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Abstract: A transform approach based on a variable initial time (VIT) formulation is developed
for discrete-time signals and linear time-varying discrete-time systems or digital filters. The VIT
transform is a formal power series in z−1, which converts functions given by linear time-varying
difference equations into left polynomial fractions with variable coefficients, and with initial condi-
tions incorporated into the framework. It is shown that the transform satisfies a number of properties
that are analogous to those of the ordinary z-transform, and that it is possible to do scaling of z−i

by time functions, which results in left-fraction forms for the transform of a large class of functions
including sinusoids with general time-varying amplitudes and frequencies. Using the extended
right Euclidean algorithm in a skew polynomial ring with time-varying coefficients, it is shown
that a sum of left polynomial fractions can be written as a single fraction, which results in linear
time-varying recursions for the inverse transform of the combined fraction. The extraction of a
first-order term from a given polynomial fraction is carried out in terms of the evaluation of zi at
time functions. In the application to linear time-varying systems, it is proved that the VIT transform
of the system output is equal to the product of the VIT transform of the input and the VIT transform
of the unit-pulse response function. For systems given by a time-varying moving average or an
autoregressive model, the transform framework is used to determine the steady-state output response
resulting from various signal inputs such as the step and cosine functions.

Keywords: z-transform; time-varying systems; time-varying difference equations; skew polynomial
rings; extended Euclidean algorithm; fraction decomposition

1. Introduction

The introduction of a time-varying z-transform for the study of linear time-varying
discrete-time systems or digital filters goes back to the discrete-time counterpart of the
Zadeh system function, which first appeared in [1]. In that work, linear time-varying
systems/filters are studied in terms of the time-varying z-transform

HZadeh(z, k) = ∑∞
i=0 h(k, k− i)z−i

, where k is an integer valued variable and h(n, k) is the unit-pulse response function of
the system. For papers that utilize this construction, see [2–5]. It is known that it is not
possible to express the z-transform of the output response as the product of HZadeh(z, k)
with the z-transform of the input. Moreover, as discussed in [6], when the system or filter
is finite-dimensional, this transform is seldom expressible as a polynomial fraction in z
with time-varying coefficients. These two limitations were circumvented in [7] by defining
the transfer function to be the formal power series

H(z, k) = ∑∞
i=0 h(k + i, k)z−i. (1)
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In addition, in [7] the generalized z-transform of a discrete-time signal x(n) is defined
to be

x̂(z, k) = ∑∞
i=0 z−ix(i)δ(k), (2)

where δ(k) is the unit-pulse function (δ(0) = 1, δ(k) = 0, k 6= 0). Then, as shown in [7],
ŷ(z, k) = H(z, k)û(z, k), where û(z, k) and ŷ(z, k) are the generalized z-transforms of the
input and output, respectively. It is also shown that if the system is given by a finite-
dimensional state representation, the transfer function is a matrix polynomial fraction in z
with time-varying coefficients.

The generalized z-transform defined by Equation (2) is equal to the ordinary z-
transform multiplied on the right by the unit pulse δ(k). There is a simple modification of
Equation (2) results in a time-varying transform that satisfies a number of basic properties,
which are analogous to the properties of the ordinary z-transform. The modification is
based on the observation that the generalized z-transform defined in Equation (2) can be
expressed in the form

x̂(z, k) = ∑∞
i=0 z−ix(i + k)δ(k). (3)

In Equation (3), x(i + k) is the value of the signal x(n) at the time point n = i + k,
which is i steps after the time point k, where k is the initial time. The variable initial time
(VIT) transform of the signal x(n) is then defined to be the formal power series

X(z, k) = ∑∞
i=0 z−ix(i + k).

Note that x̂(z, k) = X(z, k)δ(k). The VIT transform can also be extended to any two-
variable function f (n, k) defined on Z× Z where Z is the set of integers, and when this
extension is applied to a unit-pulse response function h(n, k), the result is the transfer
function defined by Equation (1).

The formal definition of the VIT transform and some simple examples of the transform
are given in Section 2. Various properties of the VIT transform are proved in Section 3,
including the property that multiplication by a function a(n) in the time domain is equiva-
lent to multiplication by a(k) on the left in the VIT transform domain. It is this property
along with the left-shift property that converts signals or two-variable time functions given
by linear time-varying difference equations into left polynomial fractions consisting of
polynomials in z with variable coefficients. It is also proved in Section 3 that the transform
of a fundamental operation between two functions defined on Z×Z is equal to the product
of the VIT transforms. It is this result that yields a transfer function framework for the
study of linear time-varying discrete-time systems.

In Section 4, it is shown that the powers z−i of the symbol z−1 can be scaled by a time
function, which is given in terms of a semilinear transformation Sa defined on the ring A
consisting of all functions from the integers Z into the reals R. Given a VIT transform that is
a polynomial fraction in z−1, the scaling of z−i by a time function results in a large collection
of new transforms which are polynomial fractions. This construct results in the generation
of a class of signals that satisfy linear time-varying recursions. Examples are given in the
case of the Gabor-Morlet wavelet [8] and sinusoids with general time-varying frequencies.

The addition and decomposition of VIT transforms is studied in Section 5. It is shown
that the addition of two left polynomial fractions can be expressed in a single-fraction form
by using the extended right Euclidean algorithm in a skew (noncommutative) polynomial
ring with coefficients in the quotient field of ring A of time functions. This results in
recursions over A for the inverse transform of the sum of the fractions, although in general
the recursions may have singularities. The decomposition of a polynomial fraction is
carried out in Section 5 in terms of the evaluation of zi at time functions defined in terms of
semilinear transformations. In Section 6, the VIT transform approach is applied to linear
time-varying discrete-time systems or digital filters. It is shown that the VIT transform of
the system output is equal to the product of the VIT transform of the input and the VIT
transform of the unit-pulse response function. This result is used to derive an expression for
the steady-state output response resulting from signal inputs having a first-order transform.
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The focus is on the case when the system is given by a time-varying moving average or
autoregressive model. Section 7 contains some concluding comments.

2. The VIT Transform

With Z equal to the set of integers and R equal to the field of real numbers, let
A denote the set of all functions from Z into R. Given a, b ε A, we define addition by
(a + b)(n) = a(n) + b(n), n ε Z , and multiplication by (ab)(n) = a(n)b(n), n ε Z. With
these two pointwise operations, A is a commutative ring with multiplicative identity
1(n), where 1(n) = 1 for all n ε Z. Let σ denote the left shift operator on A defined by
(σa)(n) = a(n + 1), n ε Z. With the shift operator σ, the ring A is called a difference ring.

With z equal to a symbol or indeterminate, let A
((

z−1)) denote the set of all formal
Laurent series of the form

∑∞
i=−N z−iai, ai ε A, (4)

where N ε Z. Note that the coefficients of the power series in (4) are written on the right of
the z−i. With the usual addition of Laurent series and with multiplication defined by

zizj = zi+j, i, j ε Z (5)

az−i = z−i
(

σia
)

, i ε Z, a ε A, (6)

A
((

z−1)) is a noncommutative ring with multiplicative identity 1(n). Let A[z] denote
the subring of A

((
z−1)) consisting of all polynomials in z. That is, the elements of A[z] are

of the form

∑0
i=−N z−iai = ∑N

i=0 zia−i.

Finally, let A
[[

z−1]] denote the subring of A
((

z−1)) consisting of all formal power
series in z−1 given by (4) with N = 0.

The rings A[z], A
[[

z−1]], and A
((

z−1)) are called skew rings due to the noncommu-
tative multiplication defined in Equation (6). Skew polynomial rings were first introduced
and studied by Oystein Ore in his 1933 paper [9]. These ring structures have appeared in
past work [7,10,11] on the algebraic theory of linear time-varying discrete-time systems.

Now, let x(n) denote a real-valued discrete-time signal. For each fixed integer i ≥ 0,
let xi(k) = x(i + k), k ε Z. Then, xi(k) is equal to the value of the signal x(n) at the time
point n = i + k, which is located i steps after the time point k, where k is viewed as the
initial time. The initial time k is taken to be an integer variable ranging over Z. Then,
for each fixed i ≥ 0, xi(k) is a function from Z into R, and thus xi(k) is an element of
the difference ring A. If the given signal x(n) is defined only for n ≥ k0 for some fixed
k0 ε Z, then the values of the xi(k) are known only for k ≥ k0. In this case, the pointwise
operations of addition and multiplication can still be carried out on the xi(k), but the results
will be known only for k ≥ k0. In addition, for any positive integer q, the q-step left shift
operation can be performed on the xi(k), but the result xi(k + q) will be known only for
k + q ≥ k0 or k ≥ k0 − q. Hence, the xi(k) can still be viewed as elements of the difference
ring A. Then, we have the following concept.

Definition 1. The variable initial time (VIT) transform X(z, k) of a real-valued discrete-time signal
x(n) is the element of A

[[
z−1]] defined by

X(z, k) = ∑∞
i=0 z−ixi(k) = ∑∞

i=0 z−ix(i + k). (7)

Note that the coefficients of the power series in Equation (7) are written on the right.
As shown below, this leads to left polynomial fractions for the transform in the case when
x(n) satisfies a linear time-varying difference equation. Moreover, note that for each fixed
integer value of k, X(z, k) is the one-sided formal z-transform of x(i + k), where “formal”
means that z is viewed as a formal symbol, not a complex variable. In particular, X(z, 0) is
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the z-transform of x(n), n ≥ 0. Finally, if the given signal x(n) is defined only for n ≥ k0,
then the transform X(z, k) is defined only for k ≥ k0.

The VIT transform can be extended to any real-valued two-variable function f (n, k)
defined on Z× Z: Given f (n, k), the VIT transform F(z, k) of f is defined to be the element
of A

[[
z−1]] given by

F(z, k) = ∑∞
i=0 z−i f (i + k, k). (8)

Given a discrete-time signal x(n), let f (n, k) = x(n). Then, from Equations (7) and (8),
the VIT transform F(z, k) of f (n, k) is equal to the VIT transform X(z, k) of x(n). Hence,
all of the results derived in this work on the VIT transform of a general two-variable
function f (n, k) can be directly applied to the VIT transform of a discrete-time signal x(n).
In addition, if we define f (n, k) = h(n, k), where h(n, k) is the unit-pulse response function
of a linear time-varying discrete-time system, the VIT transform of h(n, k) is the transfer
function of the system as defined in [7]. Thus, results on the VIT transform of a two-variable
function can also be directly applied to linear time-varying systems.

Given a VIT transform F(z, k), the original time function f (n, k) can be recovered
from the transform by setting f (i + k, k) equal to the right coefficient of z−i in the power
series representation given in Equation (8). In the following development, we will use
the notation.

f (n, k)↔ F(z, k) (9)

To denote a VIT transform pair, it should be noted that in operations involving the
VIT transform F(z, k), the values of the initial time k can be restricted to a finite interval
k0 ≤ k ≤ k1, where k1 > k0. This is illustrated in Section 6, in the application to computing
the steady-state output responses to various inputs in a linear time-varying system.

We shall now give some simple examples of the VIT transform. Let the function f (n, k)
be the unit pulse δ(n− k) located at the initial time k. Then, f (i + k, k) = δ(i) and inserting
this into Equation (8), we have that the VIT transform is equal to 1 for all k ε Z. Therefore,
we have the transform pair

δ(n− k) ↔ 1. (10)

Now, suppose that (n, k) = an−k f (k), n ≥ k, a ε R, where f (k) = f (k, k) is the value
of f at the initial time k. Then, the VIT transform of f is equal to

∑∞
i=0 z−i f (i + k, k) = ∑∞

i=0 z−iai f (k) = (z− a)−1z f (k).

