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Abstract: Soil water (θ) dynamics are important parameters to monitor in any field-based drought
research. Although apparent electrical conductivity (ECa) measured by electromagnetic (EM)
induction has been used to estimate θ, little research has shown its successful application at the
plot-scale for evaluating crop water use. An EM38 conductivity meter was used to collect time-lapse
ECa data at the plot scale across a field cropped with 36 different chickpea genotypes. An empirical
multiple linear regression model was established to predict θ measured by neutron probes and
depth-specific electrical conductivity (σ) generated by a 1-D EM inversion algorithm. Soil water
dynamics and movement were successfully mapped with a coefficient of determination (R2) of
0.87 and root-mean-square-error of 0.037 m3 m−3. The rate of soil drying varied with depth and
was influenced by chickpea growth stages and genotypes. The results were also used to evaluate
the differences in soil water use and rooting depths within- and across-plant species and during
the growth stages. Coupled with physiology measurements, the approach can also be used to
identify mechanisms of drought tolerance in the field and screening for effective water use in crop
breeding programs.
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1. Introduction

Monitoring soil water content at different depths and its dynamics can be used to determine
plant water use and hence, water use efficiency. The ability to do this at the plot level on a meaningful
scale has been considered impractical by plant breeders [1], so that selection for drought-tolerant and
more effective water use in the field has been limited [2]. Measuring soil volumetric water content
(θ) in the laboratory using the thermogravimetric method is labour-intensive [3]. Indirect methods to
estimate θ in the field have been used, such as neutron probes, time domain reflectometry, capacitance
probes, and electrical resistivity tomography [4,5], but these instruments need to be installed into
the soil profiles, which is time-consuming and expensive, and hinders their potential applications
for estimating θ at depths, across larger spatial extents and hundreds of plots. In addition, some
agricultural practices (e.g., ploughing) may not be possible if sensors are permanently installed in the
soil (especially at shallow depth).

Recently, non-invasive electromagnetic induction (EMI) instruments have been successfully
used in the field to estimate and map θ within the root-zone and vadose zone [6,7]. Estimation of
θ with EMI is possible because the measured soil apparent electrical conductivity (ECa) is directly
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and indirectly correlated with clay content, salinity, θ, cation exchangeable capacity, available water
content and crop yield [8–11]. By conducting time-lapse EMI surveys, it may be possible to retrieve θ
dynamics by establishing empirical models either using ECa data [12–14] or estimates of depth-specific
electrical conductivity (σ) generated by EM inversion algorithms [15,16]. These models have been
successfully used to map θ dynamics across a field associated with homogenous sandy soils [16,17]
and texture-varying soils comprising loams and medium clays [18]. However, estimation of soil water
content using EMI data only is not always straightforward and not always possible (see [19–23]).
In addition, apart from a few studies (e.g., [20]), the feasibility of using EMI for monitoring θ dynamics
and studying crop water use at the plot scale has not yet been documented.

Therefore, the aims of this study were to: (1) establish an empirical model to estimate θ dynamics
using time-lapse ECa datasets collected by a Geonics EM38 conductivity meter across 40 chickpea
plots (each plot 1.6 × 4 m) with different water treatments (i.e., rainfed and irrigated), (2) predict θ
dynamics at various soil depths at the plot scale across 288 plots after a rainfall event, and (3) compare
different evapotranspiration rates associated with treatments and genotypes and provide guidance for
screening drought tolerant genotypes.

2. Materials and Methods

2.1. Study Site

The study field was located on an experimental farm of the Plant Breeding Institute of The
University of Sydney (Figure 1), Narrabri, NSW, Australia (30◦16’31.7” S, 149◦48’10.7” E). The location
has a sub-tropical climate with mean annual maximum and minimum temperature of 26.5 and 11.7 ◦C,
respectively, and mean annual precipitation of 663 mm [24]. The site of the trial consisted of a deep
black cracking clay soil, characterised as a Vertosol [25], which had been cropped with barley in the
previous winter season and had not been tilled. Around 10 cm of standing stubble remained. Weeds
were controlled with commercial herbicides before sowing and hand-pulling during the experiment.

