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Abstract: The dynamics of soil organic carbon (SOC) storage and turnover are a critical component
of the global carbon cycle. Mechanistic models seeking to represent these complex dynamics
require detailed SOC compositions, which are currently difficult to characterize quantitatively.
Here, we address this challenge by using a novel approach that combines Fourier transform
infrared spectroscopy (FT-IR) and bulk carbon X-ray absorption spectroscopy (XAS) to determine the
abundance of SOC functional groups, using elemental analysis (EA) to constrain the total amount
of SOC. We used this SOC functional group abundance (SOC-fga) method to compare variability in
SOC compositions as a function of depth across a subalpine watershed (East River, Colorado, USA)
and found a large degree of variability in SOC functional group abundances between sites at different
elevations. Soils at a lower elevation are predominantly composed of polysaccharides, while soils
at a higher elevation have more substantial portions of carbonyl, phenolic, or aromatic carbon.
We discuss the potential drivers of differences in SOC composition between these sites, including
vegetation inputs, internal processing and losses, and elevation-driven environmental factors.
Although numerical models would facilitate the understanding and evaluation of the observed
SOC distributions, quantitative and meaningful measurements of SOC molecular compositions are
required to guide such models. Comparison among commonly used characterization techniques on
shared reference materials is a critical next step for advancing our understanding of the complex
processes controlling SOC compositions.
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1. Introduction

Soil organic carbon (SOC) represents the largest terrestrial carbon reservoir in contact with the
atmosphere [1]. However, cycling of carbon through soils is one of the least understood components
of the global carbon cycle [2–5]. In particular, the mechanisms for and timescales over which
SOC responds to environmental changes are imprecisely known [2]. As a result, predictions from
process-based terrestrial biosphere models show considerable variability and limited agreement with
experimental measurements [4]. Therefore, SOC represents a key uncertainty in model predictions
of land surface responses to global warming. Recent studies have shown that the traditional
representations of SOC based on chemical recalcitrance are inconsistent with the observed SOC

Soil. Syst. 2018, 2, 6; doi:10.3390/soils2010006 www.mdpi.com/journal/soilsystems

http://www.mdpi.com/journal/soilsystems
http://www.mdpi.com
https://orcid.org/0000-0003-1637-1052
https://orcid.org/0000-0001-6143-7781
https://orcid.org/0000-0001-9303-4901
https://orcid.org/0000-0002-5982-6064
http://dx.doi.org/10.3390/soils2010006
http://www.mdpi.com/journal/soilsystems


Soil. Syst. 2018, 2, 6 2 of 23

molecular structures [2,6]. Further, such representations do not capture the physical protection
and differential SOC temperature sensitivity associated with biotic and abiotic controls on SOC
turnover [7–10]. In order to advance SOC research and increase our confidence in predictions of
soil feedbacks in response to changing climate conditions, there is an urgent need to improve our
mechanistic understanding of SOC turnover and stabilization [2,11].

To contribute towards our mechanistic understanding of SOC turnover and stabilization,
we quantitatively evaluate SOC compositions across a subalpine watershed at East River, Colorado, USA.
The quantification of SOC composition has long been a challenging task. For over 200 years,
alkaline extraction has been used for SOC isolation and characterization, but SOC often cannot
be completely extracted (30–50% yield), and harsh alkaline treatments can hydrolyze SOC that is
stable within the typical soil pH range (3.5–8.5) [7]. Therefore, soil extracts often do not accurately
reflect the SOC composition of bulk soils in nature. Most mass spectrometry (MS) techniques
and liquid-state 13C nuclear magnetic resonance (NMR) spectroscopy require the extraction of soil
samples [12]. Pyrolysis gas chromatography (py-GC) MS does not require extraction, but the artificial
breakdown of large SOC molecules and varied ionizability between different types of SOC molecules
complicate the quantification of SOC [12,13]. Solid state cross polarization-magnetic angle spinning
(CP-MAS) 13C NMR often requires HF(aq) treatment to remove magnetic particles and concentrate
carbon, especially in soils with low carbon content, which in turn alters the soil samples being
studied [14–18]. Previous studies show mixed results on whether HF(aq) treatment changes the
distribution of SOC [19,20], which can also complicate SOC quantification. Further, low 13C natural
abundance and variations in the nuclear Overhauser effect (NOE) from proton decoupling of different
types of carbon atoms may make SOC quantification using 13C NMR spectroscopy more difficult [21].
To avoid complexity arising from chemical treatments and to improve our quantitative understanding
of SOC, we applied complementary spectroscopic techniques on bulk soils to study SOC composition
with minimal perturbation.

Fourier transform infrared spectroscopy (FT-IR) and bulk carbon X-ray absorbance spectroscopy
(XAS) are powerful tools to identify organic functional groups in bulk soils [22,23]. However, FT-IR
and bulk C XAS are only semi-quantitative, relying on a relative comparison of peak areas [23,24].
Further, while FT-IR is sensitive to aliphatic C–H stretches, amide C=O stretches, and carbonyl C=O
stretches, it is not as sensitive to the C=C bond stretches dominant in plant materials and other complex
aromatic structures in soil. Additionally, the IR absorbance of polysaccharide-like molecules overlaps
with minerals, making the peaks difficult to resolve. Therefore, in this study, we used FT-IR to identify
carbonyl, amide, and aliphatic functional groups. Aliphatic C–H has symmetric (2800–2900 cm−1) and
asymmetric (2900–3000 cm−1) stretches, and an amide bond has amide I (C=O stretch, 1600–1630 cm−1)
and amide II (N–H bend and C=N stretch, 1500–1590 cm−1) [23]. In this study, we only used the
symmetric C–H stretch and the stronger amide I band to avoid overestimating the amount of aliphatic
and amide (Table 1).

Bulk C XAS is sensitive to quinonic, aromatic, phenolic, and O-alkyl (polysaccharide-like)
molecules, but it can be challenging to resolve amide, carboxylate, and aliphatic groups that all
absorb between 287.0 and 288.7 eV [24–26]. Therefore, we used bulk C XAS to identify quinonic,
aromatic, phenolic, and O-alkyl functional groups in soils in this study (Table 1). We applied each
technique to identify the functional groups to which it is the most sensitive and combined the results
using a linear mass balance model, where total organic carbon (TOC) measured by elemental analysis
(EA) constrained the sum of organic functional groups measured from FT-IR and bulk C XAS. Because
this linear mass balance fit approach is used to quantitatively evaluate the abundance of SOC functional
groups, we refer to this method as the SOC functional group abundance (SOC-fga) method. To provide
information about how SOC functional groups vary as a function of depth and landscape position,
we apply the SOC-fga method to soil profiles from hillslope sites at two different elevations and from
different landscape positions at each elevation across the East River watershed in Colorado, USA.
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Table 1. Soil organic carbon (SOC) functional groups and corresponding techniques.