Thus, we have the transform pair

an−k f (k), n ≥ k ↔ (z− a)−1z f (k). (11)

Note that the VIT transform in (11) is a fraction.
Given a ε A, consider the function f (n, k) defined by the first-order linear time-varying

difference equation
f (n + 1, k) = a(n) f (n, k), n ≥ k, (12)

With initial value f (k, k) = f (k) at initial time k. The solution to Equation (12) is

f (n, k) = a(n− 1)a(n− 2) . . . a(k + 1)a(k) f (k), n > k,

Which can be written in the product form

f (n, k) =
[
∏n−1

r=k a(r)
]

f (k), n > k. (13)

Note that the variable k in Equation (13) can be evaluated at any specific initial time
k0, which gives

f (n, k0) =
[
∏n−1

r=k0
a(r)

]
f (k0), n > k0.
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Inserting f (i + k, k) into Equation (8), the VIT transform of f is equal to[
1 + z−1a(k) + z−2a(k + 1)a(k) + z−3a(k + 2)a(k + 1)a(k) + . . .

]
f (k). (14)

The power series in (14) can be written in the left fraction form (z− a(k))−1z f (k). To
verify this, using the multiplication defined by Equation (6), multiply Equation (14) by
z− a(k) on the left. This results in z f (k), which proves the validity of the fraction form.
Therefore, we have the VIT transform pair[

∏n−1
r=k a(r)

]
f (k), n > k ↔ (z− a(k))−1z f (k). (15)

Note that the transform pair (11) follows directly from the transform pair (15) by
setting a(k) = a for all k ε Z. The left fraction form of the VIT transform given in (15)
is a result of the function f (n, k) satisfying the first-order linear time-varying recursion
f (n + 1, k) = a(n) f (n, k), n ≥ k. As will be shown below, any f (n, k) satisfying a linear
time-varying recursion has a VIT transform which is a left polynomial fraction. This is the
primary motivation for considering the VIT transform.

To illustrate the application of the transform pair (15), consider the Gaussian function
given by

x(n) = exp
[
−c2(n− N)2

]
, c ε R, n ε Z, N ε Z. (16)

Then,
x(n + 1) = exp

[
−c2(n− N + 1)2

]
= exp

[
−c2

[
(n− N)2 + 2(n− N) + 1

]]
= exp

[
−c2(2(n− N) + 1)

]
exp
[
−c2(n− N)2

]
= exp

[
−c2(2(n− N) + 1)

]
x(n).

(17)

The solution to Equation (17) is x(n) =
[
∏n−1

r=k a(r)
]

x(k), n > k, where (n) =

exp
[
−c2(2(n− N) + 1)

]
, and x(k) is the value of the Gaussian function at the initial time k.

Using the transform pair (15) with f (n, k) = x(n), we have that the VIT trans form X(z, k)
of the Gaussian has the left fraction form.

X(z, k) =
(

z− e−c2(2(k−N)+1)
)−1

zx(k). (18)

In this work, we will focus on the case when the VIT transform of f (n, k) can be
written as a left polynomial fraction

F(z, k) = µ(z, k)−1ν(z, k), (19)

where µ(z, k) ε A[z] is a nonzero monic (leading coefficient is equal to 1) polynomial,
and ν(z, k) ε A[z]. The term µ(z, k) in the fraction is the denominator and ν(z, k) is the
numerator. The order of the fraction µ(z, k)−1ν(z, k) is defined to be the degree of the
denominator µ(z, k), assuming that µ(z, k) and ν(z, k) do not have any common left factors.
In the left fraction form (19), the factor µ(z, k)−1 is the element γ(z, k) ε A

((
z−1)) given by

µ(z, k)γ(z, k) = 1. In other words, γ(z, k) is the right inverse of µ(z, k) in the ring A
((

z−1)).
Since µ(z, k) is monic, it has an inverse in A

((
z−1)) which can be computed by dividing

µ(z, k) into 1 using left long division. The product of µ(z, k)−1 and ν(z, k) in (19) is carried
out using multiplication in the ring A

((
z−1)). For example, in the case of the transform
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pair (15), using the multiplication given by Equation (6) and dividing z− a(k) into 1 on the
left gives

z−1 + z−2a(k + 1) + z−3a(k + 2)a(k + 1) + · · ·
z− a(k) 1

1− a(k)z−1

z−1a(k + 1)

z−1a(k + 1)− a(k)z−2a(k + 1)

z−2a(k + 2)a(k + 1)

z−2a(k + 2)a(k + 1)− a(k)z−3a(k + 2)a(k + 1)
...

Then, multiplying the above quotient on the right by z f (k), we obtain the power series
for the VIT transform given by (14).

3. Properties of the VIT Transform

The VIT transform satisfies several properties that are analogous to the properties of
the ordinary z-transform. It also satisfies a key property involving multiplication by an
arbitrary time function which is not shared by the ordinary z-transform. We begin with
linearity and then consider the VIT transform of left and right time shifts. In the last part of
the section, we utilize the results to prove that functions satisfying a linear time-varying
difference equation have transforms which are left polynomial fractions.

It is obvious from the definition given by Equation (8) that taking the VIT transform
is a R-linear operation. That is, if F(z, k) and G(z, k) are the transforms of the functions
f (n, k) and g(n, k), then for any real numbers c1, c2, the transform of c1 f (n, k) + c2g(n, k) is
equal to c1F(z, k) + c2G(z, k). Thus, we have the transform pair

c1 f (n, k) + c2g(n, k) ↔ c1F(z, k) + c2G(z, k). (20)

In addition to being R-linear, the VIT transform is also right A-linear. That is, given
b1(k), b2(k) ε A, we have the transform pair

f (n, k)b1(k) + g(n, k)b2(k) ↔ F(z, k)b1(k) + G(z, k)b2(k). (21)

This follows directly from the definition of the VIT transform.
Given the function f (n, k) with initial value f (k, k) = f (k), consider the one-step

left shift f (n + 1, k). The VIT transform of f (n + 1, k) is equal to ∑∞
i=0 z−i f (i + k + 1, k).

Defining the change of index i = i + 1 gives

∞
∑

i=0
z−i f (i + k + 1, k) =

∞
∑

i=1
z−(i−1) f

(
i + k, k

)
= z

[
∑∞

i=0 z−i f
(
i + k, k

)
− f (k, k)

]
= zF(z, k)− z f (k),

where F(z, k) is the VIT transform of f (n, k). Therefore, we have the following transform pair

f (n + 1, k) ↔ zF(z, k)− z f (k). (22)

This result is a direct analogue of the left-shift property of the ordinary z-transform.
Given a positive integer q, the VIT transform pairs for the q-step left shift f (n + q, k)

and q-step right shift f (n− q, k) are

f (n + q, k) ↔ zqF(z, k)− zq f (k)− zq−1 f (k + 1)− · · · − z f (k + q− 1) (23)



Eng 2021, 2 105

f (n− q, k) ↔ z−qF(z, k) + f (k− q) + z−1 f (k− q + 1) + · · ·+ z−q+1 f (k− 1), (24)

where F(z, k) is the transform of f (n, k) and f (k + r) = f (k + r, k) for r = 0, ±1,±2, . . ..
The straight-forward proof of these transform pairs is omitted.

For the ordinary z-transform, there are several properties arising from the multiplica-
tion by particular time functions. These all have analogues in the VIT transform domain.
We begin by considering multiplication by n.

Given f (n, k) with VIT transform F(z, k) defined by Equation (8), for each fixed k ε Z,
let d

dz F(z, k) denote the derivative of F(z, k) with respect to z. Then, the VIT transform pair
for the function n f (n, k) is

n f (n, k) ↔ −z
d
dz

F(z, k) + F(z, k)k. (25)

To prove the transform pair (25), take the derivative with respect to z of both sides of
Equation (8) for each fixed value of k ε Z. This gives

d
dz F(z, k) =

∞
∑

i=0
(−i)z−i−1 f (i + k, k)

= −z−1 ∑∞
i=0 iz−i f (i + k, k).

Hence,

− z
d
dz

F(z, k) = ∑∞
i=0 z−ii f (i + k, k). (26)

Note that iz−i = z−ii, since the coefficient i of z−i does not depend on the initial time
time k. Then, adding F(z, k)k to both sides of Equation (26) results in

− z
d
dz

F(z, k) + F(z, k)k = ∑∞
i=0 z−i(i + k) f (i + k, k). (27)

The right side of Equation (27) is equal to the VIT transform of n f (n, k), and thus (25)
is verified.

To illustrate the application of the transform pair (25), let f (n, k) = 1, n ≥ k. Then,
using the transform pair (11) with a = 1 and f (k) = 1, we have F(z, k) = (z− 1)−1z, and
using the transform pair (25), we have that the VIT transform of the ramp function n, n ≥ k,
is given by

−z d
dz

[
(z− 1)−1z

]
+ (z− 1)−1zk = −z

[
−(z− 1)−2z + (z− 1)−1

]
+ (z− 1)−1zk

= (z− 1)−2[z2 − z(z− 1) + (z− 1)zk
]

= (z− 1)−2[z + (z− 1)zk].

This results in the following transform pair

n, n ≥ k ↔ (z− 1)−2[z + (z− 1)zk]. (28)

We shall now consider multiplication by cn, where c is a nonzero real or complex
number. When c is a complex number, we need to generalize the above ring framework to
include coefficients which are functions from Z into the field C of complex numbers. In
other words, ring A now consists of all functions from Z into C.

Given a function f (n, k) with VIT transform F(z, k) defined by (8), and given a nonzero
real or complex number c, we can scale z in F(z, k) by replacing z by z

c . This results in

F
( z

c
, k
)
= ∑∞

i=0

( z
c

)−i
f (i + k, k) = ∑∞

i=0 z−ici f (i + k, k). (29)

The right side of Equation (29) is equal to the VIT transform of cn−k f (n, k), n ≥ k.
Thus, we have the transform pair
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cn−k f (n, k), n ≥ k ↔ F
( z

c
, k
)

. (30)

Using the right A-linearity property, we can multiply both sides of the transform
pair (30) on the right by ck, which results in the transform pair

cn f (n, k), n ≥ k ↔ F
( z

c
, k
)

ck. (31)

If F(z, k) is given in the left fraction form F(z, k) = µ(z, k)−1ν(z, k), where µ(z, k) and
ν(z, k) are polynomials belonging to A[z], then for any real or complex number c, we have

F
( z

c
, k
)
= µ

( z
c

, k
)−1

ν
( z

c
, k
)

(32)

In other words, the scaling of z in F(z, k) can be carried out in the numerator and
denominator of the left fraction. This is the case since c is a constant and the noncommuta-
tivity of multiplication in the ring A

((
z−1)) has no effect on constant functions. Hence, for

example, from the transform pair (15) and using (30) with the scaling (31), we obtain the
transform pair

cn−k
[

n−1
∏

r=k
a(r)

]
f (k), n ≥ k ↔

( z
c − a(k)

)−1 z
c f (k)

↔ (z− ca(k))−1z f (k)

We can use the transform pair (31) to compute the VIT transform of a function f (n, k)
multiplied by a sine or cosine: Let Ω be a positive real number and consider the complex
exponentials ejΩ and e−jΩ, where j =

√
−1. Then, given the function f (n, k) with transform

F(z, k), using Euler’s formula and the transform pair (31), we have the transform pairs

cos(Ωn) f (n, k) ↔ 1
2

[
F
(

e−jΩz, k
)

e−jΩk + F
(

ejΩz, k
)

ejΩk
]

(33)

sin(Ωn) f (n, k)↔ j
2

[
F
(

e−jΩz, k
)

e−jΩk − F
(

ejΩz, k
)

ejΩk
]
. (34)

From the transform pairs (33) and (34), we can determine the VIT transforms of the
cosine and sine functions: Again taking f (n, k) = 1, n ≥ k, so that F(z, k) = (z− 1)−1z,
we have:

F
(
e−jΩz, k

)
e−jΩk + F

(
ejΩz, k

)
ejΩk =

(
e−jΩz− 1

)−1e−jΩze−jΩk +
(
ejΩz−

)−1ejΩzejΩk

=
[
z2 − z2(cosΩ) + 1

]−1
[(

ejΩz− 1
)
e−jΩze−jΩk +

(
e−jΩz− 1

)
ejΩzejΩk

]
= 2

[
z2 − 2(cosΩ)z + 1

]−1[z2cos(Ωk)− zcos(Ω(k + 1))
]
.

