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Abstract: Soil mineral assemblage influences the abundance and mean residence time of soil organic
matter both directly, through sorption reactions, and indirectly, through influences on microbial
communities. Though organo-mineral interactions are at the heart of soil organic matter cycling,
current models mostly lack parameters describing specific mineral assemblages or phases, and treat
the mineral-bound pool as a single homogenous entity with a uniform response to changes in
climatic conditions. We used pyrolysis GC/MS in combination with stable isotopes and radiocarbon
abundance to examine mineral-bound soil organic matter fractions from a lithosequence of forest soils.
Results suggest that different mineral assemblages tend to be associated with soil organics of specific
molecular composition, and that these unique suites of organo-mineral complexes differ in mean
residence time. We propose that mineralogy influences the composition of the mineral-bound soil
organic matter pool through the direct influence of mineral surface chemistry on organo-mineral bond
type and strength in combination with the indirect influence of soil acidity on microbial community
composition. The composition of the mineral-bound pool of soil organic matter is therefore partially
dictated by a combination of compound availability and sorption affinity, with compound availability
controlled in part by microbial community composition. Furthermore, results are suggestive of a
preferential sorption of N-containing moieties in Fe-rich soils. These bonds appear to be highly stable
and confer extended mean residence times.
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1. Introduction

The influence of soil mineral chemistry on the composition and stability of organics bound
to mineral surfaces has become of interest to both experimentalists and modelers in the context of
disturbances such as climate change and land use change. Benchtop experiments have suggested
that mineral surface chemistry may influence the soil C cycle through processes such as competitive
sorption [1–4], selective preservation [5,6], and feedbacks with microbial communities [7–10]. Here
we investigate these interactions in naturally formed forest soils from a lithosequence under
ponderosa pine.

Controlled laboratory experiments using reactive flow-through vessels or batch sorption
experiments suggest strong competition among organic moieties for sorption to mineral phases
which varies both with the surface chemistry of the solid phase and with the pH and ionic
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strength of the dissolved phase [11], and references therein. These competitive sorption, or sorptive
fractionation, effects can result in predictable variation in the concentration, composition, and stability
of mineral-bound organics in laboratory experiments which utilize a handful of model compounds.
More recently, benchtop experiments examining organo-mineral interactions and sorptive fractionation
have increased in complexity and in the utilization of emerging analytical capabilities such as
nanoSIMS (nanoscale secondary ion mass spectrometry) and FTICR-MS (Fourier-transform ion
cyclotron resonance). Not all of these studies find evidence of sorptive fractionation, for example,
Fluery et al. [12] found selective sorption on Al oxide, but not on kaolinite. In an incubation experiment
comparing protective capacity of various phyllosilicates, ferrihydrite and boehmite, no significant
treatment effect was found [13]. These results are in contrast to recent findings utilizing dissolved
organic matter on natural soils [14] and Fe oxides of varying crystallinity [15]. A portion of the
discrepancy in conclusions can be attributed to different approaches to taking into account the
influence of pH and the diversity of organic compounds available. Examination of naturally formed
organo-mineral complexes may offer several advantages in comparison to utilizing modeled systems in
that they have developed over very long time scales in a biotic environment, allowing for the complex
interactions among microbes, substrate, and secondary mineral development to come into equilibrium.
Additionally, these samples include the secondary influences of mineral chemistry on qualities of
the soil matrix such as acidity and dissolved ion concentrations, which in turn affect organo-mineral
qualities. However, the influence of competitive sorption on the composition and/or abundance of
soil organic matter (SOM) in naturally formed soils has proven difficult to illustrate [16,17], with the
strongest linkages having been found between SOM abundances and short-range-order mineral phases
in the unique physicochemical environment of Andisols [18,19], and more recently the association of
highly stabilized aromatic and carboxylate moieties on Al and Fe oxides [20]. A significant gap remains
in regards to our understanding of the sorptive fractionation mechanisms dictating the formation of
naturally occurring organo-mineral complexes.