The trial area was 0.6 ha (180 m × 32 m) orientated in a northeast-southwest direction and divided
equally into two blocks (Figure 1). The northeast block was rainfed only, while the southwest half
received 25 mm irrigation (total 100 mm) approximately every two weeks from mid-August, which
was applied homogeneously to the field using a lateral move irrigator. Each treatment block contained
144 plots and each block was surrounded by two rows of the buffer. Each plot was 1.6 m × 6 m, which
was cut back to 4 m on 1 September 2017. The trial design was an incomplete block design with four
replicate plots per genotype per treatment (rainfed and irrigated).

Thirty-six different chickpea (Cicer arietinum) genotypes, consisting of breeding lines and
commercial cultivars, were sown on 5 June 2017, which is within the planting window recommended
for northern New South Wales. The buffer plots were sown with the cultivar PBA Seamer. Seeds were
pre-treated with fungicides and sown at a rate of 30 plants m−2 using a five-row mechanical planter
with inter-row spacing 0.32 m. Granulated inoculant (Nodulator®, Group-N Granular Legume
Inoculant, BASF Australia Limited, Southbank Victoria, Australia) at a rate of 3.2 kg ha−1 and
Granulock Z Extra fertiliser (Granulock®, Incitec Pivot Limited, Port Lincoln, SA, Australia) at a
rate of 50 kg ha−1 were also applied at the time of sowing. The initial and final EM38 measurements
were taken on 19 October 2017 and 3 November 2017, respectively. At this stage, the genotypes
under rainfed condition were close to physiological maturity whereas the genotypes under irrigated
condition were at the late pod-filling stage.
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Figure 1. (a) Location of the experimental field in the Plant Breeding Institute, The University of 

Sydney, Narrabri, New South Wales, Australia; (b) Locations of the chickpea genotypes and the 

rainfed (closed circles) and irrigated (open circles) treatments. Note: the red circles indicate plots 

where access tubes were installed, which were used for calibrating the empirical model for predicting 

soil water dynamics; the dash lines in Figure 1b indicated  

2.2. Geonics EM38 Configuration 

An EM38 (Geonics Ltd., Mississauga, ON, Canada) conductivity meter provides ECa 

measurements in the root zone. The depths of exploration (DOE) of the EM38 are 1.5 m in the vertical 

(EM38v) and 0.75 m in the horizontal (EM38h) modes of coil orientation when the instrument is 

placed on the ground surface [26]. When the height of the instrument is raised, ECa decreases. ECa 

data collected at multiple heights can be used to improve modelling of the shallow earth structure 

[26]. This was the approach of various previous studies [27–29] and it was adopted in this study. 

2.3. Time-Lapse EM38 Surveys 

To establish an empirical calibration model to predict θ dynamics, ECa data were collected across 

20 plots in the irrigated section on 1 day before (1 October 2017) as well as 2 (5 October 2017), 3 (6 
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Figure 1. (a) Location of the experimental field in the Plant Breeding Institute, The University of
Sydney, Narrabri, New South Wales, Australia; (b) Locations of the chickpea genotypes and the rainfed
(closed circles) and irrigated (open circles) treatments. Note: the red circles indicate plots where access
tubes were installed, which were used for calibrating the empirical model for predicting soil water
dynamics; the dash lines in Figure 1b indicated boundaries of the irrigated and rainfed plots.

2.2. Geonics EM38 Configuration

An EM38 (Geonics Ltd., Mississauga, ON, Canada) conductivity meter provides ECa

measurements in the root zone. The depths of exploration (DOE) of the EM38 are 1.5 m in the vertical
(EM38v) and 0.75 m in the horizontal (EM38h) modes of coil orientation when the instrument is placed
on the ground surface [26]. When the height of the instrument is raised, ECa decreases. ECa data
collected at multiple heights can be used to improve modelling of the shallow earth structure [26].
This was the approach of various previous studies [27–29] and it was adopted in this study.

2.3. Time-Lapse EM38 Surveys

To establish an empirical calibration model to predict θ dynamics, ECa data were collected
across 20 plots in the irrigated section on 1 day before (1 October 2017) as well as 2 (5 October 2017),
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3 (6 October 2017), 4 (7 October 2017), and 5 (8 October 2017) days after a 25-mm irrigation event
(Figure 1). ECa data were also collected across 20 rainfed plots on the same days (Figure 1). ECa data
were measured in both EM38v and EM38h modes and at five different heights (i.e., 0 m, 0.2 m, 0.4 m,
0.6 m and 0.8 m). ECa data were collected close to the centre of each plot where an aluminium access
tube was installed.