This results in the transform pair

cos(Ωn), n ≥ k ↔
[
z2 − z2(cosΩ) + 1

]−1[
z2cos(Ωk)− zcos(Ω(k + 1))

]
. (35)

A similar derivation gives the pair

sin(Ωn), n ≥ k ↔
[
z2 − z2(cosΩ) + 1

]−1[
z2sin(Ωk)− zsin(Ω(k + 1))

]
. (36)

Next, we consider the summation property: Given the function f (n, k), with transform
F(z, k), let s(n, k) denote the sum of f (n, k) defined by s(n, k) = ∑n

r=k f (r, k), n ≥ k. Then,

s(n, k) = s(n− 1, k) + f (n, k), (37)

And taking the VIT transform of both sides of Equation (37) and using the right shift
property given by the transform pair (24) results in S(z, k) = z−1S(z, k) + s(k− 1, k) +
F(z, k). Setting s(k− 1, k) = 0 and solving for S(z, k) gives S(z, k) = (z− 1)−1zF(z, k).
Thus, we have the transform pair
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∑n
r=k f (r, k), n ≥ k ↔ (z− 1)−1zF(z, k). (38)

Now, given functions f (n, k), g(n, k) with f (n, k) = 0 and g(n, k) = 0 for n < k, let
d(n, k) denote the function defined by

d(n, k) = ∑n
r=k f (n, r)g(r, k). (39)

The operation in Equation (39) arises in the study of linear time-varying systems,
which are considered in Section 6. We have the following result on the VIT transform
of d(n, k).

Proposition 1. With d(n, k) defined by Equation (39), the VIT transform of d(n, k) is given by

D(z, k) = F(z, k)G(z, k), (40)

where F(z, k) and G(z, k) are the VIT transforms of f (n, k) and g(n, k).

Proof. Since f (n, k) = 0, n < k, the upper value of the summation in Equation (39) can be
taken to be ∞. Then, with the change of index r = r− k, Equation (39) becomes

d(n, k) = ∑∞
r=0 f (n, r + k)g(r + k, k). (41)

Taking the VIT transform of both sides of Equation (41) gives

D(z, k) = ∑∞
i=0 ∑∞

r=0 z−i f (i + k, r + k)g(r + k, k). (42)

Applying the index change i = i− r in Equation (42) yields

D(z, k) = ∑∞
i=−r ∑∞

r=0 z−iz−r f
(
i + r + k, r + k

)
g(r + k, k). (43)

By definition of multiplication in A
((

z−1)), z−r f
(
i + r + k, r + k

)
= f

(
i + k, k

)
z−r

and since f
(
i + k, k

)
= 0 for i < 0, Equation (43) reduces to

D(z, k) = ∑∞
i=0 z−i f

(
i + k, k

)
∑∞

r=0 z−rg(r + k, k). (44)

The right side of Equation (44) is equal to F(z, k)G(z, k), and thus, Equation (40)
is verified. �

The final property we consider is multiplication by an arbitrary function: Given
f (n, k), and a(n) ε A, the VIT transform of the product a(n) f (n, k) is equal to

∑∞
i=0 z−ia(i + k) f (i + k, k). (45)

By definition of multiplication in A
((

z−1)), Equation (45) can be written as
∑∞

i=0 a(k)z−i f (i + k, k), and thus, we have the transform pair

a(n) f (n, k) ↔ a(k)F(z, k). (46)

Therefore, multiplication by a function of n in the time domain is equivalent to
multiplication by the function on the left in the transform domain with the time variable n
replaced by the initial time variable k.

For example, let a(n) = n and f (n, k) = 1, n ≥ k. Then, by (46), we have the
transform pair

n, n ≥ k ↔ k(z− 1)−1z. (47)

The transform in (47) looks quite different from the result in (28), but the transforms
must be equal. That is, we must have

k(z− 1)−1z = (z− 1)−2[z + (z− 1)zk]. (48)
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To verify Equation (48), multiply both sides on the left by (z− 1)2 and on the right by
z− 1. This gives

(z− 1)2kz = [z + (z− 1)zk](z− 1). (49)

By the definition of multiplication in A
((

z−1)), kz = z(k− 1), and using this in the
right side of Equation (49) gives

[z + (z− 1)zk](z− 1) = z2 + (z− 1)z2(k− 1)− z− (z− 1)zk
= z2 − (z− 1)z2 − z + [(z− 1)z− (z− 1)]zk
= −(z− 1)2z + (z− 1)2zk.

(50)

Finally, using kz = z(k− 1) in the left side of Equation (49) and comparing the result
with Equation (50) verifies Equation (48).

Using the transform pair (46) and the transform pair (23) for the left shift, we have
the following result relating linear time-varying difference equations and left polynomial
fractions in the ring A

((
z−1)).

Theorem 1. The VIT transform F(z, k) of f (n, k) has the left polynomial fraction form

F(z, k) =
[
zN + ∑N−1

i=0 µi(k)zi
]−1[

∑M
i=1 νi(k)zi

]
, M ≤ N, µi, νi ε A, (51)

If and only if f (n, k) satisfies the Nth-order linear time-varying difference equation:

f (n + N, k) + ∑N−1
i=0 µi(n) f (n + i, k) = 0, n ≥ k. (52)

Proof. Note that in Equation (51), we are writing the coefficients of the zi on the left.
Suppose f (n, k) satisfies Equation (52). Then, taking the transform of Equation (52) and
using the transform pair (46) and the left-shift property given by (23) results in[

zN + ∑N−1
i=0 µi(k)zi

]
F(z, k) + ∑N

i=1 ziqi(k) = 0, (53)

where the qi(k) are combinations of the initial values of f (n, k) at the initial times n = k + i,
i = 0, 1, 2, · · · , N − 1. Then, solving Equation (53) for F(z, k) yields the left-fraction form

F(z, k) =
[
zN + ∑N−1

i=0 µi(k)zi
]−1[
−∑N

i=1 ziqi(k)
]
. (54)

Conversely, suppose that the transform F(z, k) of the function f (n, k) is given by
Equation (51). Multiplying both sides of Equation (51) on the left by zN + ∑N−1

i=0 µi(k)zi Yields.[
zN + ∑N−1

i=0 µi(k)zi
]

F(z, k) = ∑M
i=1 νi(k)zi. (55)

Using the transform pair δ(n− k + i) ↔ zi , we have that the inverse transform of
the right side of Equation (55) is ∑M

i=1 νi(n)δ(n− k + i) = 0, n ≥ k, and using the transform
pairs (23) and (46), the inverse transform of the left side of Equation (55) is equal to
f (n + N, k) + ∑N−1

i=0 µi(n) f (n + i, k), n ≥ k, and thus Equation (52) is verified. �

The properties of the VIT transform which were derived in this section are given in
Table 1, and Table 2 contains a list of basic transform pairs. Various additional transform
pairs are computed in the next section by using scaling of z−i by time functions.



Eng 2021, 2 109

Table 1. Properties of the variable initial time (VIT) transform.

Property Transform Pair

Linearity c1 f (n, k) + c2g(n, k) ↔ c1F(z, k) + c2G(z, k), c1, c2 ε R

Right A-linearity f (n, k)b1(k) + g(n, k)b2(k) ↔ F(z, k)b1(k) + G(z, k)b2(k), b1, b2 ε A

Left shift f (n + q, k) ↔ zqF(z, k)− zq f (k)− zq−1 f (k + 1)− · · · − z f (k + q− 1)

Right shift f (n− q, k) ↔ z−qF(z, k) + f (k− q) + z−1 f (k− q + 1) + . . . + z−q+1 f (k− 1)

Multiplication by n n f (n, k) ↔ −z d
dz F(z, k) + F(z, k)k

Multiplication by cn−k cn−k f (n, k) ↔ F
( z

c , k
)

Multiplication by cos(Ωn) cos(Ωn) f (n, k) ↔ 1
2

[
F
(
e−jΩz, k

)
e−jΩk + F

(
ejΩz, k

)
ejΩk]

Multiplication by sin(Ωn) sin(Ωn) f (n, k) ↔ j
2

[
F
(
e−jΩz, k

)
e−jΩk − F

(
ejΩz, k

)
ejΩk]

Summation
n
∑

r=k
f (r, k), n ≥ k ↔ (z− 1)−1zF(z, k)

d(n, k) =
n
∑

r=k
f (n, r)g(r, k),

f (n, k) = 0, g(n.k) = 0, n < k
d(n, k) ↔ F(z, k)G(z, k)

Multiplication by a(n) a(n) f (n, k) ↔ a(k)F(z, k)

Table 2. Basic VIT transform pairs.

δ(n− k) ↔ 1

δ(n− k + i) ↔ zi , i ε Z

an−k f (k), n ≥ k ↔ (z− a)−1z f (k), a ε R[
n−1
∏

r=k
a(r)

]
f (k), n > k ↔ (z− a(k))−1z f (k), a ε A

x(n) = exp
[
−c2(n− N)2

]
, n ≥ k ↔

(
z− e−c2(2(k−N)+1)

)−1
zx(k), c ε R

n, n ≥ k ↔ (z− 1)−2[z + (z− 1)zk]

n− k, n ≥ k ↔ (z− 1)−2z

cn−k
[

n−1
∏

r=k
a(r)

]
f (k), n ≥ k ↔ (z− ca(k))−1z f (k)

cos(Ωn), n ≥ k ↔
[
z2 − z2(cosΩ) + 1

]−1[z2cos(Ωk)− zcos(Ω(k + 1))
]

sin(Ωn), n ≥ k ↔
[
z2 − z2(cosΩ) + 1

]−1[z2sin(Ωk)− zsin(Ω(k + 1))
]

cncos(Ωn), n ≥ k ↔
[
z2 − z2c(cosΩ) + c2]−1[z2cos(Ωk)− (zc)cos(Ω(k + 1))

]
cnsin(Ωn), n ≥ k ↔

[
z2 − z2c(cosΩ) + c2]−1[z2sin(Ωk)− (zc)sin(Ω(k + 1))

]
4. Scaling of z−i by Time Functions

In the VIT transform domain, it is possible to carry out scaling of z−i by time functions.
This results in transform pairs for a large class of time functions including sinusoids with
general time-varying amplitudes and frequencies. The development is given in terms of a
semilinear transformation from A into A, where as before, A consists of all functions from
Z into R or C.