Selective preservation, or the persistence of certain organics throughout the decomposition
process, was long believed to be the product of the heterogeneous inherent structural characteristics of
so-called humics [21]. More recently, molecular-scale investigations of the composition of SOM have
revealed that the majority of SOM is composed of recognizable compounds or their constituent building
blocks [22]. Therefore, with the exception of pyrogenic compounds [23], selective preservation is now
hypothesized to depend on the strength of organo-mineral bonds formed [24], not solely the molecular
structure of the organic component [25]. Proximity to the mineral surface and microbial conditioning
of mineral surfaces are also thought to play a part in determining persistence of organo-mineral
complexes [26], as in the zonal self-assembly model of Kleber et al. [27]. As is the case with sorptive
fractionation, evidence of selective preservation (with the exception of pyrogenic materials) has been
difficult to illustrate in naturally formed soils.

Indirect connections have been made between soil mineralogy and soil microbial characteristics,
such as the dependence of fungal-to-bacterial ratios and bacterial diversity on pH [28,29]. Recent work
has suggested that this connection between microbial community characteristics and pH may actually
be attributed to the influence of toxic trivalent Al, the concentration of which is highly dependent on
pH [30]. Trivalent Al and H concentrations are both a product of mineral assemblage and weathering,
but are also influenced by the acidity of plant inputs, e.g., [31]. The influence of soil mineral chemistry
may additionally shape microbial communities through factors such as elemental abundance [7],
especially the abundance of macro- and micro-nutrients such as P, K, and Ca [32]. Differences in the
character of microbial residues may then translate directly into differences in SOM characteristics [26].

With the objective of investigating the influence of mineral surface chemistry on characteristics of
the mineral-bound SOM pool in naturally formed soils, we examined the molecular composition and
radiocarbon abundances of the mineral-bound pool of organic matter across a lithosequence of four
soils under ponderosa pine with the following questions in mind:
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• Does the composition and stability of mineral-bound organic matter vary among soils of differing
mineral assemblage?

• If so, is variation in composition and/or radiocarbon abundance associated with specific soil
physicochemical properties?

• Can any connection be made between composition of mineral-associated organics and microbial
community characteristics?

Previous work across this lithosequence, utilizing the same sample set as this manuscript,
indicated strong linkages among mineralogy, microbial communities, and bulk soil C abundance.
Variation in bulk C abundance and bacterial community composition were associated with variation
in Al and Fe phases of differing crystallinity. Data suggested a gradient in the dominant mechanism
of SOM stabilization across sites, with chemical recalcitrance and metal–humus complexation the
dominant control in soils of the acidic rhyolite and granite sites, and mineral adsorption the dominant
factor in the basic dolostone and basalt sites [9]. Accompanying microbial community characterization
and manipulative laboratory studies highlighted the role of Al toxicity in shaping microbial community
composition across the acidity gradient offered by this lithosequence [30]. Examination of the factors
associated with the abundance of free particulate organic matter and organics preserved through
occlusion within aggregates highlighted the importance of fire and aggregate formation in determining
the abundance and stability of these pools of organic matter [33]. In the current manuscript, we seek
to identify and understand parameters associated with variation in the molecular composition and
stability of the mineral-bound pool of organic matter.

2. Materials and Methods

Data presented in this manuscript includes compilation and reexamination of a large body of
previously published work in combination with newly presented data. Consequently, only a brief
explanation of laboratory methods is given along with appropriate references to published works.
All previously published work was conducted on the same soil samples, but the number of replicates
varied according to the expense and labor associated with different instrumental methods.