To compare the water use of chickpea associated with different treatments and genotypes, repeated
EM38 surveys were also measured on all 288 plots at the same heights and 1 (23 October 2017),
3 (25 October 2017), 9 (31 October 2017) and 12 (3 November 2017) days after a rainfall event (~12.6 mm
of water).

Temperature has previously been reported to influence the temporal and spatial pattern of data
suggesting the need for temperature correction [12,22,30–35]. Based on our previous experiment [36],
we inferred that the change of soil temperature in a Vertosol with large specific heat capacity and
covered with an enclosed crop canopy would be less than 2 ◦C at 0–0.2 m during our experiment and
the change would decrease with increasing depth. This would lead to a shift of ECa of approximately
3.8% in the field due to diurnal soil temperature fluctuation at 0–0.2 m and a shift of less than 3.8%
below 0.2 m. Based on the minor impact of this estimation, we chose not to correct the ECa based on
soil temperature.

Because diurnal drifts of EMI instruments due to ambient temperature have also been reported [36,37],
preliminary ECa measurements were taken before the irrigation event at three selected locations at
different times of the day when the temperature ranged between 20 and 35 ◦C. Diurnal drifts were
found to be negligible (<1 mS m−1) once the EM38 meter was calibrated according to the user manual
prior to the survey. All the EM38 surveys in this study were completed within this temperature range
and therefore, the measured ECa data were assumed to be stable.

2.4. Collection of Neutron Probe Measurements

To calibrate the EM38 ECa data, neutron probe readings were also measured in the 20 rainfed plots
and the 20 irrigated plots on the respective days when the EM38 surveys were carried out. The neutron
probe readings (CPN® 503DR Hydroprobe, CPN International, Concord, CA, USA) were collected
in the access tube at 0.1, 0.2. 0.3, 0.4, 0.5, 0.6, 0.8, 1.0 1.2 and 1.4 m depths. A pre-defined universal
calibration formula was employed to convert the neutron counts to soil volumetric water content (θ):

θ = (Neutron counts − 7863)/182.9 (1)

2.5. Inversions of EM38 Data

Because the 40 calibration plots were randomly located across the whole field (Figure 1), a 1-D
inversion algorithm was employed. The inversion algorithms [38] were embedded in the EM4Soil
Version 3.02 (EMTOMO 2017, http://www.emtomo.com/). In brief, the algorithm aimed at generating
estimates of depth-specific electrical conductivity using the cumulative function of EM field in the
soil [26]. This study applied an initial model which included 11 layers with the middle depths of the
first 10 layers equaling to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.5 m and the 11th layer at infinity.

2.6. Predicting θ Using an Empirical Model

An empirical calibration model was required to convert σ to θ. Given the dependence of θ on σ
and the soil depth (Figure 2a,b), a multiple linear regression (MLR) model was fitted to predict θ using
σ and the soil depth. The model parameters were fitted using ordinary least squares with JMP 10.2
(SAS Institute Inc., Cary, NC, USA). Once the model was fitted, it was applied to the whole field to
predict θ at different depths across the 288 plots over the 11-day period after the rainfall event.

http://www.emtomo.com/
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Figure 2. The relationship between measured soil volumetric water content (θ, m3 m−3) at different
depths and measured apparent electrical conductivity (ECa, mS m−1) by an EM38 on the ground
surface with different modes (horizontal—EM38h and vertical EM38v) before irrigation including (a) θ
at 0.1–0.2 m versus EM38h; (b) θ at 0.1–0.2 m versus EM38v; (c) θ at 0.4–0.5 m versus EM38h; and (d) θ
at 0.4–0.5 m versus EM38v and 2 days after irrigation including (e) θ at 0.1–0.2 m versus EM38h; (f) θ
at 0.1–0.2 m versus EM38v; (g) θ at 0.4–0.5 m versus EM38h; and (h) θ at 0.4–0.5 m versus EM38v.