Functional Group Technique Absorption Energy

Carbonyl
FT-IR

1700–1800 cm−1

Aliphatic 2800–3000 cm−1 (symmetric)
Amide 1630–1660 cm−1 (amide I)

Quinonic
Bulk C

XAS

283–284.9 eV
Aromatic 285.0–285.8 eV
Phenolic 286.0–287.4 eV
O-alkyl 289.2–289.5 eV

2. Materials and Methods

2.1. Field Sites Description, Sample Collection, and Preparation

Soil and selected plant and litter samples were collected from a hillslope site (Bradley Creek
Meadow, BCM), a downslope depositional zone characterized by a higher soil moisture (Bradley Creek
Willow, BCW), a higher-elevation hillslope meadow (Rock Creek Meadow, RCM), and a downslope
groundwater-fed fen (Rock Creek Fen, RCF) (Table 2). Based on the U.S. Geological Survey (USGS)
10 m digital elevation model (DEM), BCM has a slope of 10◦ and aspect of 240◦; BCW has a slope of 3◦

and aspect of 185◦; RCM has a slope of 8◦ and aspect of 115◦; and RCF has a slope of 3◦ and aspect
of 140◦.

All sites are within the East River Basin, a shale-dominated watershed associated with the Rocky
Mountain Biological Laboratory (RMBL), Crested Butte, CO. One soil core was collected from each
site by hand auguring to saprolite, which is weathered Mancos Shale at all study sites. The depth
increments of the cores were chosen to reflect an approximately 10-cm increments. Soil samples were
then bagged, labeled, air-dried, sieved to collect the <2 mm fractions, and ground to fine powder with
agate mortar and pestle for all characterization experiments. Above-ground biomass (AGB) collected
from 1.3 × 1.3 m2 areas at BCM and RCM along with litter and select plant samples from each site
were dried at 60 ◦C for 2–3 days to constant mass and homogenized and ground to <0.4 mm with
a metal blade for all characterization experiments.

Fractional plant cover was estimated at the meadow sites using a 13 × 13 grid of 1.3 m × 1.3 m in
August 2016. The fractional cover at both sites is the average of five randomly distributed surveys
within 50 m of the soil sampling site. Fractional plant cover was not estimated at BCW and RCF
because the quadrant approach cannot be used where (Salix spp.) dominates. All sites in this study
are grazed during the fall season, but based on our qualitative observations, the grazing pressure
at BC is consistently more intense than at RCM or RCF. Therefore, we expect a greater reduction in
above-ground plant inputs but an enhanced input of cattle excrement at BCM and BCW.

To monitor soil environmental conditions, depth-arrays of soil temperature and water content
reflectometer probes (CS655, Campbell Scientific, Logan, UT, USA) were installed at BCW (November 2015),
BCM (June 2016), and RCM (June 2016). Sensors were installed horizontally in soil pits at depths ranging
from 10 cm to 130 cm. Soil temperature and volumetric water content (VWC) from each depth were logged
at 1 to 6 h intervals. For the purpose of this study, only the shallow (30 cm) and deep (100 cm) soil data
across BCW, BCM, and RCM are compared.
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Table 2. Field sites description.

Site Coordinates Elevation (m) Description Soil
Series/Subgroup AGB (g/m2)

Average
Temperature (◦C)

BCM 38◦59′12.4” N,
107◦00′11.06” W 2987

Subalpine meadow vegetation
on hillslope dominated by
perennial forbs (ca. 80%),
graminoids (ca. 15%),
litter (3%), and bare soil (2%).

Leaps silty clay
loam/Typic
Cryoborolls

331.10 6.9 (30 cm);
6.5 (100 cm)

BCW 38◦59′15.10” N,
107◦00′14.10” W 2975

Small drainage adjacent to
BCM covered by a mixture of
willow (Salix spp.), graminoids,
and perennial forbs.

Leaps silty clay
loam/Typic
Cryoborolls

not determined 5.0 (30 cm);
5.3 (100 cm)

RCM 38◦58′46.37” N,
107◦02′16.96” W 3466 Subalpine meadow vegetation

with 100% perennial forbs.

Bucklon silt
loam/Typic
Cryoborolls

824.41 3.8 (30 cm);
3.7 (100 cm)

RCF 38◦58′57.76” N,
107◦01′49.32” W 3444

Willow (Salix spp.)-dominated
groundwater fen adjacent to
a small stream.

No series
affiliatio/Histic

Cryaquolls
not determined not determined

BCM: Bradley Creek Meadow; BCW: Bradley Creek Willow; RCM: Rock Creek Meadow; RCF: Rock Creek Fen;
AGB: Above-ground biomass.

2.2. Elemental Analysis

Elemental analysis (EA) was used to measure bulk soil C and N content. Measurements were
preformed using the Carlo-Erba NA 1500 analyzer (Thermo Fisher Scientific, Waltham, MA, USA) at the
Environmental Measurements Facility (EM1) at Stanford University. To measure the total nitrogen (TN)
and total carbon (TC) of the samples, 20–30 mg of ground soil samples or 3–4 mg of biomass samples
were weighed into tin capsules and loaded into the analyzer. A method previously published was
used to measure total organic carbon (TOC) and total inorganic carbon (TIC) by HCl(aq) treatment [27].
Briefly, 400 mg of ground soil sample was added to a scintillation vial. Then, 4 mL of 3 M HCl(aq) was
slowly added to the vial via a pipette to remove inorganic carbonate, and the vial was capped loosely.
The vial was swirled occasionally for 15 min and the cap was removed to displace accumulated CO2.
After the weight of the solution in the vial stopped changing, the solution was centrifuged to remove
the supernatant, and the soil pellet was washed with deionized (DI) water (10 mL × 2). Afterwards,
the soil pellet was air-dried and ground with agate mortar and pestle, then 20–30 mg of ground soil
sample was weighed into tin capsules and injected into the analyzer to measure the remaining TOC.
TIC was calculated by subtracting TOC from TC.

2.3. Fourier Transform Infrared Spectroscopy (FT-IR)

All FT-IR measurements were performed on the Nicolet iS50 FT-IR spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) at the Soft and Hybrid Materials Facility (SMF) at Stanford Nano Shared
Facilities (SNSF). First, 5–10 mg of ground soil samples or 2–3 mg of biomass sample was loaded
directly onto the attenuated total reflectance (ATR) detector with a spatula to obtain the IR spectrum
for each sample. A method previously published was used to obtain the mineral-enriched background
for soils by chemical treatment [28]. Briefly, 100 mg of ground soils sample was mixed with 0.625 mL
of NaOCl(aq) (6% w/w, pH = 9.5) and incubated at 80 ◦C for 15 min to allow for the oxidation of
organic compounds. The solution was centrifuged and the supernatant was discarded. The treatment
was repeated a total of three times. The soil pellet was then washed with deionized (DI) water
(10 mL × 2), air-dried, and ground with an agate mortar and pestle. Afterwards, 5–10 mg of ground
soil sample was loaded directly onto the ATR detector with a spatula to obtain the mineral-enriched
background spectrum. The mineral background was subtracted from the bulk soil spectrum to obtain
the SOC spectrum. Peak deconvolution was performed with the Igor Pro software package (version 7,
WaveMetrics Inc., Portland, OR, USA). The peak deconvolution parameters are listed in Table 3 (please
see Supplementary Materials Figures S1 and S2 for examples of deconvoluted spectra).