Soils were sampled by genetic horizon from a lithosequence of four soils under Pinus ponderosa
(ponderosa pine) in Arizona (Table 1). Parent materials and associated soils included dolostone (Loamy,
mixed, superactive, mesic Lithic Argiustoll), basalt (Clayey-skeletal, mixed superactive, mesic Typic
Paleustoll), granite (Loamy-skeletal, mixed superactive, mesic Typic Ustorthent), and rhyolite (Loamy,
mixed, superactive, mesic Typic Haplustept). Three pedons were sampled from each site. Soils varied
from slightly acidic to neutral in pH, and from sand to clay in texture. C inputs and C quality are
assumed to be highly similar among sites due to the small variation in landscape position, aspect,
elevation, precipitation, and vegetation. All soils were sampled from moderately flat (5–20% slope)
ENE- or WNW-facing slopes in Pinus ponderosa-dominated forests. Mean annual precipitation and
temperature ranged from 685 to 815 mm and 9–12 ◦C, respectively. Sample site coordinates and detailed
site descriptions are given in Heckman et al. [9]. Only the mineral-associated fraction of organics (here
termed the heavy fraction) was examined in this manuscript since this investigation is focused on the
mechanisms determining the composition and stability of mineral-bound organics specifically.

Soil particle size distribution was determined by the pipette method [34]. Soil pH was measured
1:1 (wt/wt) in H2O, and 1:1 in 1 M KCl [35]. Qualitative mineralogical analysis by X-ray diffraction
was conducted on the clay (<2 µm), silt (2–53 µm), and very fine sand (53–105 µm) fractions for all
genetic horizons at each site [36]. Iron oxide, short-range-order iron- and aluminum-oxyhydroxide,
and metal–humus content of bulk soil were measured using standard selective dissolution techniques
using sodium dithionite (FeD, AlD), acid ammonium oxalate (FeO, AlO), and sodium pyrophosphate
(FePY, ALPY) [35]. Specific surface area (SSA) was measured on bulk soils after organic matter removal
using a Beckman Coulter SA 3100 Surface Area and Pore Size Analyzer (Fullerton, CA, USA). Samples
were analyzed for total organic C, total N, δ13C, and δ15N by dry combustion at 1000 ◦C with an
elemental analyzer (Costech Analytical Technologies, Valencia, CA, USA) coupled to a continuous-flow
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mass spectrometer (Finnigan Delta PlusXL, San Jose, CA, USA) at the University of Arizona Stable
Isotope Laboratory. Surface area was measured under N2 and modeled using the BET equation [37].
Soils were density separated into free/light (F/L), occluded (OCC) and heavy fractions (HF) using
a sodium polytungstate (SPT) solution adjusted to a density of 1.8 g cm−3 [33,38]. In brief, soils
were mixed with SPT and centrifuged to separate low density organics (F/L) from the rest of the
soil. The F/L was aspirated and rinsed. Sonication at a rate of 1500 J/gsoil was applied to disrupt
aggregates and release low-density organics (OCC). Following centrifugation, the OCC was aspirated
and rinsed. The remaining pellet was assumed to contain only mineral material and the organics
intimately associated with mineral surfaces, termed the heavy fraction (HF). Density fractions of bulk
soils were characterized by pyrolysis GC/MS [33,39]. In brief, ground composited subsamples were
pyrolyzed in pyrofoils or platinum cups. Samples analyzed by pyrolysis GC/MS were composited
from three pedons per site. Pyrolysis products were identified through comparison with published
and stored NIST and Wiley library data. Pyrolysis products were assigned to one of seven chemical
classes: benzene, lignin, lipid, phenol, polysaccharide, and nitrogenous. Chemical class assignments
were made on the basis of comparison to published works. Soils additionally underwent incubation
for estimates of biomass abundances and C use efficiencies [9]. Radiocarbon abundance of bulk soils
and density separates were measured by accelerator mass spectrometry at the NSF—Arizona AMS
Laboratory at the University of Arizona (Tucson, AZ, USA) [40], the Centro Nacional de Aceleradores
(Seville, Spain) [41], and the Center for AMS at Lawrence Livermore National Laboratory (Livermore,
CA, USA) [42,43]. For each horizon, density/aggregate fractions and bulk soils from each site were
composited for AMS analysis. Radiocarbon abundance measurements were converted to steady-state
mean residence time (MRT) values following Trumbore [44] and Torn et al. [45]. Estimated MRT
values are not meant to represent absolute years of residence in the soil, but are used to allow for
ease of comparison among samples (i.e., to allow for quick comparison of decadal versus millennial
cycling rates).