2.7. Estimating θ Dynamics in 3-Dimensions

To better visualise and interpret θ dynamics in 3-D across the field, the change in predicted θ
(∆θ) generated by MLR at various depths across the field was calculated based on the first day after
irrigation. The water flux (JDepth, mm) within different depth intervals down to 1.2 m (negligible
changes of θ below 1.2 m) and between 0 and 1.2 m across the rainfed and irrigated fields were
also calculated.
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2.8. Comparing Water Use of Different Genotypes

To compare the water use of various chickpea genotypes, we fitted a linear mixed effect model
as follows:

∆θ = αX + βY + γGenotype + δTreatment + ζGenotype × Treatment + η+ ε (2)

Herein, ∆θwas the change of θwithin 0–1.2 m across the 288 plots during the first 11 days after the
irrigation event. The fixed effects included the following variables: X and Y were the distance between
the plots as shown in Figure 1; Genotype contained 36 values and were labelled from 1 to 36 due to
confidentiality issue; Treatment had two values (i.e., rainfed and irrigated); Genotype × Treatment
referred to the interaction between genotype and treatment. η referred to the spatial random effect and
was modelled with a semi-variogram; ε was the error. In this study, the parameters of the linear mixed
model were fitted using the restricted maximum likelihood (REML) [39]. The geoR package [40] in R
was used to fit the model parameters.

In this study, the mean water flux (JDepth, mm) within different depth intervals was also calculated
for several selected genotypes (with largest and smallest fixed effects). These values would be used
to infer the rooting depths and root activities during the experiment. Herein, we did not fit a linear
mixed effect model for every genotype because we did not have a sufficient number of sites to estimate
a variogram.

3. Results and Discussion

3.1. Correlation Between θ and ECa

Figure 2 shows the plot of measured θ at two depths versus ECa on different days. Figure 2a,b
show the plots of measured θ at 0.1–0.2 m versus ECa measured by EM38h and EM38v, respectively,
before irrigation (close to permanent wilting point). In general, ECa increased with increasing θ but
the correlations were weak (R2 = 0.26 and 0.29). Not surprisingly, similar patterns were observed
between irrigated and rainfed plots because the soils in both plots were dry. Figure 2c,d show the plots
of measured θ at 0.4–0.5 m versus ECa measured by EM38h and EM38v, respectively, before irrigation.
Similar but slightly stronger correlations were found between θwith ECa measured by EM38h and
EM38v (R2 = 0.30 and 0.40).

Figure 2e–f show the plots of measured θ at two depths versus ECa measured by EM38h and
EM38v and 2 days after irrigation (close to field capacity). In this case, the correlations between θ with
ECa measured by EM38h and EM38v were much stronger (R2 = 0.72, 0.83, 0.74 and 0.75) than those
identified when the soil was dry. The increase in correlation was mainly because there was a broader
range in measured θ as well as ECa values when the soil became wetter.

It was also worth noting that the correlations between θ and ECa were different for different depths
and different times (soil moisture conditions). Some researchers [23] reported a similar relationship
between θ and measured EM38 ECa in Vertosols, and they also found that the relationship varied with
soil depth. The difference in this study was because ECa represented the depth-average soil electrical
conductivity with different measurement modes (EM38h and EM38v) corresponding to different DOEs.
Therefore, different regression models were required to predict q at different depths using the same set
of ECa data. Based on the results, it is necessary to apply the inversion algorithms to convert ECa to
depth-specific σ and use it for modelling θ.

3.2. Correlation Between θ with σ and Soil Depth

Figure 3a shows the plot of measured θ versus estimated σ across 40 calibration plots over 4 days.
In general, σ increased with increasing θ. More importantly, it was worth noting that the overall
correlation between θ and σ was stronger than those calculated between θ and ECa at different depths
and on different days (Figure 2). This was not unexpected because the depth-specific σ has a similar
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measuring volume compared to θ while ECa represented the depth-average soil electrical conductivity.
Some researchers [16] identified a curve-linear relationship between θ and σ in homogenous loamy
soils, which supports these findings. Herein, the soil was similarly uniform but had a medium to high
clay content (i.e., Vertosols).

Figure 3b shows the plot of measured θ versus the soil depth. In general, θ increased with the soil
depth, which is to be expected because Vertosols normally have a high field capacity (>0.5 m3 m−3)
and permanent wilting point (>0.4 m3 m−3). Vertosols can hold a large amount of water at depths
even when the shallow soils become drier due to evaporation and transpiration.
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depth-specific electrical conductivity (σ, mS m−1); (b) soil depths; and (c) predicted θ using 10-fold
leave-one-out cross-validation with a multiple linear regression model.