Soil. Syst. 2018, 2, 6 5 of 23

Table 3. Fitting parameters for FT-IR spectra using the Igor Pro software package.

Parameter Values

Noise level 10−5–10−4

Smooth factor 10–55
Min fraction 0.05
Peak shape Gauss

2.4. Bulk C X-ray Absorption Spectroscopy (XAS)

All bulk C XAS data were collected on the SGM beam line (11ID-1) at the Canadian Light Source
(CLS), Saskatoon, Canada. Sample preparation was done according to a procedure that was published
previously [22]. Briefly, for each bulk XAS sample, 10 mg of ground soil or 5 mg of biomass was added
to 0.1 mL of DI water in a 0.8 mL snap-cap eppendorf tube. The tube was capped and the solution
was mixed on a vortex mixer for 5 s. Then, 8–10 µL of the suspended soil solution was drop-deposited
onto a gold-coated silicon wafer and air-dried. The wafers were prepared by the CLS staff by heating
gold pellets above 650 ◦C in a vacuum chamber containing the silicon wafers. Bulk C XAS spectra
were collected over the range of 270–320 eV with 0.1 eV intervals. One fast (slew) scan was performed
on 60 different spots on each sample to minimize beam damage, and the 60 scans were averaged into
the final spectrum. Total partial fluorescence yield (PFY) counts of all spectra (10–15 kpc) were well
below the detector saturation limit (20–30 kpc). Peak deconvolution was performed with the Athena
software package (version 0.9.25, Bruce Ravel). The peak fitting parameters are listed in Table 4, and the
energy for each functional group was assigned based on the literature [25] (please see Supplementary
Materials Figures S3 and S4 for examples of fitted spectra).

Table 4. Fitting parameters for bulk C XAS spectra using the Athena software package.

Parameter Values

Edge normalization I0 = 290 eV
Edge step 1
Pre-edge 270–280 eV
Post-edge 310–318 eV

Gaussian FWHM 0.3–0.5
Sigma* FWHM 3

Arctangent width 0.3
Arctangent height 1–3 (depending on the height of the K-edge)

Peak shape Gauss

FWHM = full width at the half maximum of a peak.

2.5. X-ray Fluorescence (XRF) Spectrometry

XRF was used to measure the elemental components of soil samples. All XRF data were collected
from the Spectro Xepos HE XRF spectrometer (Spectro Analytical Instruments, Kleve, Germany)
at EM1. To prepare the samples, 3 g of ground soil was loaded into a plastic sample cup, and the
cup was sealed with polypropylene film. The plastic cups were loaded into the spectrometer for
measurement. Data analysis was performed automatically by the Spectro Xepos software (Spectro
Analytical Instruments, Kleve, Germany). XRF data are included in Supplementary Materials.

2.6. Powder X-ray Diffraction (PXRD)

PXRD was used to determine the mineral compositions of soil samples. All PXRD data were
collected from the Rigaku MiniFlex 600 Benchtop X-Ray Diffraction System (Rigaku Corporation,
Tokyo, Japan) at EM1. To prepare the samples, 100 mg of ground soil was added to a snap-cap
Eppendorf tube, and 1 mL of isopropyl alcohol was added to the soil. The tube was capped and the
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solution was mixed for 30 s with a vortex mixer. Then, 200 µL of solution was drop-deposited onto
a crystal quartz sample holder and air-dried. Soil samples were loaded into the diffractometer with
the X-ray generator set to 40 kV and 15 mA. Data were collected at 2θ = 3◦–90◦ with 0.01◦ intervals.
PXRD data are included in Supplementary Materials.

2.7. Linear Mass Balance Model to Quantify SOC Functional Group Abundance (SOC-fga Method)

We developed a method that combines FT-IR and bulk C XAS results to quantify SOC functional
group abundance (the SOC-fga method) using the Beer–Lambert Law:

A = d× ε× b× c, (1)

where A is absorbance (peak area), d is a scalar accounting for the peak area ratio between FT-IR
and bulk C XAS, ε is the molar absorption coefficient that depends on various factors, including
wavelength, compound, soil matrix, pH, and instrumentation, b is the path length of the light beam
through a sample, and c is the analyte concentration [29–31]. The concentration of SOC species can be
expressed as:

c =
moleSOC

volumesoil
=

massSOC
MWSOC

× densitysoil

masssoil
=

mass%SOC × densitysoil
MWSOC

, (2)

where MWSOC is the molecular weight of the SOC species of interest.
Equation (1) can be written as:

A
n

=
d× ε× b×mass%SOC × densitysoil

MWSOC
(3)

where n is the number of functional groups in each compound (for example, if there are 300 amide
bonds in a protein, n = 300).

The mass% of an SOC functional group of interest can therefore be expressed as:

mass%SOC =
A×MWSOC

n× d× ε× b× densitysoil
. (4)

In Equation (4), A and densitysoil were measured experimentally. Variables d and b are constant
for the same instrument (FT-IR or bulk C XAS). Variables MWSOC, n, and ε are different between
different functional groups. For simplicity, we assumed that MWSOC, n, and ε for a functional group
are constant for soils from the same site because they are likely to have similar SOC input and soil
matrices. Variables that are constant (d, b) or assumed to be constant for each functional group (MWSOC,
n, ε) were grouped into an arbitrary variable, αi, where i is an index representing the functional group
(i.e., carbonyl, aliphatic, amine, quinonic, aromatic, phenolic, or polysaccharide):

αi =
MWi

ni × d× εi × b
(5)

such that mass% can be rewritten as:

mass%i =
Ai × αi

densitysoil
. (6)

Assuming FT-IR and bulk C XAS together detect all SOC functional groups, experimentally
measured TOC is the sum of mass% of all SOC functional groups identified:

TOC(mass%) = ∑
i

mass%i = ∑
i

Ai × αi
densitysoil

. (7)
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We identified seven important organic functional groups (Table 1), such that Equation (7) has
seven unknown αi values, requiring at least seven samples to constrain the system, represented in
matrix form as:

where Aj
i is the peak area measurement for sample j and functional group i, and the experimentally

measured TOCj for sample j is used for the optimization for αi. The calculated αi values are thus
applicable to all samples from the same site and can be used to calculate mass%i. We used the linear least
squares function in Matlab’s optimization toolbox to optimize the αi vector in Equation (8) (boundary
condition: αi ≥ 0.01) for Bradley Creek (BCM and BCW), RCM, RCF, and above-ground biomass
(AGB) separately (see Supplementary Materials Figures S5–S13 and Tables S1–S3 for comparison
among different sample groupings in Equation (8), Figure S14 and Tables S4–S5 for uncertainties,
and Figure S15 and Tables S6–S8 for boundary conditions). The optimized αi vector is unique provided
that the number of data points (soil samples) is larger than or equal to the number of unknowns (seven
functional groups). The R2 values between experimentally measured TOC and optimized TOC were
used to evaluate how well the two sets of TOC values correlate to each other and how good the fits are.