Given a function a ε A, let Sa denote the mapping from A into A defined by
Sa(b) = aσ(b), b ε A, where σ is the left shift operator on A. Hence, aσ(b) is the ele-
ment of A equal to a(k)b(k + 1), k ε Z. In the mathematics literature [12], Sa is said to be a
semilinear transformation with respect to σ. This type of operator was utilized in [10] in
the state-space theory of linear time-varying discrete-time systems.

The i-fold composition of the operator Sa is given by

Si
a(b) = a(σa)(σ2a)

(
σ3a
)
· · · (σi−1a)

(
σib
)

, i > 0, (56)
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And when i = 0, S0
a(b) = 1. Evaluating Equation (56) at k ε Z gives

Si
a(b)(k) = a(k)a(k + 1) · · · a(k + i− 2)a(k + i− 1)b(k + i), i > 0. (57)

Note that when b(k) = 1 for all k ε Z and a is the constant function (k) = a, a ε R,
k ε Z, then Si

a(1) = ai, and thus Si
a(1) is a time-varying version of the power function.

Then, we have the following result.

Proposition 2. Suppose that the two-variable function f (n, k) satisfies the first-order recursion

f (n + 1, k) = a(n) f (n, k), n ≥ k, a ε A, (58)

With initial value f (k, k) = f (k) at initial time k. then,

f (n, k) = Sn−k
a (1)(k) f (k), n ≥ k. (59)

Proof. Setting i = n− k and b(k) = 1(k) = 1, k ε Z in Equation (57) yields

Sn−k
a (1)(k) = a(k)a(k + 1) . . . a(n− 2) a(n− 1). (60)

Rearranging the factors in Equation (60) and comparing with the result given by
Equation (13) verifies that f (n, k) is given by Equation (59). �

Using (15), we have the transform pair

f (n, k) = Sn−k
a (1)(k) f (k), n ≥ k ↔ (z− a(k))−1z f (k). (61)

This is the transform pair for the general form in the case of a first-order left polynomial
fraction, with the time function f (n, k) expressed in terms of the semilinear transforma-
tion Sa. We shall now define scaling in terms of Sa.

Given the time function f (n, k) with VIT transform

F(z, k) =
∞

∑
i=0

z−i f (i + k, k) (62)

We can scale z−i in Equation (62) by replacing z−i with z−iSi
a(1), where Si

a(1) is the
time function defined by Equation (57) with b(k) = 1(k). The resulting VIT transform is
given by

∑∞
i=0 z−iSi

a(1)(k) f (i + k, k), (63)

Which will be denoted by F
(
z−iSi

a(1), k
)
. We formalize this construction as follows.

Definition 2. Given a ε A and the VIT transform F(z, k) ε A
[[

z−1]], the time-function scaled
transform is the power series F

(
z−iSi

a(1), k
)
ε A
[[

z−1]] defined by

F
(

z−iSi
a(1), k

)
= ∑∞

i=0 z−iSi
a(1)(k) f (i + k, k). (64)

We have the following result on the inverse transform of the scaled transform
given by (63).

Proposition 3. Given f (n, k) with transform F(z, k), the inverse VIT transform of the scaled
transform F

(
z−iSi

a(1), k
)

is equal to Sn−k
a (1) f (n, k), n ≥ k.

Proof. The result follows directly from the definition of the VIT transform applied to the
function Sn−k

a (1) f (n, k), n ≥ k. �
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By Proposition 3, scaling of F(z, k) by replacing z−i with z−iSi
a(1) corresponds to the

multiplication of f (n, k) by Sn−k
a (1) in the time domain. This results in the transform pair

Sn−k
a (1) f (n, k), n ≥ k ↔ F

(
z−iSi

a(1), k
)

. (65)

The transform pair (65) is the time-varying version of the transform pair (30). In fact,
when a(k) = c for all k ε Z, c ε R, Sn−k

a (1) = cn−k, and (65) reduces to (30).
Given b ε A, by right A-linearity of the VIT transform operation, we can multiply (65)

on the right by b(k), which results in the transform pair

Sn−k
a (1)b(k) f (n, k), n ≥ k ↔ F

(
z−iSi

a(1), k
)

b(k). (66)

Note that the time function w(n, k) = Sn−k
a (1)b(k) in (66) satisfies the difference

equation w(n + 1, k) = a(n)w(n, k), n ≥ k, with initial value w(k, k) = b(k). Since a, b ε A
in (66) are arbitrary functions from Z into R or C, a large number of transform pairs can be
generated from (66). As shown now, by taking a to be a complex exponential function, this
result can be used to determine the transform of functions multiplied by a sinusoid with
arbitrary time-varying frequency Ω(n) ε A.

Let γ(n) = ejΩ(n)n, where again j =
√
−1. Then γ(n + 1) = ejΩ(n+1)(n+1) =

ej[Ω(n+1)(n+1)−Ω(n)n]ejΩ(n)n = a(n)γ(n), where a(n) = exp[j[Ω(n + 1)(n + 1)−Ω(n)n]].

By Proposition 2, γ(n) = Sn−k
a (1)(k)ejΩ(k)k, n ≥ k. Now, given f (n, k), by Euler’s formula

we have
cos(Ω(n)n) f (n, k) =

1
2
[γ(n) f (n, k) + γ(n) f (n, k)], (67)

where γ(n) is the complex conjugate of γ(n). Then, taking the transform of the right side
of Equation (67) and using (66), we have the transform pair

cos(Ω(n)n) f (n, k), n ≥ k ↔ 1
2

[
F
(

z−iSi
a(1), k

)
ejΩ(k)k + F

(
z−iSi

a(1), k
)

e−jΩ(k)k
]
, (68)

where a is the complex conjugate of a and F(z, k) is the transform of f (n, k). Similarly,
we have the following transform pair for multiplication by sin(Ω(n)n)

sin(Ω(n)n) f (n, k), n ≥ k ↔ j
2

[
F
(

z−iSi
a(1), k

)
ejΩ(k)k − F

(
z−iSi

a(1), k
)

e−jΩ(k)k
]
. (69)

The application of the transform pairs (65) and (68) is illustrated below in the case
when F(z, k) is a left polynomial fraction.

Suppose that F(z, k) = µ(z, k)−1ν(z, k), where µ(z, k) 6= 0 and ν(z, k) are elements of
the skew polynomial ring A[z]. With N equal to the degree of µ(z, k), the degree of ν(z, k)
must be less than or equal to N, since F(z, k) is a power series in z−1. Then,

µ(z, k)−1ν(z, k) = µ(z, k)−1zN(z−Nν(z, k)) =
[
z−Nµ(z, k)

]−1[
(z−Nν(z, k)

]
, (70)

where the elements comprising the right side of Equation (70) are polynomials in z−1.
Hence, the transform F(z, k) can be written as a left fraction consisting of polynomials in z−1.

Theorem 2. Suppose that F(z, k) = µ(z, k)−1ν(z, k), where µ(z, k) = z−N + ∑N−1
i=0 z−iµi and

ν(z, k) = ∑M
i=0 z−iνi, µi, νi ε A. Given a ε A, let µ

(
z−iSi

a(1), k
)

and ν
(
z−iSi

a(1), k
)

denote the

time-function scaled polynomials defined by µ
(
z−iSi

a(1), k
)
= z−N + ∑N−1

i=0 z−iSi
a(1)(k)µi(k),

ν
(
z−iSi

a(1), k
)
= ∑M

i=0 z−iSi
a(1)(k)νi(k). Then

F
(

z−iSi
a(1), k

)
= µ

(
z−iSi

a(1), k
)−1

ν
(

z−iSi
a(1), k

)
. (71)

Proof. By definition of F(z, k)

F(z, k)µ(z, k)F(z, k) = ν(z, k), (72)
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where the multiplication µ(z, k)F(z, k) is carried out in the ring A
[[

z−1]]. Define
the mapping

ρa : A
[[

z−1
]]
→ A

[[
z−1
]]

:
∞

∑
i=0

z−iei →
∞

∑
i=0

z−iSi
a(1)ei, ei ε A (73)

Then, the operation of scaling of z−i by the time function Si
a(1) is equivalent to apply-

ing the mapping ρa. Applying ρa to both sides of Equation (72) gives ρa[µ(z, k)F(z, k)] =

ν
(
z−iSi

a(1), k
)
. It will be shown that ρa is a multiplicative mapping, and thus

ρa[µ(z, k)F(z, k)] = ρa[µ(z, k)]ρa[F(z, k)], which proves that µ
(
z−iSi

a(1), k
)

F
(
z−iSi

a(1), k
)
=

ν
(
z−iSi

a(1), k
)
, and (71) is verified: For any integers i, j ≥ 0, ρa

(
z−iz−j) = ρa

(
z−(i+j)

)
=

z−(i+j)Si+j
a (1), and using Equation (57) yields.

z−(i+j)Si+j
a (1) = z−(i+j)a(σa)

(
σ2a
)
· · ·
(
σj−1a

)(
σja
)

. . .
(
σi+j−1)

= z−iSi
a(1)z−jSj

a(1) = ρa
(
z−i)ρa

(
z−j).

Hence, ρa
(
z−iz−j) = ρa

(
z−i)ρa

(
z−j). Finally, for any e ε A, ρa

(
z−ie

)
= z−iSi

a(1)e =
ρa
(
z−i)e, and thus ρa is multiplicative. �

Combining Proposition 3 and Theorem 2 yields the following result.

Theorem 3. Suppose that f (n, k) has VIT transform F(z, k) = µ(z, k)−1ν(z, k), where µ(z, k) =
z−N + ∑N−1

i=0 z−iµi and ν(z, k) = ∑M
i=0 z−iνi, µi, νi ε A. Then, for any a ε A, the transform of

Sn−k
a (1)(k) f (n, k), n ≥ k is given by F

(
z−iSi

a(1), k
)
= µ

(
z−iSi

a(1), k
)−1

ν
(
z−iSi

a(1), k
)
.

As illustrated now, Theorem 3 can be used to generate left polynomial fraction
transforms from a given polynomial fraction such as the ones in Table 2: Let f (n, k) =
cos(Ωn), n ≥ k, Ω ε R, and given a, b ε A, let h(n, k) = w(k, n)cos(Ωn), n ≥ k, where
w(n, k) = Sn−k

a (1)b(k), n ≥ k. From (35), the transform F(z, k) of f (n, k) is equal to

F(z, k) =
[
z2 − z2(cosΩ) + 1

]−1[
z2cos(Ωk)− zcos(Ω(k + 1))

]
. (74)

Rewriting the right side of (74) as a polynomial in z−1 gives

F(z, k) =
[
1− z−12(cosΩ) + z−2

]−1[
cos(Ωk)− z−1cos(Ω(k + 1))

]
. (75)

Then, scaling z−i by Si
a(1) in Equation (75) and using Theorem 3, we have

F
(

z−1Sa(1), k
)
=
[
1− z−1a(k)2(cosΩ) + z−2a(k)a(k + 1)

]−1[
cos(Ωk)−z−1a(k)cos(Ω(k + 1))

]
.