3.3. The Empirical Model of θ

Given the strong correlation between θ with σ and soil depth, a multiple linear regression (MLR)
model was established. The model parameters are shown in Figure 3c. Figure 3c also shows 10-fold
cross-validation results of the established MLR model. In general, the model performance was good
given that Lin’s concordance [41] was 0.93, root-mean-square-error (RMSE) was 0.037 m3 m−3 and
mean-error (ME) was 0.000 m3 m−3, respectively. Given the good performance of the MLR model,
a non-linear regression model was not fitted and compared in this study.

Figure 3c also shows that the MLR model tended to over-estimate θ values < 0.1 m3 m−3, which
were mostly found in the topsoil. This divergence between measured and predicted θ is most likely
caused by the poor performance of the Neutron probe calibration formula for topsoil due to the
radiation escaping from the soil surface [42]. In addition, this over-estimation of θ could be due to the
uncorrected shift of ECa due to soil temperature, particularly within 0–0.2 m.
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It should be noted that apart from θ, a number of soil properties also influence ECa, including clay
content, soil salinity, the electrical conductivity of the soil solution, and soil temperature [6,22,31,43].
In this study, the coefficient of variation (CV) of EM38v and EM38h measured at the ground surface
across the 288 plots was small prior to rainfall (5% and 8%, respectively) and it is expected that the
CV values will be smaller if there was no crop in the field. These suggest that the soils are relatively
homogenous across the field and these factors are not likely to influence the accuracy of the MLR
model established in this study. However, it should be noted that MLR model is site-specific and
may not be readily applicable to other areas because of the variation of soil properties in space and
time [35,44,45].

3.4. Spatial Distribution of Model Residuals Across the Field

Figure 4 shows the contour plots of the spatial distribution of the MLR model residuals (measured
θ–predicted θ) at two depth intervals (0.1–0.2 m and 0.4–0.5 m) across the field before and 2 days after
irrigation. In general, the residuals were negative (over-estimation) in the rainfed plot and positive
(under-estimation) in the irrigated plot. This was most likely because θ in the rainfed plot was larger
than that in the irrigated plot due to the low evapotranspiration rate of the mature chickpeas in the
rainfed plot (refer to Figures 1 and 2). Furthermore, it was noted that the residuals in the irrigated plot
were more negative at 0–0.1 m than at 0.4–0.5 m, which can be due to either the inaccurate estimation
of θ from neutron probe measurements close to the ground surface or the uncorrected drift of ECa due
to soil temperature fluctuations within 0–0.2 m.
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3.5. Predicted θ Dynamics Across the Field

Because the day-to-day change in θ was small, the change in θ (∆θ) of a specific day was plotted
compared with the first day after the rainfall event. Figure 5 shows the ∆θ at various depths across the
288 plots during day 1 and day 3 (2-day period) after the rain.
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(d) 0.7–0.8 m; (e) 0.9–1.0 m; (f) 1.1–1.2 m.

In general, θ was constant at the depth interval of 0.1–0.2 m for most parts of the field
(∆θ: −0.01–−0.01 m3 m−3) except a few plots in the rainfed side of the field that became slightly
wetter (∆θ: 0.01–−0.03 m3 m−3) while a few plots in the irrigated half became slightly drier (∆θ:
−0.03–−0.01 m3 m−3) (Figure 3a). This is consistent with the chickpea genotypes in the rainfed section
extracting less water from the soil as they approached physiological maturity compared with the
immature chickpea in the irrigated plots, which were still actively taking up water.

Similar patterns in ∆θ were observed at other depths but with a few notable differences
(Figure 5b–f). In the northern and central rainfed plots, soils at 0.5–1.0 m depths became wetter.
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This indicated that water infiltrated down the profiles, probably as preferential flows via the cracks in
the Vertosols. In the irrigated plots and the southern end of the rainfed plots, soils were drying faster
with increasing depth. This suggested that the chickpea root system was more active at these deeper
depths when extracting water from the soils.

