval was used depending on the function definition. For example,
in Table 3, the function is sin(x) − x3, the initial interval value is [0.5, 1]; in Table 4, the
function is 0.7x5 − 8x4 + 44x3 − 90x2 + 82x − 25, the initial interval value is [0, 1], and in
Table 5, the function is x3 + log(x); the initial interval value is [0.1, 2].

Table 2. One Parameter. Comparison of overall number of function evaluations (NOFE) in hybrid algorithm and all other
algorithms on all functions for the number of function evaluations required for the solution.
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Method
MN_R 34 14 10 10 6 8 22 16 14 18 42 14 12 8 12 8 6 52 14 6 6 10
MNIS 40 44 60 76 28 28 84 76 64 60 180 220 44 60 76 76 68 84 44 56 28 60
MKA 27 27 39 51 15 18 57 51 42 42 153 114 42 39 63 63 45 51 21 39 21 33
MSG 28 12 39 8 8 8 64 28 12 12 36 12 12 8 32 8 8 248 16 8 12 12

FCTSC 600 12 12 12 6 6 18 12 36 18 60 18 12 12 18 12 12 18 12 6 18 18
MGDB 20 8 32 8 8 8 16 12 12 12 36 16 12 8 32 8 8 36 12 4 12 12

MOJmis 81 15 9 9 6 6 39 21 21 18 42 12 12 6 9 6 6 3 15 6 12 12
MWFhm3 50 10 10 10 5 10 15 15 20 15 40 15 10 10 10 10 5 40 10 5 10 10

MJKs 36 20 12 12 8 8 72 28 28 24 56 20 16 12 20 12 8 4 24 8 8 16
MJKhs 36 16 12 12 8 8 28 24 28 20 52 16 16 8 12 8 8 4 12 8 12 12
NHAL 27 12 27 12 9 9 15 18 27 9 198 45 12 12 18 12 15 18 18 9 30 24

Hybridn 15 6 6 6 3 6 12 9 9 9 24 9 6 6 6 6 3 3 9 3 3 9
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Table 3. All Parameters highlighting NOFE. Comparison of hybrid and all algorithms on all parameters used for the
solution for a function.

Summary for Comparison of Methods for

Function sin(x) − x3, Intial value 0.500

Max Iterations = 100 Error tolerance = 0.0000001000

Method Order nofe NIters NOFE COC EFF Root |xn − xn−1| Function Value

MN_R 2 2 7 14 2.01 1.4142136 −0.928626 6.547 × 10−5 0.000000014
MNIS 6 4 11 44 1 1.5650846 −0.928626 1.04 × 10−7 −0.000000085
MKA 4 3 7 21 1 1.5874011 0.9286263 9.7 × 10−8 0.000000077
MSG 6 4 4 16 4.29 1.5650846 −0.928626 1.13 × 10−6 0

FCTSC 6 6 2 12 4.29 1.3480062 0 0 0
MGDB 6 4 3 12 4.29 1.5650846 −0.928626 2.56 × 10−7 0

MOJmis 2 3 5 15 3.93 1.2599211 0.9286263 0.000183 0
MWFhm3 6 5 2 10 3.93 1.4309691 −0.928626 0 0

MJKs 3 4 6 24 3.42 1.316074 0.9286263 1.302 × 10−5 0
MJKhs 3 4 3 12 4.79 1.316074 0.9286263 0.0022525 0.000000039
NHAL 3 3 6 18 3 1.4422496 0 0 0

Hybridn 4 3 3 9 4.83 1.5874011 −0.928626 6.547 × 10−5 0

Table 4. All Parameters highlighting computational order of convergence (COC). Comparison of hybrid and all algorithms
on all parameters used for the solution for another function.

Summary for Comparison of Methods for

Function 0.7*x5 − 8*x4 + 44*x3 − 90*x2 + 82*x − 25, Initial Value 00

Max Iterations = 100 Error tolerance = 0.0000001000

Method Order nofe NIters NOFE COC EFF Root |xn − xn−1| Function Value

MN_R 2 2 6 12 2.01 1.414214 0.579409 1 × 10−7 0
MNIS 6 4 11 44 1 1.565085 0.579409 1.5 × 10−8 −9.9 × 10−8

MKA 4 3 13 39 1 1.587401 0.579409 1.2 × 10−8 −7.9 × 10−8

MSG 6 4 3 12 5.79 1.565085 0.579409 9.5 × 10−8 0
FCTSC 6 6 2 12 5.79 1.348006 0.579409 7.9 × 10−8 −7.9 × 10−8

MGDB 6 4 3 12 5.79 1.565085 0.579409 1.1 × 10−8 0
MOJmis 2 3 4 12 2.94 1.259921 0.579409 7.83 × 10−7 0

MWFhm3 6 5 2 10 2.94 1.430969 0.579409 0 0
MJKs 3 4 4 16 2.93 1.316074 0.579409 1.16 × 10−6 0

MJKhs 3 4 4 16 2.96 1.316074 0.579409 1.02 × 10−7 0
NHAL 3 3 4 12 3.01 1.44225 0.579409 1.6 × 10−8 0

Hybridn 4 3 2 6 6.76 1.587401 0.579409 0 0

Table 5. All Parameters highlighting efficiency index (EFF). Comparison of hybrid and all algorithms on all parameters
used for the solution for another different function.