Hence, the transform of h(n, k) = Sn−k
a (1)b(k)cos(Ωn), n ≥ k is equal to[

1− z−1a(k)2(cosΩ) + z−2a(k)a(k + 1)
]−1[

cos(Ωk)− z−1a(k)cos(Ω(k + 1))
]
b(k). (76)

Rewriting the transform (76) in terms of powers of z with coefficients moved to the
left of the zi, and applying Theorem 1, we have that h(n, k) satisfies the second-order
difference equation

h(n + 2, k)− 2a(n− 1)(cosΩ)h(n + 1, k) + a(n− 2)a(n− 1)h(n, k) = 0, n ≥ k. (77)

Note that if a(n) = c for all n ε Z, then Sn−k
a (1) = cn−k, n ≥ k, h(n, k) = cn−kcos(Ωn),

n ≥ k, and Equation (77) reduces to the well-known recursion for the exponentially-
weighted cosine function.

The difference Equation (77) is the recursion for the cosine function cos(Ωn) with a
general weighting function w(n, k), where the only constraint on w(n, k) is that it satisfies
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the first-order recursion w(n + 1, k) = a(n)w(n, k), n ≥ k. As an application of this result,
let the weighting w(n, k) be equal to the Gaussian x(n) defined by Equation (16). Then,
h(n) = x(n)cos(Ωn), n ≥ k is the Gaussian-windowed cosine function, which is equal
to the real part of the Gabor-Morlet wavelet [8]. By Equation (17), x(n + 1) = a(n)x(n)
with a(n) = exp

[
−c2(2(n− N) + 1)

]
. Thus, inserting a(n) into Equation (77), we have

that the wavelet h(n, k) = h(n) = x(n)cos(Ωn) satisfies the second-order recursion
h(n + 2) − 2exp

[
−c2(2(n− N)− 1)

]
(cosΩ)h(n + 1) + exp

[
−4c2(n− N − 1)

]
h(n) = 0,

n ≥ k. This result can be derived in the time domain by attempting to express h(n + 2) in
terms of h(n + 1) and h(n), but as seen here, it is an immediate consequence of
Theorems 1 and 3.

5. Combining and Decomposing Polynomial Fractions

In the first part of this section, it is shown that left polynomial fractions can be
combined using the extended right Euclidean algorithm. The algorithm is carried out with
the coefficients of the polynomials belonging to the quotient field Q(A) of the ring A. We
begin with the definition of Q(A) and then give the extended right Euclidean algorithm
for elements belonging to the skew polynomial ring Q(A)[z].

5.1. Extended Euclidean Algorithm

The quotient field Q(A) of A consists of all formal ratios a/b of elements a, b ε A,
b 6= 0. If b(k) 6= 0 for all k ε Z, the ratio a/b defines a function from Z into R or C, and thus
it is an element of A. If b(k) has zero values, then when a/b is viewed as a function on Z,
it will have singularities. That is, a(k)/b(k) is not defined for any such values of k. With
multiplication and addition defined by

[a(n)/b(n)][c(n)/d(n)] = a(n)c(n)/b(n)d(n)
a(n)/b(n) + c(n)/d(n) = [a(n)d(n) + b(n)c(n)]/b(n)d(n)

Q(A) is a field. The left shift operator σ extended to Q(A) is defined by σ(a(n)/b(n) )
= a(n + 1)/b(n + 1).

The skew polynomial ring Q(A)[z] consists of all polynomials in z with coefficients
in Q(A), and with the noncommutative multiplication zie =

(
σie
)
zi, i ≥ 0, e ε Q(A).

Since Q(A) is a field, it follows from the results in [9] that Q(A)[z] is a right Euclidean
ring, and since σ is surjective, it is also a left Euclidean ring. As a result, the extended
left and right Euclidean algorithms can be carried out in the ring Q(A)[z]. A description
of the algorithms is given in [13] for a general skew polynomial ring (see also [14]). For
completeness, the extended right Euclidean algorithm is given next.

Let r1(z), r2(z) ε A[z], with deg(r2) ≤ deg(r1), where “deg” denotes degree. Dividing
r2 into r1 on the right in the ring Q(A)[z] gives r1 = q2r2 + r3, where the remainder r3 is
equal to zero or deg(r3) < deg(r2). The division process is repeated by dividing r3 into r2,
which gives remainder r4 with r4 = 0 or deg(r4) < deg(r3). The process is continued by
dividing r4 into r3, etc. until rm is equal to zero for some integer m. It is important to note
that even though r1(z) and r2(z) are polynomials in z with coefficients belonging to A, in
general the remainders r3, r4, . . . , rm−2 are elements of Q(A)[z].

Given the sequence of divisions

ri−2 = qi−1ri−1 + ri, i = 3, 4, . . . , m, (78)

We then have the following known result ([13,14]).

Proposition 4. With ri and qi given by Equation (78), define si = si−2 − qi−1si−1, ti =
ti−2 − qi−1ti−1, i = 3, 4, . . . , m, where s1 = 1, s2 = 0, t1 = 0, t2 = 1. Then,

ri = sir1 + tir2, i = 3, 4, . . . , m. (79)
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Proof. When i = 3, s3 = 1, t3 = −q2, and Equation (79) becomes r3 = r1 − q2r2, which is
equivalent to Equation (78) when i = 3. When i = 4, s4 = −q3, t4 = 1 + q3q2, and

s4r1 + t4r2 = −q3r1 + (1 + q3q2)r2. (80)

Setting i = 4 in Equation (78) gives

r4 = r2 − q3r3 = r2 − q3(r1 − q2r2) = r2 − q3r1 + q3q2r2. (81)

The right sides of Equations (80) and (81) are equal, and thus Equation (79) is verified
for i = 4. For any i > 4, si+1 = si−1 − qisi, and ti+1 = ti−1 − qiti. Hence,

si+1r1 + ti+1r2 = [si−1 − qisi]r1 + [ti−1 − qiti]r2
si+1r1 + ti+1r2 = si−1r1 + ti−1r2 − qi[sir1 + tir2]

(82)

Suppose Equation (79) holds for i− 1 and i, then the right side of Equation (82) is equal
to ri−1 − qiri, which by Equation (78) is equal to ri+1. Therefore, ri+1 = si+1r1 + ti+1r2, and
by the second principle of mathematical induction, Equation (79) is true for all i ≥ 3. �

Since rm = 0, by Proposition 4,

smr1 = −tmr2. (83)

By Equation (83), both r1 and r2 divide smr1 on the right, and thus the polynomial
smr1 is a common right multiple of r1 and r2. As a consequence of the properties of the
Euclidean algorithm, smr1 is the least common right multiple (lcrm) of r1 and r2. The lcrm
is unique up to a multiplicative factor in Q(A).

5.2. Sum of Two Polynomial Fractions

Suppose that the discrete-time functions f1(n, k) and f2(n, k) (which will be denoted by
f1(n) and f2(n), respectively) satisfy the following linear time-varying difference equations

f1(n + N1) + ∑N1−1
i=0 µi(n) f1(n + i) = 0, n ≥ k, µi ε A (84)

f2(n + N2) + ∑N2−1
i=0 ξi(n) f2(n + i) = 0, n ≥ k, ξi ε A. (85)

Let f (n) denote the sum f (n) = f1(n) + f2(n). It follows from the VIT transform
approach that f (n) also satisfies a recursion over A. To show this, let F1(z, k), F2(z, k)
denote the transforms of f1(n) and f2(n), respectively. Using Theorem 1, we have F1(z, k) =
µ(z, k)−1ν(z, k), F2(z, k) = ξ(z, k)−1η(z, k), where µ(z, k) = zN1 + ∑N1

i=0 µizi, ξ(z, k) = zN1 +

∑N2
i=0 ξizi, and ν,η are polynomials belonging to A[z]. Then, by linearity of the transform

operation, the transform F(z, k) of f (n) is equal to

F(z, k) = µ(z, k)−1ν(z, k) + ξ(z, k)−1η(z, k). (86)

Applying the extended right Euclidean algorithm to µ(z, k) and ξ(z, k) results in the
lcrm sm(z, k)µ(z, k) = −tm(z, k)ξ(z, k), where in general sm(z, k) and tm(z, k) are polynomi-
als with coefficients in Q(A). Then, multiplying both sides of Equation (86) on the left by
sm(z, k)µ(z, k) gives sm(z, k)µ(z, k)F(z, k) = sm(z, k)ν(z, k)− tm(z, k)η(z, k) and thus, the
left polynomial fraction form of F(z, k) is

F(z, k) = [sm(z, k)µ(z, k)]−1[sm(z, k)ν(z, k)− tm(z, k)η(z, k)]. (87)
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Suppose that sm(z, k)µ(z, k) = zN + ∑N−1
i=0 ei(k)zi. Then, by Theorem 1, the inverse

transform f (n) of F(z, k) satisfies the Nth-order linear time-varying difference equation

f (n + N) + ∑N−1
i=0 ei(n) f (n + i) = 0, n ≥ k. (88)

Since sm(z, k) ε Q(A)[z], the coefficients ei(n) in Equation (88) are elements of Q(A)
in general, and thus (88) is a linear recursion over Q(A). We can rewrite Equation (88) as a
recursion over A as follows: Suppose that ei(n) =

vi(n)
wi(n)

, vi, wi ε A, i = 0, 1, . . . , N− 1, and
let p(n) = w1(n)w2(n) . . . wN−1(n). Then, p(n)ei(n) ε A for all i, and multiplying both
sides of (88) by p(n) results in the following recursion over A

p(n) f (n + N) + ∑N−1
i=0 p(n)ei(n) f (n + i) = 0, n ≥ k. (89)

Note that if p(q) = 0 for some value q of n, then Equation (88) is singular when n = q,
and f (q + N) cannot be determined from either Equation (88) or (89). When p(q) = 0,
f (q + N) can be computed using the relationship f (q + N) = f1(q + N) + f2(q + N),
where f1(n) and f2(n) are given by the recursions (84) and (85).

The possible zero values of p(n) in the recursion Equation (89) are a result of common
factors appearing in µ(z, k) and ξ(z, k) when k is evaluated at particular integer values.
To see an example of this, suppose that f1(n + 1) = a(n) f1(n) and f2(n + 1) = f2(n) for
n ≥ k, with initial values f1(k) = f2(k) = 1, and where a ε A. Taking the transform using
the transform pair (15) yields

F(z, k) = (z− a(k))−1z + (z− 1)−1z. (90)

Applying the extended right Euclidean algorithm to z − a(k) and z − 1 results in
the lcrm

(z− a(k))
[

1
1− a(k)

]
(z− 1) = (z− 1)

[
1

1− a(k)

]
(z− a(k)). (91)

Multiplying both sides of Equation (90) on the left by the term in Equation (91),
we have[

(z− a(k))
[

1
1− a(k)

]
(z− 1)

]
F(z, k) = (z− 1)

[
1

1− a(k)

]
z + (z− a(k))

[
1

1− a(k)

]
z.

Therefore,

F(z, k) =
[
(z− a(k))

[
1

1− a(k)

]
(z− 1)

]−1[
(z− 1)

[
1

1− a(k)

]
z + (z− a(k))

[
1

1− a(k)

]
z
]

.