Figure 6 shows ∆θ across the 288 plots during day 1 and day 9 (8-day period) after the rain. In the
rainfed plots, soils dried out at 0.1–0.2 m depth, remained unchanged at the depth of 0.3–0.4 m and
became wetter below 0.5 m. This indicated that the evapotranspiration rate of chickpea in the rainfed
plots was very low so that the surface drying was mostly caused by evaporation and the subsoil
wetting was due to the infiltration of water with time. In the irrigated plots, soils were drying out
throughout the whole profile indicating water uptake by chickpea roots across the profile.
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Figure 7 shows ∆θ across the 288 plots during day 1 and day 12 (11-day period) after the rain.
Compared to the first day after irrigation, θ in the rainfed plots remained unchanged. In the irrigated
plots, soil continued to dry out throughout the whole profile. In particular, more water was extracted
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from the deeper depths (below 0.6 m) compared with the shallow depths (Figure 7d–f). This was not
unexpected because θ values at the depth of 0–0.6 m were close to the permanent wilting point of the
clay soils (~0.15–0.20 m3 m−3, figures not shown) while θ in the subsoil was still high (~0.25–0.30 m3 m−3,
figures not shown), so there was still available water for uptake by the chickpea genotypes.Soil Syst. 2018, 2, 11 11 of 17 
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Based on the results presented in Figures 5–7, it can be concluded that soil water content at the
plot scale can be extremely dynamic and wetter/drier areas at one time step could either persist or
change in a different direction at the next time step. This is reasonable because the crop water use is
highly dynamic, depending on varieties, developmental stages and even previous soil moisture status
(hysteresis effect) [46]. To validate these assumptions, sensor-based real-time monitoring of leaf turgor
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pressure and stem water status coupled with plant physiological analysis [47] can be used in the future
to value-add to the time-lapse 3-D images of soil water status generated using repeated EMI surveys.

3.6. Water Balance Across the Field

Averaged soil water flux (Jdepth, mm) at different depths and within the top 1.2 m of the soils
is presented in Table 1. Jdepth values deeper than 1.2 m were not shown because θ was relatively
constant during the whole experimental period. A net amount of 1.9 mm of water was added to the
rainfed plots and 17.0 mm of water was removed from the irrigated plots over 11 days (day 1 to day
12) considering 12.6 mm of water was added to the soil via rainfall (Table 1). Table 1 also shows that
water was first (days 3–9) removed from the shallow soil and then (days 9–12) from the deeper soil.

Table 1. Predicted averaged soil water flux (Jdepth, mm) at different depth intervals and 0–1.2 m soil in
the rainfed and irrigated plots during the study period.

Depth Rainfed Irrigated

Days 1–3 Days 3–9 Days 9–12 Days 1–12 Days 1–3 Days 3–9 Days 9–12 Days 1–12

J0.0–0.1 m 0.1 −0.9 0.5 −0.4 −0.2 −1.1 0.5 −0.7
J0.1–0.2 m 0.1 −0.9 0.5 −0.4 −0.2 −1.1 0.5 −0.7
J0.2–0.3 m 0.1 −0.5 0.2 −0.3 −0.2 −1.0 0.3 −0.9
J0.3–0.4 m 0.1 −0.1 −0.2 −0.1 −0.2 −0.8 0.0 −1.0
J0.4–0.5 m 0.2 0.3 −0.5 0.0 −0.2 −0.7 −0.2 −1.1
J0.5–0.6 m 0.2 1.0 −1.0 0.2 −0.3 −0.3 −0.7 −1.3
J0.6–0.7 m 0.3 1.6 −1.4 0.4 −0.3 0.1 −1.3 −1.5
J0.7–0.8 m 0.3 2.2 −1.9 0.6 −0.4 0.4 −1.8 −1.8
J0.8–0.9 m 0.2 2.2 −1.8 0.6 −0.4 0.5 −2.0 −1.9
J0.9–1.0 m 0.2 2.1 −1.8 0.5 −0.5 0.6 −2.1 −2.0
J1.0–1.1 m 0.1 2.1 −1.7 0.5 −0.6 0.7 −2.2 −2.1
J1.1–1.2 m 0.0 1.3 −1.0 0.2 −0.6 0.2 −1.6 −2.0
J0.0–1.2 m 1.7 10.4 −10.2 1.9 −4.1 −2.4 −10.5 −17.0

Therefore, the change of θ within 0–1.2 m in the rainfed plots was a function of deep percolation
(1.7 mm and 10.4 mm over days 1–3 and days 3–9) and evaporation and transpiration (10.2 mm over
days 9–12). This was not the case for irrigated plots. During the 11-day period, the chickpea continued
to extract water from the soils with −4.1 mm, −2.4 mm, and −10.5 mm of water leaving the profiles as
evaporation and transpiration.