The seven functional groups identified in this work, although comprehensive, are not direct
representations of organic molecules because some molecules have multiple functional groups.
For example, a lignin molecule can have aromatic, aliphatic, and O-alkyl functional groups. This could
be a source of error, and therefore slope t-tests were performed to determine collectively whether the
deviation of optimized TOC from experimentally measured TOC is significant (see Supplementary
Materials Tables S1 and S7 for slope t-test).

2.8. Comparison between the SOC-fga Method and Individual Spectroscopic Techniques

To assess the differences between using peak areas from a single spectroscopic technique for
Equation (8) and the SOC-fga method, where peak areas from both FT-IR and bulk C XAS are
used, we compared the agreement between measured TOC and the optimized sum of organic
carbon functional groups from Equation (8) using peak areas from individual techniques as well
as the SOC-fga method. To ensure that seven functional groups are used for fits using all three
methods, additional peaks were assigned in IR and bulk C XAS spectra. For FT-IR, the following
peaks were identified in addition to the IR peaks listed in Table 1, and the peak areas were used in
Equation (8): polysaccharide (1000–1160 cm−1), phenolic (1380–1410 cm−1), aromatic (1500–1550 cm−1),
and quinonic (1650 cm−1) [23]. For bulk C XAS, the following peaks were identified in addition to
the XAS peaks listed in Table 1, and the peak areas were used in Equation (8): aliphatic (287.45 eV),
amide (288.45 eV), and carbonyl (290.3 eV). For the SOC-fga method, only the peaks listed in Table 1
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were used in Equation (8). In the absence of standard soils with known SOC composition to further
validate the linear mass balance fit model, the SOC mass% calculated using the SOC-fga method was
used as the reference (percent difference = 0), and the percent difference for using either FT-IR or XAS
for Equation (8) was calculated by:

percent di f f erence =
mass%k

i −massSOC− f ga
i

massSOC− f ga
i

, (9)

where k represents either FT-IR or bulk C XAS, and i represents a functional group (i.e., carbonyl,
aliphatic, amide, quinonic, aromatic, phenolic, or polysaccharide).

3. Results

3.1. Elemental Analysis

Total nitrogen (TN) and TOC decreases with depth at BCM, BCW, and RCM, as organic inputs
associated with biological activity are the most abundant at the surface (Figure 1a–c). BCM, BCW, and RCM
have a fairly similar TN and TOC concentration. The trends for TN and TOC at RCF through depth are not
as simple (Figure 1d), but TN and TOC still co-vary with each other similar to the other three sites.
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3.2. FT-IR Spectroscopy

FT-IR spectroscopy was used to identify carbonyl, amide, and aliphatic groups. The peak centroids
used for the SOC-fga method are indicated with vertical lines in Figure 2. The spectral line shape of
soils from the same site is relatively similar across depth but varies between sites, possibly due to
variations in soil matrices between different sites. At BCM (Figure 2a), distinct carbonate peaks at
1400 cm−1 are observed in samples deeper than 60 cm. This is consistent with total inorganic carbon
(TIC) measured by EA, likely associated with carbonate (see SI, Figure S16). No carbonyl peak was
observed, and aliphatic peak area decreases with depth overall. The amide peak area also generally
decreases with depth, which is consistent with decreasing TN (Figure 1), given that over 90% of
soil nitrogen is organic [32–34]. Carbonyl, aliphatic, and amide show similar trends at BCW but the
carbonate peaks intensities are much lower (Figure 2b).

At RCM (Figure 2c), carbonyl peaks are present in the top 30 cm and aliphatic peak areas are
relatively consistent through the top 60 cm, whereas the peak area of amide decreases with depth.
At RCF (Figure 2d), the depth trends of peak areas for organic functional groups are not as obvious as
at the other sites. On average, the peak areas of amide and carbonyl at RCM are larger than those in
BCM and BCW. In addition, the relative peak intensities of aliphatic, amide, and carbonyl are much
higher in RCF compared to the other three sites, consistent with the higher TOC at RCF.
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3.3. Bulk C XAS Spectroscopy

Bulk C XAS was used to identify quinonic, aromatic, phenolic, and O-alkyl (polysaccharide-like)
groups. Peaks used for the SOC-fga method are indicated with vertical lines in Figure 3. Similar to FT-IR,
the spectral line shape of soils from the same site is relatively similar at all depths but varies between
different sites. At BCM (Figure 3a), quinonic and aromatic peak areas increase with depth, whereas phenolic
and O-alkyl (polysaccharide) peak areas decrease with depth. At BCW (Figure 3b), quinonic, aromatic,
and phenolic C peak areas increase with depth, whereas polysaccharide peak areas decrease with depth.
BCM and BCW also have better-defined polysaccharide peak areas comparing to RCM and RCF.

At RCM (Figure 3c), quinonic peak areas increase slightly with depth, whereas aromatic, phenolic,
and polysaccharide peak areas are relatively consistent with depth. Similar to what the FT-IR spectra show,
at RCF, trends in peak areas for organic functional groups are not as obvious (Figure 3d), but the relative
peak intensities are higher compared to the other three sites, consistent with the higher TOC at RCF.
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3.4. Soil Moisture and Temperature

Soil temperature and volumetric water content (VWC) across BCM, BCW, and RCM are shown for
shallow (30 cm) and deep (100 cm) soil conditions in Figure 4 for the period from 1 July 2016 through
12 October 2017. As shown in Table 2, average soil temperatures are the highest at BCM and the lowest
at RCM. Despite similar growing season values between BCW and RCM, annual average conditions
are cooler for RCM due to a shorter growing season duration. At all sites, shallow temperatures are
relatively stable at 0.3–1 ◦C during the winter months under snowpack as indicated by grey shades
in Figure 4. Shallow temperatures begin to rise and display diurnal variability with the melting of
snowpack in late May 2017 for BCM and BCW and late June 2017 for RCM (Figure 4a). The transition
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back to snowpack conditions occurs in mid-November 2016 for RCW (dark grey shades in Figure 4)
and late November 2016 for BCM and BCW (light grey shades in Figure 4) based on decreases in
diurnal variability. Taken together, BCM and BCW experiences roughly 190 days of snowpack-free
conditions, whereas RCM experiences roughly 145 days of snowpack-free conditions, as indicated
in the areas not covered in grey shades in Figure 4. Compared with the shallow soils, deep soil
temperatures at all sites display colder growing season and warmer winter season conditions and
reduced annual and no diurnal variability (Figure 4b).