This is the left polynomial fraction form of the VIT transform of f (n) = f1(n) + f2(n).
Using the definition of multiplication in Q(A)[z], we obtain

(z− a(k))
[

1
1−a(k)

]
(z− 1) =

[
1

1−a(k+1) z− a(k)
1−a(k)

]
(z− 1)

= 1
1−a(k+1) z2 −

[
a(k)

1−a(k) +
1

1−a(k+1)

]
z + a(k)

1−a(k)

Hence, f (n) = f1(n) + f2(n) satisfies the following recursion over Q(A)

1
1− a(n + 1)

f (n + 2)−
[

a(n)
1− a(n)

+
1

1− a(n + 1)

]
f (n + 1) +

a(n)
1− a(n)

f (n) = 0, n ≥ k. (92)

In this example, p(n) = [1− a(n)][1− a(n + 1)]. Then, multiplying Equation (92) by
p(n) results in the following recursion over A

[1− a(n)] f (n + 2)− [1− a(n + 1)a(n)] f (n + 1) + (1− a(n + 1))a(n) f (n) = 0, n ≥ k. (93)
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Clearly, if a(q) = 1 for some integer q, f (q + 2) cannot be computed from Equation (93).
However, f (q + 2) can be computed from f (q + 2) = f1(q + 2) + f2(q + 2) =
a(q + 1) f1(q + 1) + f2(q + 1). Note that when a(q) = 1, the factors z − a(q) and z − 1
are identical, so they have a common factor when viewed as polynomials in R[z].

In Section 6, it is shown that for a linear time-varying finite-dimensional system, the
VIT transform of the unit-pulse response function is a left polynomial fraction (the transfer
function). Hence, by the results given here, the transfer function of a parallel connection
will in general consist of polynomials over Q(A).

As an application of summing fractions, we shall determine the transform of cos(Ω(n)n)
with arbitrary frequency function Ω(n) ε A. Using the transform pair (68) with f (n, k) = 1,
n ≥ k, since F(z, k) =

(
1− z−1)−1, we have the transform pair

cos(Ω(n)n), n ≥ k ↔
(
1− z−1a

)−1ejΩ(k)k +
(
1− z−1a

)−1e−jΩ(k)k

↔ (z− a)−1zejΩ(k)k + (z− a)−1ze−jΩ(k)k (94)

where a(k) = exp[j[Ω(k + 1)(k + 1)−Ω(k)k]]. Applying the extended right Euclidean
algorithm to z− a and z− a results in the lcrm

(z− a)
[

1
a− a

]
(z− a) = (z− a)

[
1

a− a

]
(z− a). (95)

Now, let Ψ(z, k) denote the VIT transform of cos(Ω(n)n), n ≥ k. Then, by the trans-
form pair (94)

Ψ(z, k) = (z− a)−1zejΩ(k)k + (z− a)−1ze−jΩ(k)k. (96)

Multiplying Equation (96) on the left by (z− a)
[

1
a−a

]
(z− a) = (z− a)

[
1

a−a

]
(z− a)

results in

(z− a)
[

1
a− a

]
(z− a)Ψ(z, k) = (z− a)

[
1

a− a

]
zejΩ(k)k + (z− a)

[
1

a− a

]
ze−jΩ(k)k.

Hence,

Ψ(z, k) =
[
(z− a)

[
1

a− a

]
(z− a)

]−1[
(z− a)

[
1

a− a

]
zejΩ(k)k + (z− a)

[
1

a− a

]
ze−jΩ(k)k

]
. (97)

This is the left polynomial fraction form of the VIT transform of cos(Ω(n)n), where
the frequency Ω(n) is an arbitrary real-valued function of n.

It is possible to rewrite Equation (97) in terms of polynomials with real-valued coeffi-
cient functions: Beginning with the denominator, using the definition of multiplication in
A[z], we have

(z− a)
[

1
a− a

]
(z− a) =

1
σa− σa

z2 −
[

σa
σa− σa

+
a

a− a

]
z +

1
a− a

. (98)

Here, we are using the fact that aa = 1. By (95), we also have

(z− a)
[

1
a− a

]
(z− a) =

1
σa− σa

z2 −
[

σa
σa− σa

+
a

a− a

]
z +

1
a− a

. (99)

Adding both sides of Equations (98) and (99) gives

(z− a)
[

1
a− a

]
(z− a) =

1
2

[
1

σa− σa
z2 −

[
σa + σa
σa− σa

+
a + a
a− a

]
z +

1
a− a

]
. (100)
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Factoring out 1
σa−σa in the right side of Equation (100) results in

(z− a)
[

1
a− a

]
(z− a) =

1
2(σa− σa)

[
z2 −

(
σa + σa +

(σa− σa)(a + a)
a− a

)
z +

σa− σa
a− a

]
,

And thus,[
(z− a)

[
1

a− a

]
(z− a)

]−1
=

[
z2 −

(
σa + σa +

(σa− σa)(a + a)
a− a

)
z +

σa− σa
a− a

]−1
2(σa− σa).

Since a(k) = exp[j[Ω(k + 1)(k + 1)−Ω(k)k]], it follows that the coefficients of z in

z2 −
(

σa + σa +
(σa− σa)(a + a)

a− a

)
z +

σa− σa
a− a

, (101)

Are real-valued functions of k. Hence, (101) is the real form of the denominator poly-
nomial of Ψ(z, k). The derivation of the real form of the numerator is omitted.

Let ζ(n) = cos(Ω(n)n). Then, applying Theorem 1, we have that the cosine function
ζ(n) with time-varying frequency Ω(n) satisfies the second-order recursion.

ζ(n + 2)−
[

σa + σa +
(σa− σa)(a + a)

a− a

]
ζ(n + 1) +

σa− σa
a− a

ζ(n) = 0, (102)

where a(n) = exp[j[Ω(n + 1)(n + 1)−Ω(n)n]]. Note that Equation (102) is the recursion
for cos(Ω(n)n) for any frequency function Ω(n), including the linear frequency chirp
Ω(n) = Ωo + c(n− k) and the exponential chirp Ω(n) = Ωocn−k, where c is a posi-
tive real number. Moreover, note that when the frequency function Ω(n) is equal to a
constant Ω, a + a = 2cos(Ω), and Equation (102) reduces to the recursion for the cosine
function cos(Ωn).

5.3. Fraction Decomposition

The decomposition of polynomial fractions with varying coefficients can be carried
out in terms of an evaluation of polynomials with coefficients in A or Q(A), which is
defined as follows. Given a ε A or a ε Q(A), let Sa denote the semilinear transformation
from Q(A) into Q(A) defined by Sa(b) = a(σb), b ε Q(A). This is the extension from A
to Q(A) of the semilinear transformation defined in Section 4. Then, applying the notion
of skew polynomial evaluation given in [15], we define the evaluation of the polynomial
γ(z, k) = zN + ∑N−1

i=0 γizi, γi ε A at zi = Si
a(1) to be the function γ

(
Si

a(1), k
)

ε Q(A)
given by

γ
(

Si
a(1), k

)
= SN

a (1) + ∑N−1
i=0 γiSi

a(1). (103)

Let
γ̂(z, k) = zN + ∑N−1

i=0

(
σ−iγi

)
zi, (104)

And let Ta denote the semilinear transformation on Q(A) defined by Ta(b) = a
(
σ−1b

)
,

b ε Q(A). Then, the evaluation of γ̂(z, k) at zi = Ti
a(1) is given by

γ̂
(

Ti
a(1), k

)
= TN

a (1) + ∑N−1
i=0

(
σ−iγi

)
Ti

a(1). (105)

We then have the following known result.

Proposition 5. Given γ(z, k) = zN + ∑N−1
i=0 γi(k)zi, γi ε A, and a ε Q(A), the remainder after

dividing z− a into γ(z, k) on the right is equal to γ
(
Si

a(1), k
)

ε Q(A), and the remainder after
dividing z− a into γ(z, k) on the left is equal to γ̂

(
Ti

a(1), k
)

ε Q(A).
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Proof. The result on the remainder after division on the right follows from Lemma 2.4
in [15] by setting Ni(a) = Si

a(1). The second part of the proposition follows from Theorem 3.1
in [13] by setting Mi(a) = Ti

a(1). �

The concept of skew polynomial evaluation leads to the following decomposition result.

Theorem 4. Given ξ(z, k) = zN + ∑N−1
i=0 ξi(k)zi, ξi ε A, and a ε A, suppose that

(z− a)ξ(z, k) = ϕ(z, k)(z− β), (106)

where β ε Q(A), ϕ(z, k) ε Q(A)[z], and z− β does not divide ξ(z, k) on the right.

Then,

[(z− a)ξ(z, k)]−1 = ξ
(

Si
β(1), k

)−1[
(z− a)−1

]
+ ψ(z, k)

[
ϕ(z, k)−1

]
(107)

For some ψ(z, k) ε Q(A)[z].

Proof. Suppose that the hypothesis of the theorem is satisfied, so that (106) is true. Dividing
z− β into ξ(z, k) on the right gives

ξ(z, k)
[
(z− β)−1

]
) = q(z, k) + r(k)(z− β)−1. (108)

By Proposition 5, the remainder r(k) in Equation (108) is equal to the evaluation
r(k) = ξ

(
Si

β(1), k
)

. Further, r(k) 6= 0 since z− β does not divide ξ(z, k) on the right. Multi-

plying both sides of (108) on the right by z− β and on the left by ξ
(
Si

d(1), k
)−1, we have

ξ
(

Si
β(1), k

)−1
ξ(z, k) − ξ

(
Si

β(1), k
)−1

q(z, k)(z− β) = 1. Hence, ξ(z, k)−1
[
(z− a)−1

]
=[

ξ
(

Si
β(1), k

)−1
ξ(z, k)− ξ

(
Si

β(1), k
)−1

q(z, k)(z− β)

]
ξ(z, k)−1

[
(z− a)−1

]
.

It follows from Equation (106) that ξ(z, k)−1
[
(z− a)−1

]
= (z− β)−1

[
ϕ(z, k)−1

]
, and thus,

ξ(z, k)−1
[
(z− a)−1

]
= ξ

(
Si

β(1), k
)−1[

(z− a)−1
]
− ξ
(

Si
β(1), k

)−1
q(z, k)

[
ϕ(z, k)−1

]
.

Also, ξ(z, k)−1
[
(z− a)−1

]
= [(z− a)ξ(z, k)]−1, and therefore, Equation (107) is satis-

fied with ψ(z, k) = −ξ
(

Si
β(1), k

)−1
q(z, k). �

There is a second decomposition of [(z− a)ξ(z, k)]−1 which is given next.

Corollary 1. Suppose that the hypothesis of Theorem 4 is satisfied so that (106) is true with

ϕ(z, k) = zN +∑N−1
i=0 ϕizi, ϕi ε Q(A), and z− a does not divide ϕ(z, k) on the left. Let ϕ̂(z, k) =

zN + ∑N−1
i=0

(
σ−i)zi. Then,

[(z− a)ξ(z, k)]−1 = (z− β)−1
[

ϕ̂
(

Ti
a(1), k

)−1
]
+ ξ(z, k)−1χ(z, k), (109)

where χ(z, k) ε Q(A)[z], ϕ̂
(
Ti

a(1), k
)

= TN
a (1) + ∑N−1

i=0 ϕi(k− i)Ti
a(1), and Ti

a(1) =
a(k)a(k− 1) · · · a(k− i + 1).