These values were different from those reported in the loamy soils with Lucerne whereby 37 mm
water leached out via deep percolation after 68 mm of irrigation water was applied [18]. The values
reported here were also different from those reported in heavy clay soils with irrigated cotton, whereby
an average of 42.5 mm was lost due to deep drainage with irrigation ranging from 19 to 285 mm [48].
The main reason our values are smaller is because only 12.6 mm of water was uniformly added to the
soil via a rainfall event.

3.7. Variation in Chickpea Genotypic and Growth-Dependent Water Use

Table 2 shows the estimated fixed effect coefficients for different genotypes under rainfed and
irrigated conditions. Only seven genotypes under the rainfed conditions were still extracting some
water from the soils (indicated by negative coefficients), which is indicative of their earlier phenology
induced by terminal drought. Genotype 6 in the rainfed conditions had the smallest coefficient (−0.94)
and hence, the greatest water use over the 11-day period, followed by genotypes 13, 11, 32, 28, 9,
and 31. This was not the case for chickpea in the irrigated half of the trial, where 26 genotypes were
extracting water from the soil and the genotype 34 had the greatest water use.
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Table 2. Estimated fixed effect coefficients for different chickpea genotypes under rainfed and irrigated
conditions. Note: negative coefficients indicate greater water extraction. Note the change in the ranking
of the genotypes with the different treatments.

Rank Genotype (Rainfed) Fixed Effect Coefficient Genotype (Irrigated) Fixed Effect Coefficient

1 6 −0.94 34 −0.85
2 13 −0.36 7 −0.76
3 11 −0.28 29 −0.65
4 32 −0.27 3 −0.57
5 28 −0.12 4 −0.54
6 9 −0.06 8 −0.49
7 31 −0.05 21 −0.45
8 25 0.06 24 −0.43
9 10 0.10 15 −0.42

10 20 0.11 26 −0.41
11 5 0.12 18 −0.40
12 22 0.20 36 −0.38
13 14 0.22 14 −0.38
14 2 0.28 25 −0.38
15 33 0.31 35 −0.35
16 35 0.33 16 −0.31
17 23 0.34 23 −0.27
18 17 0.35 5 −0.19
19 18 0.36 30 −0.18
20 29 0.36 12 −0.18
21 12 0.38 1 −0.17
22 16 0.39 27 −0.13
23 15 0.41 31 −0.12
24 30 0.43 20 −0.08
25 19 0.48 11 −0.07
26 21 0.48 2 −0.01
27 3 0.60 28 0.04
28 26 0.64 22 0.05
29 27 0.67 17 0.12
30 24 0.70 32 0.18
31 34 0.98 9 0.20
32 4 1.03 33 0.24
33 8 1.17 19 0.27
34 7 1.22 6 0.31
35 1 1.28 13 0.43
36 36 1.38 10 0.49

In addition to water use, genotypic and growth-dependent variation in root system traits were
detected. Table 3 shows the mean values of water flux (JDepth, mm) within each depth interval for
several genotypes during the 11-day period. Genotypes 6 and 34 were used to present the genotypes
that were actively extracting water during the experiment and genotypes 36 and 10 were used to
present the genotypes that showed least water extraction from the soil.

Mature genotype 6 (rainfed) extracted most of the water between 0.9 m and 1.5 m (<−1.0 mm).
By comparison, immature genotype 6 (irrigated) extracted water throughout the whole soil profile
with the maximum water extraction between 1.1 m and 1.5 m (<−1.5 mm). This was not the case
for genotype 34, which extracted water throughout the whole soil profile during both immature and
mature stages. In terms of genotype 36, most of the water was extracted at the soil surface (0–0.2 m)
during the mature stage and at the depth of 1.0–1.1 m during the immature stage. This was similarly
the case for genotype 10, which extracted most of the water within 0–0.2 m during mature stage and
within 0.7–0.8 m during the immature stage.
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Table 3. Predicted averaged soil water flux (Jdepth, mm) for several genotypes within different depth
intervals in the rainfed and irrigated plots during the 11-day period.