Summary for Comparison of Methods for

Function x3 + log(x), Initial value 0.100

Max Iterations = 100 Error tolerance = 0.0000001000

Method Order nofe NIters NOFE COC EFF Root |xn − xn−1| FunctionValue

MN_R 2 2 5 10 1.94 1.4142 0.704709 3.57 × 10−7 0
MNIS 6 4 15 60 1 1.5651 0.036264 4.7 × 10−8 2.9 × 10−8

MKA 4 3 13 39 1 1.5874 0.704709 6 × 10−8 −0.00000007
MSG 6 4 7 28 6.62 1.5651 0.036264 3.53 × 10−7 0

FCTSC 6 6 2 12 6.62 1.3480 0.704709 0 0
MGDB 6 4 8 32 3.22 1.5651 0.704709 0.059996 5 × 10−9

MOJmis 2 3 3 9 4.59 1.2599 0.704709 0.00025 0
MWFhm3 6 5 2 10 5.79 1.4310 0.704709 0 0

MJKs 3 4 3 12 6.34 1.3161 0.704709 0.000155 0
MJKhs 3 4 3 12 5.71 1.3161 0.704709 8.56 × 10−5 0
NHAL 3 3 9 27 3.04 1.4422 0.704709 0 0

Hybridn 4 3 2 6 6.87 1.5874 0.704709 0 0

The results show that the new algorithm competes with the algorithms presented in
Sections 2.5–2.14. This algorithm has the reliability of the Bisection method. This algorithm
does not get stranded as do many of the cited algorithms into complexity of computations,
resulting in slow speed. It has the speed of the False Position and Newton–Raphson [25]
methods, which works all the time by ensuring the root bounds. The efficiency index and
computational order of convergence also confirm the superiority of this algorithm. This is
a simple, reliable, and fast algorithm.
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This paper deals with single scalar variable no-linear equations. There are similar
multi-dimensional vector valued systems of non-linear equations [26]. It will be interesting
to explore its application in the future. There is an interesting application of numerical
solutions in differential equations [27]. Exploring differential equations is not the purpose
of this paper; we will investigate this phenomenon in future work.

6. Conclusions

This paper implements a new algorithm, a hybrid combination of Bisection method,
Regula Falsi method, and Newton–Raphson method. We implemented the algorithm in
Matlab R2018B 64 bit (maci64) on MacBook Pro MacOS Mojave2.2GHz intel Core i716
GB2400MHz DDR4 Radeon Pro555X 4GB. The implementation experiments indicate that
hybrid algorithm outperforms three algorithms all the time. It is also determined that
the new algorithm competes with the Newton–Raphson method and its variants both in
computational order of convergence and efficiency index. The experiments on numerous
datasets used in the literature justify that the new algorithm is effective. Thus, the paper
contributes a superior new algorithm to the repertoire of classical algorithms.
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Appendix A

The derivation of the Oghovese–Emunefe [7] method uses the average of Midpoint
and Simpson quadrature. We briefly describe its derivation and will defer the details
of derivation for other methods in Sections 2.6–2.14 to the references. The reader may
refer to the full paper for details of the order of convergence. By fundamental theorem of
integration,

I =
∫ b

a
f′(t) dt = f(b)− f(a) (A1)

For approximating b as a root, that is, f(b) ∼=0,

b∫
a

f′(t) dt ∼= − f(a) (A2)

Using integration by standard quadrature forms,
By Midpoint rule

(b− a)f′(
a + b

2
) ∼= −f(a) (A3)

b ∼= a − f(a)
f′( a+b

2 )
(A4)

By Simpson quadratic approximation 3/8 rule

(
b − a

6
){f′(a) + 4 f′(

a + b
2

) + f′(b)} ∼= −f(a) (A5)

(b − a) ∼= −
6 f(a)

f′(a) + 4 f′( a+b
2 ) + f′(b)

b ∼= a − 6 f(a)
f′(a) + 4 f′( a+b

2 ) + f′(b)
(A6)
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By applying the weighted average approximation rule on (3) and (5), using Midpoint and
Simpson 3/8 rule for M and S,