Proof. Dividing z− a into ϕ(z, k) on the left and carrying out steps similar to those in the
proof of Theorem 4 yields the result. �

Note that the decomposition in Equation (109) is given in terms of left polynomial
fractions, whereas (107) is in terms of right polynomial fractions. Moreover, note that the
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decompositions (107) and (109) are identical when the ξi and a are constant functions, in
which case ϕ(z, k) = ξ(z, k) and β = a.

Corollary 2. Suppose that Equation (109) is true. Let w(k) = ϕ̂
(
Ti

a(1), k
)
. Then, given

η(z, k) = ∑M
i=0 ηi(k)zi, ηiε A, with M ≤ N,

[(z− a)ξ(z, k)]−1η(z, k) = (z− β)−1
[
∑M

i=0

[
σ−i
(ηi

w

)]
Ti

β(1)
]
+ ξ(z, k)−1λ(z, k), (110)

For some λ(z, k) ε Q(A)[z].

Proof. Multiplying both sides of Equation (109) on the right by η(z, k) gives

[(z− a)ξ(z, k)]−1η(z, k) = (z− β)−1
(

1
w(k)

)
η(z, k) + ξ(z, k)−1χ(z, k)η(z, k). Dividing z− β

into
(

1
w(k)

)
η(z, k) on the left, we have

(z− β)−1
(

1
w(k)

)
η(z, k) = τ(z, k) + (z− β)−1v(k), (111)

where τ(z, k) ε Q(A)[z] and v(k) ε Q(A). By Proposition 5, the remainder v(k) in (111) is
equal to the evaluation of the polynomial ∑M

i=0
[
σ−i(ηi

w
)]

zi at zi = Ti
β(1). Hence, v(k) =

∑M
i=0
[
σ−i(ηi

w
)]

Ti
β(1). Then,

[(z− a)ξ(z, k)]−1η(z, k) = (z− β)−1
[
∑M

i=0

[
σ−i
(ηi

w

)]
Ti

β(1)
]
+ τ(z, k) + ξ(z, k)−1χ(z, k)η(z, k).

Now, since deg(η) ≤ deg(ξ), ξ(z, k)−1
[
(z− d)−1

]
η(z, k) is a strictly proper polyno-

mial fraction, and thus τ(z, k) + ξ(z, k)−1α(z, k)η(z, k) can be written in the form
ξ(z, k)−1λ(z, k) for some λ(z, k) ε Q(A)[z] with deg(λ) < deg(ξ), which verifies
Equation (110). �

Corollary 2 is a generalization of the first step of the partial fraction expansion for ra-
tional functions with real coefficients to left polynomial fractions with variable coefficients.
The decomposition process can be continued if the polynomial ξ(z, k) in Equation (110)
has left factors z− b, b ε Q(A), and ζ(z, k) ε Q(A)[z] with deg(ζ) = N − 2. Note that if
the ξi and a in Theorem 4 are constant functions, then (z− a) commutes with ξ(z, k), and
thus (106) is satisfied with β = a and ϕ(z, k) = ξ(z, k). In this case, Ti

a(1) = ai, and thus,
ϕ̂
(
Ti

a(1) , k
)
= ξ(z) evaluated at z = a. If the ηi are also constant functions, the coefficient

of (z− β)−1 in Equation (110) is equal to the rational function η(z)/ξ(z) evaluated at z = a.
In the case when the µi and a are nonconstant functions, the computation of β and

ϕ(z, k) in Equation (106) is considered in the next section when the decomposition is used to
determine the steady-state output response of a linear time-varying system or digital filter.

6. The VIT Transfer Function Representation

Consider the causal linear time-varying discrete-time system or digital filter given by
the input/output relationship

y(n) = ∑n
r=−∞ h(n, r)u(r), (112)

where h(n, r) is the unit-pulse response function, u(n) is the input, and y(n) is the out-
put response resulting from u(n) with zero initial energy (zero initial conditions) prior to
the application of the input. Recall that h(n, r) is the output response at time n resulting
from the unit pulse δ(n− r) applied at time r. Moreover, note that by causality, h(n, r) = 0
when n < r.

For each fixed integer i ≥ 0, let hi(k) denote the element of the ring A defined by

hi(k) = h(i + k, k), k ε Z.
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The function hi(k) is equal to the value of the unit-pulse response function h(n, k) at
the time point n = i + k, which is located i steps after the initial time k. As first defined
in [7], the transfer function H(z, k) of the system given by Equation (112) is the element of
the power series ring A

[[
z−1]] defined by

H(z, k) = ∑∞
i=0 z−ihi(k). (113)

From (113), we see that H(z, k) is equal to the VIT transform of the unit-pulse response
function h(n, k).

The transfer function representation can be generated by taking the VIT transform
of the input/output relationship in Equation (112) defined in terms of an arbitrary initial
time k. To set this up, suppose that the input u(n) is applied to the system at initial time
k ε Z, so that u(n) = 0 for n < k. In general, u(n) depends on the initial time k, so we shall
write u(n) = u(n, k). Then, the output response y(k, n) resulting from u(n, k) will also be a
function of n and k, and is given by

y(n, k) = ∑n
r=k h(n, r)u(r, k), n ≥ k. (114)

Taking the VIT transform of both sides of Equation (114) and using Proposition 1, we
have the following result.

Preposition 6. Let U(z, k), Y(z, k) denote the VIT transforms of u(n, k), y(n, k),
respectively. Then,

Y(z, k) = H(z, k)U(z, k). (115)

The relationship in Equation (115) is the VIT transfer function representation of the
given system. Using Theorem 1, we have the following result on systems defined by a
linear time-varying difference equation.

Preposition 7. The system transfer function H(z, k) has the left polynomial fraction form

H(z, k) =
(

zN + ∑N−1
i=0 ξizi

)−1(
∑M

i=0 νizi
)

, µi, νi ε A, if and only if the system input u(n, k)
and system output y(n, k) satisfy the linear time-varying difference equation

y(n + n, k) + ∑N−1
i=0 ξi(n)y(n + i, k) = ∑M

i=0 νi(n)u(n + i, k), n ≥ k. (116)

By Proposition 7, a linear time-varying system is finite-dimensional if and only if its
transfer function is a left polynomial fraction.

We shall apply the VIT transfer function framework to the problem of determining
the steady-state response to the input u(n, k) = Sn−k

a (1)b(k), n ≥ k, where a, b ε A
with a(k) 6= 0 for all k ε Z. Then, u(k, k) = b(k) is the initial value of u(k, n), and by
definition of Sa,

u(n, k) =
[
∏n−1

r=k a(r)
]
b(k), n > k. (117)

It is assumed that ∏n−1
r=k a(r) is a bounded function of n and ∏n−1

r=k a(r) does not
converge to zero as n→ ∞ . Hence, u(n, k) does not decay to zero as n→ ∞ . Two simple
examples of signals satisfying these conditions are the unit-step function u(k, n) = 1, n ≥ k,
and the complex exponential u(k, n) = ejΩ, n ≥ k, j =

√
−1. By Equation (61), the VIT

transform of the input u(n, k) defined by (117) is U(z, k) = (z− a(k))−1zb(k).
Now suppose that the system or digital filter is a time-varying moving average given

by the input/output relationship

y(n, k) = ∑M
i=0 vi(n)u(n− i, k), n ≥ k, vi ε A. (118)

Taking the VIT transform of both sides of Equation (118) yields Y(z, k) =[
∑M

i=0 vi(k)z−i
]
U(z, k), and thus the transfer function of the moving average filter is
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H(z, k) =∑M
i=0 vi(k)z−i. (119)

Then, when the input u(k, n) is given by Equation (117), the transform of the resulting
output is

Y(z, k) =
[
∑M

i=0 vi(k)z−i
]
(z− a(k))−1zb(k). (120)

Now, (z− a(k))zi = zi[z− a(k− i)], and applying Theorem 4 with β(k) = a(k− i),
and ξ(z, k) = ϕ(z, k) = zi, we have

z−i
[
(z− a(k))−1

]
= ξ

(
Si

β(1), k
)−1[

(z− a(k))−1
]
+ ψi(z, k)z−i, (121)

For some ψi(z, k) ε Q(A)[z]. Since β(k) = a(k− i) and ξ(z, k) = zi,

ξ
(

Si
β(1), k

)
= Si

β(1) = a(k− i)a(k− i + 1) · · · a(k− 1). (122)

Multiplying both sides of Equation (121) on the left by vi(k) and on the right by zb(k),
and summing the results for i = 0, 1, . . . , M, we have that the transform of the output re-
sponse is

Y(z, k) =

[
M

∑
i=0

(
vi(k)
Si

β(1)

)][
(z− a(k))−1

]
zb(k) +

[
M

∑
i=0

vi(k)ψi(z, k)z−i

]
zb(k). (123)

Let

Yss(n, k) =

[
M

∑
i=0

(
vi(k)
Si

β(1)

)][
(z− a(k))−1

]
zb(k) (124)

Ytr(z, k) =
[
∑M

i=0 vi(k)ψi(z, k)z−i
]
zb(k) (125)

so that Y(z, k) = Yss(n, k) +Ytr(z, k), and y(n, k) = yss(n, k) + ytr(n, k), where yss(n, k) and
ytr(n, k) are the inverse VIT transforms of Yss(n, k) and Ytr(z, k), respectively. Then, since
the highest power of z−1 in Equation (125) is equal to M, ytr(n, k) = 0 for n > k + M, and
thus ytr(n, k) is the transient part of the output response, and yss(n, k) is the steady-state
part of the output response. Taking the inverse transform of Yss(n, k), we then have the
following result.

Theorem 5. The steady-state output response yss(n, k) of the time-varying moving average to the
input u(k, n) defined by Equation (117) is

yss(n, k) =

[
∑M

i=0

(
vi(n)
Si

β(1)

)]
u(n, k), n ≥ k, (126)

where Si
β(1) = a(n− i)a(n− i + 1) · · · a(n− 1).

Proof. It follows directly from the transform pair property a(n) f (n, k) ↔ a(k)F(z, k) that
the inverse transform of the right side of Equation (124) is equal to the right side of (126). �

A key point here is that the steady-state response yss(n, k) is equal to a scaling of the

input by the time function ∑M
i=0

(
vi(n)
Si

β(1)

)
. As an illustration of this result, suppose that

a(k) = ejΩ and b(k) = 1 for all k. Then, Si
a(1) =

(
ejΩ)i and (n, k) =

(
ejΩ)n−k, n ≥ k. In this

case, β = ejΩ and Si
β(1) =

(
ejΩ)i. Hence, ∑M

i=0

(
vi(n)
Si

β(1)

)
= ∑M

i=0 vi(n)
(
ejΩ)−i.

Now suppose that
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u(n, k) =
1
2

[ (
ejΩ
)n−k

+
(

e−jΩ
)n−k

]
= cos[(n− k)Ω], n ≥ k. (127)

Then, by Theorem 5 and Equation (126), the steady-state response to the cosine
input (127) is

yss(n, k) = 1
2

{[
M
∑

i=0
vi(n)

(
ejΩ)−i

] (
ejΩ)n−k

+

[
M
∑

i=0
vi(n)

(
e−jΩ)−i

](
e−jΩ)n−k

}
yss(n, k) = Re

{[
∑M

i=0 vi(n)
(
ejΩ)−i

] (
ejΩ)n−k

}
,

where Re denotes the real part. Then, yss(n, k) =
[
∑M

i=0 vi(n)cos(iΩ)
]
cos((n− k)Ω −[

∑M
i=0 vi(n)sin(iΩ)

]
sin((n− k)Ω).