Table 1. Bulk properties of selected surface and subsurface horizons.

Horizon Parent Horizon pH Clay FePY + AlPY FeD SSA * Secondary

Material Midpoint (cm) 1:1 H2O (%) (g kg−1) (m2 g−1) Phyllosilicates

Surface A2 Rhyolite 9.5 5.7 (0.3) 10 (1) 4.4 (0.2) 6.4 (0.6) 10.9 Ka, Vm, Sm
A2 Granite 16 5.8 (0.2) 6 (0) 2.3 (0.3) 8.1 (0.5) 4.4 Ka, HV, Il
Bt1 Basalt 16.5 6.2 (0.1) 28 (6) 2.1 (0.7) 26.3 (0.3) 25.6 Ka, Sm, Vm
A Dolostone 2 6.6 (0.1) 9 (2) 1.8 (0.4) 6.6 (0.6) 8.0 Ka, Il, HV

Subsurface Bw1 Rhyolite 35.5 5.3 (0.2) 10 (1) 1.9 (0.6) 6.3 (0.7) 15.1 Ka, Vm, Sm
AC Granite 29.5 5.6 (0.2) 6 (0) 2.3 (0.5) 7.9 (0.2) 4.8 Ka, HV, Il
Bt2 Basalt 34.5 6.2 39 (3) 1.9 (0.5) 28.3 (2.3) 48.1 Ka, Sm, Vm
Bt1 Dolostone 12 7.1 (0.2) 16 (3) 1.7 (0.2) 8.8 (2.0) 14.5 Ka, Il, HV

* Specific surface area; Ka = kaolinite, Vm = vermiculite, Sm = smectite, HV = hydroxy-interlayered vermiculite,
Il = illite.

Principal components analysis and multiple regression were used to explore relationships among
organic, physicochemical, and microbial variables. The following is a listing of all parameters
considered when constructing simple multiple regression models, with the total number of degrees of
freedom (n) given in parentheses: HF %C (44), HF %N (44), HF δ13C (44), HF δ15N (4), HF ∆14C (15),
FePY (44), AlPY (44), FeO (44), AlO (44), FeD (44), horizon depth (44), SSA (14), Py GC/MS compound
class composition (8), microbial respiration (24), microbial biomass N abundance (24), microbial
biomass C abundance (24), pH H2O (44), pH KCl (44).

The primarily featured data in this manuscript is the pyrolysis GC/MS data. Due to the time
associated with data processing, only eight individual heavy fractions were measured, one surface
and one subsurface horizon from each of the four sites. We attempted to include horizons from each
site that were at similar depths across sites. The uppermost A horizon was not considered a desirable
horizon due to the fact that the influence of mineralogy would be more difficult to detect in horizons
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with an abundance of organic matter. However, since the dolostone soil had only two horizons total,
the surface A horizon was used.

3. Results

Bulk soil properties for the horizons selected for pyrolysis GC/MS measurement are given in
Table 1. This lithosequence of soils was selected in order to represent a spectrum of pH and textural
values. Basalt soils had the highest abundance of clay and pedogenic Fe (as estimated from chemical
extraction with dithionite) as well as the highest SSA. Rhyolite, granite, and dolostone soils were
depleted in these qualities in comparison to the basalt soils. Soils followed a pH gradient from slightly
acidic to neutral in the following order: rhyolite < granite < basalt < dolostone. Clay mineralogy
varied considerably across the soils. All soils contained the nonexpansible phase, kaolinite. The highly
expansible phase, smectite, was present in rhyolite and basalt soils. Granite and dolostone soils
contained partially expansible phases, vermiculite, illite, and hydroxyl-interlayered vermiculite.