Although direct comparisons of VWC measurements between sites are complicated by variability
in porosity and soil clay content, general trends are used to qualitatively compare moisture conditions
between the sites. At all sites, moisture in shallow soils increases during the late spring with melting
snow and decreases in the mid/late summer. Pulse-type wetting events occur during the summer
monsoon in August and September, and relatively stable conditions persist through winter under
the snowpack, as indicated by the grey shades in Figure 4. As shown in Figure 4c, BCM experiences
the driest conditions and an earlier dry-down period in early summer 2017, whereas BCW and RCM
display similar water content and timing of annual trends. Deep soils display reduced variability
in VWC, with relatively stable conditions through the late summer through winter and wetting
up/drying down in the late spring/early summer (Figure 4d). In general, deep soils experience wetter
average conditions than shallow soils at each site. Due to technical issues, continuous probe data are
not available from RCF; however, soil conditions remain at or near saturation at the surface throughout
the year based on field observations.
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Figure 4. Temperature at (a) shallow soils (30 cm) and (b) deep soils (100 cm), and volumetric water
content (VWC) at (c) shallow soils (30 cm) and (d) deep soils (100 cm) at BCM (red), BCW (green),
and RCM (blue). The light grey shades indicate the snow-covered periods at Bradley Creek (BC),
and the dark grey shades indicate the additional snow-covered periods at RCM.

3.5. Calculated SOC Compositions

Organic carbon compositions of soils, above-ground biomass (AGB), and litter were calculated
using the SOC-fga method (Figure 5) (see Supplementary Materials Figures S18–S22 for AGB FT-IR
and XAS spectra, and Tables S9–S13 and Figure S23 for αi values and linear mass balance fit results).
In the absence of standard reference material, we performed a series of modeling tests to different
approaches for implementing the SOC-fga method. Assuming seven functional groups, the peak
areas corresponding to the functional groups for a minimum of seven related samples are required
for Equation (8) to ensure a unique solution for αi. First, in order to determine which sets of related
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samples to group in Equation (8), we tested three sample selection approaches for the SOC-fga method:
(1) a universal fit, where all soil samples from BCM, BCW, RCM, and RCF are fit by Equation (8);
(2) a site-specific fit, where soil samples collected from the same site across various depths were
fit; and (3) a depth-specific fit, where soil samples with similar depths but from different sites were
grouped (please see Supplementary Materials Section S3, Figures S5–S7, and Tables S1 and S2 for
additional details). We concluded that a site-specific fit yields the most reliable results because the
R2 values between the experimental TOC and optimized TOC obtained by the site-specific fit are the
highest, and slope t-tests showed that the differences between experimental TOC and optimized TOC
is insignificant. In addition, XRF and PXRD experiments showed that major element compositions
(Figures S8–S11, Table S3) and mineral phases (Figure S12) are more consistent within the same site
than within the same depth range between different sites, which supports our conclusion that samples
from the same site are more similar and should be grouped for Equation (8) (i.e., a site-specific fit).
We also found that samples from BCM and BCW have very similar αi values, possibly due to the
spatial proximity between the two sites. Therefore, in this work, we grouped samples into three matrix
equations: (1) BCM and BCW, (2) RCM, and (3) RCF (please see Supplementary Materials Section S2
for more details on the three fitting approaches).
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Further, we also tested four boundary conditions for Equation (8) to account for the detection limits
of FT-IR and bulk C XAS (please see Supplementary Materials Section S5, Figure S15, and Tables S6–S8
for more details on the boundary condition tests). We concluded that the boundary condition of
αi > 0.01 yields the best fitting results while ensuring that the calculated mass% for each functional
group is above the detection limits of the instrument that measured it. Therefore, we calculated
SOC compositions using site-specific fits with the boundary condition αi > 0.01. BCM and BCW
show similar SOC compositions with large proportions of polysaccharides and aliphatic compounds,
and small amounts of quinonic, aromatic, and phenolic carbon. Although a substantial amount of
aliphatic carbon is also present at RCM and RCF, the amount of polysaccharides is negligible. There is
a substantial portion of carbonyl at the top 30 cm at RCM and at most depths at RCF. Further, more
phenolic and aromatic carbon is present at RCM and RCF, respectively.

3.6. Evaluation of the SOC-fga Method Relative to Single Techniques

To evaluate the SOC-fga method, we compared the agreements between measured TOC and
the optimized sum of organic carbon functional groups from Equation (8) using peak areas from
individual techniques as well as the combined FT-IR/XAS SOC-fga method. The R2 values between
the experimental TOC measured by EA and optimized TOC using Equation (8) for each spectroscopic
technique and the SOC-fga method at Bradley Creek (BC, which includes BCM and BCW), RCM,
and RCF are listed in Table 5. Because the experimentally measured TOC is used as the optimization
criteria, the R2 values represent how well the optimized TOC correlates with the experimentally
measured TOC. The R2 values are on average 8% to 11% higher for fits using the SOC-fga method
that include peaks from both FT-IR and bulk C XAS compared to using either one of the spectroscopic
techniques alone. This suggests that using both techniques to identify the functional groups that they
are the most sensitive to results in improved solutions for αi using Equation (8).

Table 5. R2 values between experimental TOC and optimized TOC for linear mass balance fits using
FT-IR only, bulk C XAS only, and the SOC-fga method (both FT-IR and bulk C XAS are used), at BC,
RCM, and RCF.

R2 BC RCM RCF Average

FT-IR 0.8127 0.8549 0.9302 0.8659
XAS 0.6147 0.9181 0.9672 0.8335

SOC-fga (FT-IR/XAS) 0.9305 0.9203 0.9731 0.9413

The R2 values indicate that Equation (8) can be optimized with a set of αi values using all three
approaches (FT-IR, XAS, and SOC-fga), with the SOC-fga method yielding the highest R2 values.
To further understand the physical implications of the different fits, we compared the functional group
abundance calculated by Equation (8) using the SOC-fga method versus individual spectroscopic
techniques. Using results from Figure 5 as a reference, Figure 6 shows the average % difference
for FT-IR and bulk C XAS for each functional group relative to the SOC-fga results (Equation (9)).
In Figure 6, each bar shows the average % difference across all depth at each site for each functional
group. The bars marked with “+” represent functional groups that are not observed (i.e., peak area = 0)
by FT-IR at all depths at the given site.