Defining w1(n, Ω) = ∑M
i=0 vi(n)cos(iΩ), w2(n, Ω) = ∑M

i=0 vi(n)sin(iΩ), yss(n, k) can
be written in the form.

yss(n, k) =
[√

w2
1(n, Ω) + w2

2(n, Ω)

]
cos
[
(n− k)Ω + tan−1

(
−w2(n, Ω)

w1(n, Ω)

)]
, n ≥ k. (128)

Hence, the steady-state response of a time-varying moving average filter to the cosine
input given by Equation (127) is scaled in magnitude by the time function√

w2
1(n, Ω) + w2

2(n, Ω) and phase shifted by the time function tan−1
(
−w2(n,Ω)

w1(n,Ω)

)
. Based on

this result, the time-varying frequency response function H(n, Ω) of the moving average
filter can be defined to be

H(n, Ω) =

[√
w2

1(n, Ω) + w2
2(n, Ω)

]
exp
[

jtan−1
(
−w2(n, Ω)

w1(n, Ω)

)]
.

We now consider linear time-varying systems given by an autoregressive model. First,
we need to restrict attention to systems that are stable in the following sense.

Definition 3. A linear time-varying system with transfer function H(z, k) = ξ(z, k)−1η(z, k),
where ξ(z, k) = zN + ∑N−1

i=0 ξizi, ξiε A, is asymptotically stable if for any initial conditions
y(k + i), i = 0, 1, . . . , N − 1, and any initial time k ε Z, the solution y(n, k) to the difference
equation y(n + N, k) + ∑N−1

i=0 ξi(n)y(n + i, k) = 0, n ≥ k, converges to zero as n→ ∞.

Now suppose that the system or digital filter is given by the following time-varying
autoregressive model

y(n + N, k) + ∑N−1
i=0 ξi(n)y(n + i, k) = u(n, k), ξi ε A, n ≥ k. (129)

In this case, the transfer function of the system is equal to ξ(z, k)−1, where ξ(z, k) =
zN + ∑N−1

i=0 ξi(k)z−i, and when the input u(n, k) is defined by Equation (117), the trans-
form of the output response is

Y(z, k) = ξ(z, k)−1(z− a(k))−1zb(k). (130)

The steady-state part of the output response can be determined by decomposing the
right side of Equation (130) using the result in Corollary 1. This requires that (z− a)ξ(z, k)
be expressed in the form

(z− a)ξ(z, k) = ϕ(z, k)(z− β), (131)

For some β ε Q(A), ϕ(z, k) ε Q(A)[z]. If z− a commutes with ξ(z, k), (131) is satisfied
with β = a. In the general case, the computation of β can be carried out as follows.
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Let (z− a)ξ(z, k) = γ(z, k) = zN+1 +∑N
i=0 γizi. Suppose that β satisfies Equation (131).

Then, since z− β is a right factor of γ(z, k), by Proposition 5, the evaluation γ
(

Si
β(1), k

)
is

equal to zero. That is,

γ
(

Si
β(1), k

)
= SN+1

β (1) + ∑N
i=0 γi(k)Si

β(1) = 0. (132)

By (56), Si
β(1) = β(k)β(k + 1) . . . β(k + i− 1), i > 0, and thus SN+1

β (1) = β(k + N)SN
β (1).

Inserting this into Equation (132) gives

β(k + N)SN
β (1) + ∑N

i=0 γiSi
β(1) = 0. (133)

Solving Equation (133) for β(k + N), we have

β(k + N) = −
N

∑
i=0

γi

[
SN

β (1)
]−1

Si
β(1), (134)

where
[
SN

β (1)
]−1

Si
β(1) = β(k)β(k+1)...β(k+i−1)

β(k)β(k+1)...β(k+N−1) , i > 0, and when i = 0, S0
β(1) = 1,[

SN
β (1)

]−1
Si

β(1) =
[
SN

β (1)
]−1

. The function β(k + N) can be computed for a finite range

k0 ≤ k ≤ k1 by solving Equation (134) recursively for a given set of initial conditions
β(k0 + i), i = 0,1, . . . , N− 1. Since β = a when a and the coefficients ξi of ξ(z, k) are constant
functions, we shall take the initial conditions to be β(k0 + i) = a(k0 + i), i = 0, 1, . . . , N − 1.
Since a(k) 6= 0 for all k, Equation (134) can be solved recursively with these initial con-
ditions, although there is a possibility that the time variance can result in a zero value
for β(k + N) for some value of k > k0 + N. Here, we assume that Equation (134) yields a
solution with β(k + N) 6= 0 for k0 ≤ k ≤ k1 − N.

Once β(k) has been computed for k0 ≤ k ≤ k1, the coefficients of the polynomial ϕ(z, k)
can be computed from the relationship in Equation (131): Let ϕ(z, k) = zN + ∑N−1

i=0 ϕizi. Then,

ϕ(z, k)(z− β) = zN+1 +
N−1
∑

i=0
ϕizi+1 −

(
σN β

)
zN −

N−1
∑

i=0
ϕi
(
σiβ
)
zi

= zN+1 +
[
ϕN−1 − σN β

]
zN + ∑N−2

i=0 ϕizi+1 −
N−1
∑

i=0
ϕi
(
σiβ
)
zi

= zN+1 +
[
ϕN−1 − σN β

]
zN + ∑N−1

i=1

[
ϕi−1 − ϕi

(
σiβ
)]

zi − ϕ0β.

(135)

Equating the right side of Equation (135) to γ(z, k) = zN+1 + ∑N
i=0 γizi gives

ϕi−1 − ϕi

(
σiβ
)
= γi, i = 1, 2, . . . , N − 1 (136)

ϕN−1 − σN β = γN , ϕ0β = −γ0. (137)

From Equation (137), ϕN−1(k) = β(k + N) + γN(k), ϕ0(k) = − γ0(k)
β(k) , and from

Equation (136), ϕi(k) =
ϕi−1(k)−γi(k)

β(k+i) , i = 1, 2, . . . , N − 1. Then, inserting the values of
β(k) for k = k0, k0 + 1, . . . , k1 yields the values of the ϕi(k) for k = k0, k0 + 1, . . . , k1 − N.
We then have the following result.

Theorem 6. Suppose that the system given by the time-varying autoregressive model in Equation
(129) is stable, ϕ(z, k) and β satisfy Equation (131), and the division of ϕ(z, k) on the left by z− a
does not result in a remainder that is identically zero. Then, the steady-state response yss(n, k) to
the input Equation (117) is given by

yss(n, k) =
[
∏n−1

r=k β(r)
][

ϕ̂
(

Ti
a(1), k

)−1
]

b(k), n ≥ k. (138)
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Proof. By Corollary 1, the transform Y(z, k) of the output response resulting from the input
defined by Equation (117) has the decomposition

Y(z, k) = (z− β)−1
[

ϕ̂
(

Ti
a(1), k

)−1
]

b(k) + ξ(z, k)−1χ(z, k), (139)

For some χ(z, k) ε Q(A)[z]. Since the system is stable, the inverse transform of the
term ξ(z, k)−1χ(z, k) in (139) must converge to zero as n→ ∞ , and thus the transform
Yss(n, k) of the steady-state part of the output response is

Yss(n, k) = (z− β)−1
[

ϕ̂
(

Ti
a(1), k

)−1
]

b(k). (140)

Taking the inverse transform of Equation (140) using the transform pair (15) yields the
steady-state response given by Equation (138). �

In contrast to the moving average case, by Theorem 6 the steady-state response to the
input defined by Equation (117) is not a scaled version of the input when the system is
given by the autoregressive model in Equation (129). This is a consequence of the fact that
β = a does not satisfy the relationship in Equation (131) as a result of the time variance of
the coefficients of ξ(z, k). In the case when a is the complex exponential a = ejΩ, where Ω
is a fixed frequency, the solution for β given by Equation (134) can be expressed in the polar
form β(k) = m(k)ejθ(k) with θ(k) 6= Ω in general. Hence, the time variance will result in
new frequencies appearing in the steady-state output response.

It is also interesting to note that if the decomposition in Theorem 4 is applied to Y(z, k),
we obtain the first-order term

ξ
(

Si
β(1), k

)−1[
(z− a)−1

]
b(k). (141)

The inverse transform of (141) is a scaled version of the input. However, in general it is
not the steady-state response since ϕ(z, k) in Equation (131) may not be stable (i.e., ϕ(z, k)−1

may not be the transfer function of a stable system). If ϕ(z, k) is stable, then the inverse
transform of (141) can be defined to be the steady-state response and the scal- ing factor

ξ
(

Si
β(1), k

)−1
defines a frequency response function for the time-varying auto- regressive

system model. The derivation of an expression for this frequency function is omitted.
In the general case when the system is given by the input/output relationship (116),

the steady-state response to the input defined by Equation (117) can be computed by
combining the above results for the moving average and autoregressive models. The
details are omitted.

7. Concluding Comments

One of the key constructs in the paper is the scaling of z−i by a time function de-
fined in terms of the semilinear transformation Sa. As illustrated in Sections 5 and 6,
this result can be used to generate linear time-varying recursions for a large class of
discrete-time signals. Another key construct is the extraction of a first-order term from
F(z, k) = [(z− a)ξ(z, k)]−1η(z, k), where ξ(z, k), η(z, k) ε A[z], a ε A. It follows from the
results in Sections 4 and 5 that F(z, k) cannot be decomposed into terms having denomina-
tors equal to z− a and ξ(z, k) unless a and the coefficients of ξ(z, k) are constant functions
(the time-invariant case). In the time-varying case, to carry out a decomposition with one
of the terms being a first-order polynomial fraction, it is necessary to write (z− a)ξ(z, k)
in the form ϕ(z, k)(z− β) for some β ε Q(A) and ϕ(z, k) ε Q(A)[z]. An interesting charac-
terization of this result is that the factor z− a must be “passed through” the polynomial
ξ(z, k) to yield the factor z− β. Of course, this is always possible in the case when a and the
coefficients of ξ(z, k) are constant functions, in which case β = a. In general, time variance
“perturbs” a when it is passed through ξ(z, k), resulting in β which differs from a. This
raises the question as to whether or not there is a unique β corresponding to a. In Section 6,
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β is constructed by taking the initial values β(k0 + i) = a(k0 + i), i = 0, 1, . . . , N − 1,
where k0 is the initial time and N is the degree of ξ(z, k). Then, solving (134) yields a
unique β for these initial values. Hence, the β constructed here is the unique function
for which (z− a)ξ(z, k) = ϕ(z, k)(z− β), and which matches the values of a(k0 + i) for
i = 0, 1, . . . , N − 1.

As discussed in Section 5, [(z− a)ξ(z, k)]−1η(z, k) has two decompositions, one with
denominators equal to z− a and ϕ(z, k), and a second one with denominators equal to
z− β and ξ(z, k). Note that the denominators are equal to the left factors of (z− a)ξ(z, k) =
ϕ(z, k)(z− β) in the one decomposition, and equal to the right factors in the second
decomposition. As noted in Section 5, when a and the coefficients of ξ(z, k) are constant
functions, there is only one decomposition since β = a and ϕ(z, k) = ξ(z, k). In the
decomposition with denominator ϕ(z, k), an interesting open problem is determining
when ϕ(z, k)−1 remains stable when ξ(z, k)−1 is stable. This will most likely depend on the
rate of change of a and the coefficients of ξ(z, k).
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