Depth 6 34 36 10

Rainfed Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed Irrigated

J0.0–0.1 m 0.3 −1.0 −0.5 −0.4 −1.4 −0.3 −0.4 −1.1
J0.1–0.2 m 0.3 −1.0 −0.5 −0.4 −1.4 −0.3 −0.4 −1.1
J0.2–0.3 m 0.3 −1.0 −0.5 −0.7 −1.0 −0.6 −0.1 −1.3
J0.3–0.4 m 0.3 −1.0 −0.6 −1.0 −0.6 −0.8 0.1 −1.4
J0.4–0.5 m 0.4 −1.0 −0.6 −1.3 −0.3 −1.1 0.3 −1.6
J0.5–0.6 m 0.4 −1.0 −0.7 −1.8 0.3 −1.5 0.6 −1.7
J0.6–0.7 m 0.4 −0.9 −0.7 −2.4 0.8 −2.0 0.9 −1.8
J0.7–0.8 m 0.4 −0.9 −0.7 −2.9 1.4 −2.4 1.2 −2.0
J0.8–0.9 m 0.1 −1.0 −0.6 −3.0 1.6 −2.6 1.2 −1.9
J0.9–1.0 m −0.1 −1.1 −0.4 −3.2 1.7 −2.7 1.2 −1.8
J1.0–1.1 m −0.4 −1.2 −0.3 −3.3 1.9 −2.9 1.2 −1.7
J1.1–1.2 m −0.8 −1.5 −0.0 −2.8 1.5 −2.5 0.8 −1.4
J1.2–1.3 m −1.2 −1.7 0.2 −2.2 1.0 −2.1 0.4 −1.1
J1.3–1.4 m −1.6 −2.0 0.5 −1.6 0.5 −1.7 0.0 −0.9
J1.4–1.5 m −1.8 −2.1 0.7 −1.1 0.1 −1.3 −0.3 −0.7

These results suggested that the EM induction approach successfully picked up the variation in
chickpea genotypic and growth-dependent water use. Because the models established between θ and
EMI data are site-specific, different models need to be established to account for the variations in soil
properties [6,19,21,22,43]. Given the non-invasive nature of the EMI method, the methods established
in this study have the potential to be applied elsewhere at the plot scale to accelerate the traditional
breeding process for estimating rooting depths across the chickpea genotypes and monitoring root
activities during chickpea growth.

3.8. Caveats for Soil and Plant Scientists

Because most soil and plant scientists are not very familiar with the principles and applications of
EMI instruments, we provide some caveats for them to design similar experiments for monitoring soil
water dynamics at the plot scale.

(1) EMI surveys: repeated EMI surveys should be taken before and after the irrigation/rainfall
events to ensure a large range of apparent electrical conductivity (ECa) as well as θ. EMI surveys
should be taken at similar ambient temperature. If a significant drift in soil temperature occurs,
ECa data need to be corrected to a standard temperature prior to further analysis using different
correction formulae [18,34].

(2) Soil moisture measurements: real-time θmeasurements are required to establish models between
θ and ECa data. This can be done using a number of geophysical instruments, including neutron
probes, time domain reflectometry, and capacitance probes [5]. Attention should be taken to
minimise the disruption of soil profiles.

(3) Model construction: it is suggested that EMI data should be inverted to calculate the
depth-specific electrical conductivity (σ) for establishing a universal model between θ and
σ. Examples of the inversion algorithms and model calibration approaches that have been
successfully applied in the field can be found in [16,18].

4. Conclusions

It is concluded that soil water dynamics at various soil depths and movement at the plot scale
can be mapped using a non-invasive EM induction instrument (i.e., EM38) and a 1-D EM inversion
algorithm in heavy clay soils (Vertosols). The rate of soil drying varied with depth and was affected by
the growing stages and genotypes of the chickpea. The technique is sensitive enough to characterise
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differences in water use over short durations and small changes in soil moisture content, as well as
different depths. The method has the potential to be used over the entire season to measure and map
patterns in water use, as well as to identify genotypic and growth-dependent variation in total soil
water uptake and rooting depths. Coupled with plant physiological measurements, the approach can
be used to estimate root depths, to identify mechanisms of drought tolerance in the field and to screen
for effective water use in crop breeding programs.
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