− f(a) ∼=
∫ b

a
f′(t) dt = (1 − p)M + pS with 0 ≤ p ≤ 1

With p = 1/2

− f(a) ∼= 1/2 (b− a) f′(
a + b

2
) + 1/2 (

b − a
6

){f′(a) + 4 f′(
a + b

2
) + f′(b)} (A7)

Becomes

b ∼= a − 12 f(a)
f′(a) + 10 f′( a+b

2 ) + f′(b)
(A8)

Now the method proceeds to predict-correct the estimate as follows.
Using the predicted value b ∼= a − f(a)

f′(a)
in the right above, to correct it,

Ogbereyivwe et al. have first approximation computed as follows

b ∼= a − f(a)
f′(a)

(predicted) (A9)

b ∼= a − 12 f(a)

f′(a) + 10 f′( a+b
2 ) + f′(b )

(A10)

Finally, to further correct the predicted (corrected) value, we use approximation, b, as
the iterate value instead of Newton–Raphson techniques value, a; we have

b ∼=b − f (b)

f′(b)

In Summary, we have
Step 1 Newton–Raphson

b ∼=a− f(a)
f′(a)

(A11)

Step 2 (Midpoint and Simpson p = 1/2)

b∼= a− 6 f(a)

pf′(a) + (6 − 2p)f′( a + b
2 ) + p f′(b )

(A12)

Step 3 (Modified Newton–Raphson)

b ∼=b − f (b)

f ′(b)
(A13)

Algorithm (Oghovese–John)
Let f, x0 be given, Newton–Raphson approximation iterates become

xn+1
∼= xn − f(xn)

f′(xn)
(A14)

Initialize u0 = v0 = x0.
For n = 0: maxIteration
// for n = 0, xn, un, vn are known from

//u0 = x0 − f(x0)
f ′(x0)

//v0 = u0 − f(u0)
f ′(u0)
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un+1
∼= xn − f(xn)

f ′(xn)
(A15)

//using this we get

vn+1
∼= vn −

12 f(vn)

f′(vn) + 10 f′( vn+ un+1
2 ) + f′( un+1)

(A16)

// finally

xn+1 = vn+1 −
f(vn+1)

f′(vn+1)
n ≥ 0 (A17)

// we get this x n+1 instead of xn+1 ∼= xn − f(xn)
f′(xn)

//break when x n+1 is acceptable using
// Tolerance ε = 0.0000001, maxIterations = 100
// Iterations terminate when (|xn+1 − xn|+|f(xn+1)|) < ε or maxIteration reached

EndFor

Appendix B

The algorithm is implemented in Matlab using the hybrid of three methods.
function [iter,root,roots,ea,bl,br] = hybridN(f, df, a, b, es, imax)
%{

input:
f the function
a, xl lower value bracket
b, xu upper value bracket
es error stopping critia
imax upper bound on the number of iterations

output:
iter the number of iterations
root approxmate final root
roots approxmate iterated rootss
ea error at each iteration
bl lower value brack at each iteration
br upper value brack at each iteration

Evaluation for bisection, false position and for newtons methods for evaluation
with additional documention is standard call to keep the hybrid code simple

[iter,root,roots,ea,bl,br] = falsePos(f, a,b, es, 1);
[iter,root,roots,ea,bl,br] = bisection(f, a,b, es, 1);

[iter,root,roots,ea] = newton(f, a, es, 1);
%}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%
%%%%%%%%%%

% Initializaation
xl = a; xu = b; bl(1) = xl; br(1) = xu;
rold = xl;
ea(1) = 0;
root = 0;
roots = 0;
iter = 0;

if f(a)*f(b) > 0 % if guesses do not bracket for Bisection,False Postion methods
error(‘Root not Bracketed’)

return
end
% iterations begin here
for i = 1:imax

iter = i;
% first use bisction and false position predicted point
[iterb,rootb,rootsb,eab,blb,brb] = bisection(f, xl, xu, es, 1);
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[iterse,rootse,rootsse,ease,blse,brse] = falsePos(f, xl, xu, es, 1);

if (abs(f(rootb)) < abs(f(rootse)))
root = rootb;

else
root = rootse;

end
xl = max(blb(1), blse(1)); xu = min(brb(1), brse(1));
% then use newton predicted point
[itern,rootn,rootsn,ean] = newton(f,df,(xl,es,1);
if (abs(f(rootn)) < min(abs(f(xl)), abs(f(xu))))

if(f(rootn)*f(xu) < 0))
if (xl < rootn) && (xu > rootn)

xl = rootn;
end

else
if (xl < rootn) && (xu > rootn)
xu = rootn;
end

end
root = rootn;

end
% for documentation

bl(i) = xl; br(i) = xu;
r = root;
ea(i) = abs(f(root)) + abs(r − rold); % absolute error

roots(i) = root;
if ea(i) < es

break;
end

% for next iteration
rold = root;

end
root = r;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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