At BC, the % difference is positive for the functional groups to which each technique is the most
sensitive (average = +383.1% for FT-IR and +48.3% for bulk C XAS), especially amide for FT-IR and
phenolic for bulk C XAS, and negative for functional groups to which a particular technique is not
as sensitive (average = −79.9% for FT-IR and −42.5 for bulk C XAS) (Figure 6a,b). The smaller %
difference for bulk C XAS suggests that it yields results that are more consistent with the SOC-fga
method possibly because it represents a greater fraction (four) of the functional groups considered.
Further, the results in Figure 6a,b suggest that if only one technique is used for Equation (8), the mass%
of functional groups to which it is the most sensitive will be biased towards larger values. For example,
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if only FT-IR is used for Equation (8), the αi values for the functional groups to which FT-IR is
the most sensitive (i.e., carbonyl, aliphatic, and amide, as summarized in Table 1) are amplified by
the algorithm, leading to a larger calculated mass% for these functional groups. By contrast, the αi
values for the functional groups to which FT-IR is not as sensitive (i.e., quinonic, aromatic, phenolic,
and polysaccharide) are reduced by the algorithm, resulting in the calculated mass% of these functional
groups being less. For example, the mass% of quinonic C at both BCM and BCW and the mass% of
aromatic and phenolic C at BCM are zero because FT-IR did not identify these functional groups,
even though peaks were detected by bulk C XAS. This is attributed to two factors: (1) FT-IR did not
identify certain functional groups at all (i.e., peak area = 0), which means that only the peak areas
for the functional groups that are identified (i.e., peak area > 0) can be used for Equation (8), leading
to an amplification of αi values for the functional groups that are identified; and (2) there are larger
errors in peak area assignments for functional groups to which each technique is not the most sensitive,
so in order to optimize the fit for Equation (8), the algorithm reduces the αi values for said functional
groups to minimize errors. The fact that these biases are consistent with instrumental sensitivities
at the BC sites suggests that using both FT-IR and bulk C XAS as complementary approaches will
provide a more holistic picture of SOC composition.
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between bulk X CAS and the SOC-fga (yellow) for all SOC functional groups at (a) BCM; (b) BCW; (c) RCM;
and (d) RCF. The “+”signs represent functional groups that are not observed (i.e., peak area = 0) in FT-IR at
all depth for the site.

At RCM and RCF, the patterns for FT-IR and bulk C XAS are not as straightforward, and overall
the standard deviations of the percent difference across all depth, as indicated by the error bars
in Figure 6c,d, are larger than those at BC (for FT-IR, the average standard deviation of percent
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difference for all functional groups is 85.0 at BC, 838.2 at RCM, and 8136.6 at RCF; for bulk C XAS, the
average standard deviation of percent difference for all functional groups is 23.6 at BC, 39.1 at RCM,
and 385.9 at RCF). Because each technique detects a functional group (i.e., peak area > 0) at some
depths but not the others (i.e., peak area = 0), this results in a different fit and a larger range of percent
difference when compared to the mass% calculated from the SOC-fga method. For example, at RCM,
while FT-IR identifies aromatic C at most depths, the peak area for aromatic C at 30 cm and 80 cm is
zero, leading to a larger percent difference and hence a larger standard deviation. At RCF, the percent
differences for both techniques are 10- to 80-fold larger than for the other three sites, especially for
carbonyl, aliphatic, phenolic, and polysaccharide. Further, the average standard deviation of percent
difference for all functional groups at RCF is about 10-fold larger than the other three sites for both
techniques. Because RCF is a depositional fen and the soil matrix composition across depth is not as
consistent compared to the other three sites, there may in reality be a larger variation in αi values for
each functional group across depth, although αi is assumed to be constant for each functional group at
each site in Equation (8). This deviation from our assumption that αi is constant is likely to contribute
to the larger percent difference and standard deviation at RCF. Therefore, the SOC-fga method will
result in more consistent patterns when it is used at a site where the soil matrix and SOC composition
(i.e., peak areas for functional groups are greater than zero at all depths) are similar across the samples
used in the linear mass balance model.

To statistically compare the calculated SOC mass% between the SOC-fga method and individual
techniques, we performed a pooled error variance t-test (p < 0.05) on all functional groups between
(1) FT-IR and bulk C XAS, (2) the SOC-fga method versus FT-IR, and (3) the SOC-fga method versus
bulk C XAS (please see Supplementary Materials Table S14–S16 for more details on the pooled error
variance t-tests). The t-test results show that the differences in the calculated mass% for all functional
groups between FT-IR and bulk C XAS are significant (p < 0.05) except for aromatic C. This suggests
that if only FT-IR or bulk C XAS is used to quantify SOC composition with Equation (8), the results will
not be consistent between the two techniques. Between FT-IR and the SOC-fga method, the differences
in the calculated mass% are insignificant (p > 0.05) for quinonic C. Between bulk C XAS and the SOC-fga
method, the differences in the calculated mass% are insignificant (p > 0.05) for aliphatic, quinonic,
phenolic C, and polysaccharide. The differences are significant (p < 0.05) for all the other functional
groups. In addition, the p-values for t-tests performed between FT-IR and bulk C XAS are larger than
p-values between the SOC-fga method and either one of the techniques. The results from the t-tests
suggest that, although there are statistical differences between the application of the SOC-fga method
and a single technique, the SOC-fga method reconciles the discrepancies between FT-IR and bulk
C XAS because the differences in calculated mass% between the SOC-fga method and FT-IR or bulk
C XAS are statistically less significant compared to the differences in calculated mass% between FT-IR
and bulk C XAS. The better agreement between the SOC-fga method and bulk C XAS (i.e., there are
more functional groups with statistically insignificantly different calculated mass% between these
two methods), combined with the lower percent difference and lower standard deviations of bulk
C XAS, suggests that when only one analytical technique is available, bulk C XAS will produce SOC
compositions that are more consistent with the SOC-fga method (see Section 4.4. for a more detailed
discussion of limitations and future work).

The differences between SOC compositions calculated using only one spectroscopic technique
and the SOC-fga method combining both FT-IR and bulk C XAS are not surprising given that different
spectroscopic techniques have different sensitivities for different functional groups. In the absence of
a peak for a particular functional group, such as quinonic C for FT-IR, the experimentally measured
TOC is only assigned to functional groups that are detected, which alters the αi values calculated by
Equation (8). Examination of the resulting αi values also indicates that the algorithm tends to amplify
αi values for functional groups to which a spectroscopic technique is the most sensitive while reducing
αi values for other functional groups to optimize the fit for Equation (8). In conclusion, by accounting
for a broader range of functional groups in the application of the mass balance model, the combined
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FT-IR/XAS approach appears to present a more balanced quantification of the SOC composition.
Regardless of which technique was used, the relative pattern of SOC composition at BC is consistent,
with a substantial amount of polysaccharide and aliphatic and little quinonic, aromatic, and phenolic
C. At RCM and RCF, an increased amount of polysaccharide C is calculated when only FT-IR is used.
In addition, an increased amount of aliphatic C is calculated at RCF when only bulk C XAS is used.
Nevertheless, carbonyl, aromatic, and phenolic C are still the major components at RC, indicating
that the relative differences between the sites still exist regardless of which technique is used. In the
future, to further enhance our understanding of how to optimally apply each spectroscopic technique,
the results should be compared to other approaches, such as 13C NMR, and a set of standard reference
materials developed and acknowledged by the SOC research community.

4. Discussion

Currently, inferences about the controls on SOC turnover are often based on carbon flux estimates
combined with the partitioning of carbon into operationally defined fractions or “pools” [7]. Although
knowledge of the underlying SOC composition is widely recognized to be an additional control on
the mechanisms of SOC turnover and stabilization [2], this information is often not available due
to the difficulties in quantifying SOC composition. Our SOC-fga method provides an approach to
quantitatively study SOC composition while avoiding the complications resulting from harsh chemical
treatments. Further, our results suggest that SOC compositions can be similar across two closely
related sites with different landscape positions, and vastly different between sites with similar parent
material and vegetation types but slightly different temperature and hydrologic conditions (Figure 5).
Thus, expanding available methods of SOC characterization is a critical step towards a predictive
understanding of subsurface carbon transformation.

The SOC-fga method combines the strengths of two spectroscopic techniques to quantitatively
identify SOC functional groups. Examination of the individual spectra confirms the relative differences
between the sites shown in Figure 5. For example, in FT-IR spectra (Figure 2), the peaks corresponding
to carbonyl and amides are more dominant in RCM and RCF than in BC, which is consistent with
the calculated results in Figure 5. Similarly, in the bulk C XAS spectra (Figure 3), polysaccharide has
better-defined peak shapes and peak areas at BC comparing to RCM and RCF. The bulk C XAS spectra
of RCF also show larger aromatic peaks. In addition, we have shown that the fits from Equation (8)
improve when both FT-IR and XAS are used to identify the peaks for which they are optimized
comparing to using either technique alone (Table 4). We have also demonstrated that although
Equation (8) can quantify the SOC functional group abundances in all three cases, the resulting
functional group mass% might be biased depending on which technique is used (Figure 6). Regardless
of the technique(s) used, we found considerable differences between soils with similar landscape
positions/vegetation types at two different elevations.

The similarities or differences in SOC composition between soils from different elevations
and/or vegetation types inform our understanding of processes controlling the accumulation and
transformation of SOC. There is notable similarity in SOC compositions between the BCM and
BCW sampling locations (Figure 5a,b) each from the lower-elevation sampling area. In contrast,
the SOC compositions at RCM and RCF differ significantly from the SOC composition at BC and
from each other (Figure 5c,d). At RCM and RCF, polysaccharides are negligible while carbonyl and
aliphatic compounds are abundant (Figure 5c,d). Further, phenolic and aromatic compounds make up
substantial portions of the SOC at RCM and RCF, respectively. In the following section, we use the SOC
functional group abundances calculated by the SOC-fga method to discuss the possible implications
for factors controlling SOC speciation and transformations.

4.1. Inputs from Above-Ground Vegetation

Above-ground vegetation inputs can affect vertical SOC distribution [35–38]. For example,
Guo et al. [37] reported that there is significantly more alkyl (aliphatic) C and less aryl (aromatic)
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C in planted mixed broad-leaved and coniferous forests compared to native broad-leaved forests
and tea gardens in China, and that alkyl (aliphatic) C and aryl (aromatic) C are more sensitive to
vegetation changes than other functional groups. Although the vegetation types and climate described
in Guo et al.’s work are very different from ours, the aromatic C content is substantially different
between BC, RCM, and RCB (Figure 5). This could be caused by different vegetation inputs if aromatic
C is sensitive to vegetation differences. Furthermore, even though the chemical composition of AGB is
similar between BCM and RCM (Figure 5a,c), there are differences in vegetation type and productivity
between these two sites (Table 2). Compared to BCM, which is generally drier and has a longer growing
season, RCM is completely covered by perennial forbs and has almost 2.5 times more AGB per unit
area. The difference in productivity may result in different input rates and compositions of SOC.

We did not measure the chemical compositions of AGB at BCW and RCF due to the heterogeneity
of the willows. The chemical composition at BCW is similar to that of BCM (Figure 5a,b). This may
reflect the proximity of these two soil profiles: BCW is located downgradient of BCM and may
thus receive similar plant litter inputs and/or input of mineral-associated SOC from BCM. Further,
the graminoids and perennial forbs underneath the willows may be the major vegetation inputs
at BCW. At RCF, because the willows have more structural materials and presumably a different
allocation of above- and below-ground resources compared to meadow vegetation, vegetation input
combined with prolonged exposure to groundwater presumably lead to the different SOC inputs.

Finally, all of the study sites are grazed by cattle at the end of the growing season. Both the
consumption (removal) of plant materials and the input of cattle excrement may further influence the
composition of SOC entering the soil at these sites [39–41]. For example, Wang et al. [40] reported that
the content of aromatic C increased while O-alkyl C (polysaccharide) decreased after 4 years of grazing
exclusion in inner Mongolian grasslands. Although we did not quantify cattle grazing pressure, BC
is consistently under higher grazing pressure than RCM and RCF based on our field observations.
The lower grazing pressure at RCM and RCF may lead to higher aromatic content and lower O-alkyl
content, as suggested by Wang et al. [40], and a more thorough study of grazing activities over a longer
period of time is necessary to confirm the relationship between grazing and SOC composition at our
sites. The difference in the ease of access of these sites by cattle and the timing of grazing due to
elevation have the potential to further influence site level differences in the above-ground SOC that
enters the soils.

4.2. Internal Processing and Losses

Given that soil microbes are an important control on SOC turnover and accumulation [9,42,43],
the differences in microbial-driven processing and SOC losses between different sites can lead
to different SOC compositions. At BCM, although there is a significant amount of aromatic and
quinonic carbon in above-ground biomass, the abundance of these compounds in soil samples is
negligible. Further, litter at BCM contains very little aromatic carbon, suggesting that although
aromatic compounds are often considered recalcitrant [11,44,45], plant-derived aromatic carbon in
litter is quickly decomposed at the soil surface [46]. On the other hand, polysaccharides, which can in
theory be readily decomposed, are present in substantial quantities. Compared with above-ground
biomass, the portion of polysaccharides is larger in litter and soil, which could be caused by
preferential loss of aromatics or other sources of polysaccharides in soil, such as inputs from microbial
reprocessing or below-ground plant inputs [47]. For example, plant root mucilage and extracellular
polymeric substances (EPS), which are drought defense mechanisms for plants and soil microbes,
respectively [48,49], are mostly polysaccharide [50–52] and could contribute to the high polysaccharide
content at the drier BCM site.

The lack of aromatic, quinonic, and phenolic compounds at BC directly contrasts with the
predictions based on chemical recalcitrance, as these compounds are more thermodynamically stable
and hence should be more resistant to microbial decomposition [11,44,45]. Recently, studies have
shown that chemical recalcitrance is not the only, and in some cases even not the primary, factor that



Soil. Syst. 2018, 2, 6 18 of 23

determines SOC turnover and stabilization, and hence thermodynamically stable aromatic compounds
are not necessarily the most dominant organic species in soil [2,6,42,53–55]. For example, humics
from the Georgetown Wetlands in North Carolina were shown to contain greater abundances of
polysaccharide versus aromatic SOC [56]. Furthermore, SOC with long turnover times has been
shown to be compositionally distinct from plant materials [57]. More recently, Kallenbach et al. [47]
demonstrated that SOC accumulation and composition can be strongly influenced by microbial
communities in soil, and that compounds previously thought to be chemically recalcitrant make up
a relatively small fraction of SOC (~5–15%), while polysaccharide-like molecules can make up ~30%
of SOC. In light of these recent findings, our results suggest that site level difference in the processes
controlling the internal cycling of SOC is an important driver of the SOC composition across our
study area.

4.3. Environmental Factors

Environmental factors, such as soil temperature, moisture, and seasonality, are known to influence
microbially mediated SOC composition [58–62]. BCM and BCW are warmer for a longer period of time
throughout the year compared to RCM (Figure 4a,b). The higher average temperatures at BC should
offset the lower plant productivity and result in increased degradation of compounds previously
considered to be recalcitrant (quinonic, aromatic, and phenolic compounds). In contrast, lower average
temperatures at RCM can result in slower microbial decomposition, leading to a larger amount of
incompletely oxidized carbonyl and phenolic compounds [63,64].

Transient oxygen-limitation due to prolonged wet conditions may also play an important role
between the sites. RCM has lower average temperatures and a growing season that is about 45 days
shorter than BC due to prolonged snow cover (Figure 4). This may result in longer periods of dormancy
or reduced microbial activity in soils at RCM throughout the year, leading to slower SOC decomposition.
RCF is perennially saturated based on field observations, and because the TOC at RCF is an order
of magnitude higher than at the other three sites, we conclude that limitation on oxygen levels at
RCF is a dominant driver of SOC composition, and we cannot rule out oxygen-limited conditions at
RCM for at least part of the year based on the observed SOC composition in Figure 5. Extracellular
phenol oxidase and peroxidase are a central control on microbial lignin decomposition, and thus
oxygen limitations at RCF, and likely at RCM, due to saturated conditions could lead to a slower
decomposition of complex aromatic structures and hence an accumulation of aromatics [65,66]. Further,
polycyclic aromatic compounds are known to form and accumulate in soils under oxygen-deficient
conditions [67,68], supporting our observations at RCM and RCF. In addition, at RCF, with even
higher soil moisture and lower oxygen content than RCM, oxidation of aromatic compounds into
phenolic compounds may be retarded, resulting in accumulation of aromatic compounds at RCF,
which is consistent with previous studies of peat formation [69,70]. Future work will interrogate the
microbial communities, redox systematics, and the timing and duration of snowmelt to enhance our
understanding of how soil microbes affect SOC composition.

In summary, although our observations of SOC composition and variations between field sites at
different elevation are broadly consistent with the diverse results from experimental and field-based
studies of SOC, further investigation into soil microbial activities and physical protection of SOC will
be required to confirm the drivers behind the large differences in functional groups.

4.4. Limitations of and Outlooks for the SOC-fga Method

Although our collective results suggest that the SOC-fga method combining FT-IR and bulk C
XAS is a promising new approach for quantifying SOC composition, the method will need to be
combined with additional studies of carbon turnover, microbial communities, and respiration rates in
order to fully evaluate how differences in ecosystem and environmental drivers affect SOC storage
and decomposition. Although the qualitative comparison among spectra across the sites supports our
quantitative SOC-fga model, we cannot yet assess the external errors associated with our calculations
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due to the lack of reference soils with a well-characterized SOC composition. As additional methods
that provide quantitative assessment of SOC composition become available, it will be essential to
establish adequate soil reference materials for method validation and laboratory inter-comparisons.
With the establishment of reference materials, accurately benchmarking the SOC-fga method against
existing characterization techniques, such as MS or NMR, will be feasible, although both techniques
introduce their own complications for quantifying SOC composition. All analytical methods are likely
to have their own biases, and knowledge of these biases will support data interpretation, comparison
among sites, and ultimately the development of more robust models.

In addition, we have shown that the SOC-fga method results in more consistent patterns when
the linear mass balance fit is applied to soil samples whose matrix and SOC composition are more
consistent. In our work, we achieved this consistency by using a minimum of seven (i.e., the number
of functional groups identified) soil samples from the same profile. Although we are confident that the
SOC-fga method can be applied to soil samples in other ecosystems, the αi values in our study cannot
be directly used for other soils. Applying this method to soils from different ecosystems and formed
from different parent materials will allow further assessment of the limitations of the SOC-fga method,
as well as an improved quantitative understanding of the variations between different soils.

5. Conclusions

In conclusion, we have demonstrated that the SOC-fga method, a novel approach that combines
the strengths of FT-IR and bulk C XAS, can quantify SOC functional groups while avoiding
complications caused by chemical treatments. This method will allow us to incorporate quantitative
and measurable parameters (i.e., the abundance of various SOC functional groups) into earth system
models to help us interrogate the mechanisms and rates of SOC turnover and stabilization, and the
feedbacks between SOC and climate change. Although considerably more time-intensive, the SOC-fga
method provides a useful and more quantitative alternative to characterization than using FT-IR or
bulk C XAS alone. To further improve the accuracy of this method, it is important to validate it against
standard soil samples with known SOC composition, other analytical techniques, and further assess
it with soil samples from a variety of ecosystems. Nevertheless, meaningful quantification of SOC
functional group abundances across biological and environmental gradients will greatly enhance our
ability to resolve the underlying controls on SOC turnover and stabilization. This approach provides
a much-needed bridge between estimates of SOC composition and increasingly mechanistic models of
SOC cycling [71]. Finally, additional studies, such as density fractionation to investigate SOC physical
protection, radiocarbon dating, and microbial profiling can be coupled with the SOC-fga method to
further study SOC turnover mechanisms.
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S1–S23, Tables S1–S16.
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