Properties of the heavy fractions are given in Table 2. Because the pyrolysis GC/MS data is not
replicated, principal components analysis and simple linear regression were used to assess relationships
among soil parent material type, organic matter characteristics, and heavy fraction physicochemical
characteristics. There was considerable variation in the composition of the mineral-bound organic
matter pool (Figure 1). Polysaccharide-to-nitrogenous compound ratios were used to illustrate the
relative enrichment in nitrogen-bearing compounds in the Fe-rich basalt soils (Figure 2). Mineral-bound
organics from the basalt soils also had the longest MRTs in comparison to the other soils. The relative
abundance of nitrogenous compounds in the mineral-bound organics was positively related to the
enrichment of 13C and the specific surface area of the heavy fractions (Figure 3a,b). Total N content of
the heavy fractions was moderately correlated with soil microbial biomass N abundance (Figure 3c).

Table 2. Heavy fraction SOM characteristics for selected surface and subsurface horizons.

Horizon Parent Benzene Lignin Lipid Phenol Polysaccharide Nitrogenous C/N δ13C δ15N ∆14C (‰) MRT

Material % Abundance (‰) (Years)

Surface A2 Rhyolite 27 8 1 3 37 20 10.5 (0.8) −22.90 (0.18) 3.9 (1.0) 32.8 (4.2) 203
A2 Granite 16 8 <1 11 53 8 10.4 (0.7) −23.46 (0.16) 1.3 (2.5) 55.7 (4.3) 148
Bt1 Basalt 25 5 <1 <1 17 53 9.6 (1.5) −21.57 (0.32) 5.6 (1.0) −5.4 (4.1) 349
A Dolostone 23 14 <1 2 34 26 14.2 (1.7) −22.20 (0.39) 1.7 (0.8) 76.4 (4.3) 113

Subsurface Bw1 Rhyolite 33 12 1 10 17 28 21.1 (10.5) −23.00 (0.25) −0.7 (1.1) −72.0 (6.1) 785
AC Granite 28 3 1 18 23 27 14.5 (1.1) −22.91 (0.16) −4.5 (5.5) 27.5 (4.4) 219
Bt2 Basalt 13 22 <1 2 10 53 10.7 (0.6) −21.05 (0.13) 2.6 (2.3) −131.4 (5.6) 1326
Bt1 Dolostone 36 9 4 6 17 30 11.7 (0.2) −21.19 (0.13) 4.5 (0.7) 51.5 (4.5) 157

Stepwise regression was used to identify explanatory variables for the C and N abundance and
MRTs of the heavy fraction (Table 3 and Table S1). N abundance showed a relationship with %C, δ15N,
FePY, and biomass N. C abundance was related to depth and AlPY+FePY. The ∆14C values of the heavy
fraction (used in the estimation of MRTs) were strongly related to both FeD and SSA.

Table 3. Explanatory variables for characteristics of the heavy fractions.

Parameter Explanatory Variables R2 p-Value n

Heavy fraction %N %C, Heavy fraction δ15N, FePY 0.73 <0.0001 44

Heavy fraction %N Biomass N 0.35 0.0028 24
Heavy fraction %C Depth, AlPY + FePY 0.58 <0.0001 44

Heavy fraction ∆14C Depth, FeD 0.84 <0.0001 15
Heavy fraction ∆14C Depth, SSA 0.91 <0.0001 14
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Figure 3. (a) Heavy fraction δ13C abundance vs. nitrogenous: polysaccharide, r2 = 0.60, p = 0.0241;
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4. Discussion

There is much debate over the relative importance of different factors in determining the
abundance and character of the mineral-bound pool of SOM. The community has moved from the
long-held paradigm that the character of organic inputs is the largest determinant of SOM character to
a more holistic paradigm where the influence of a myriad of ecosystem properties are considered [46].
Recent work highlighting the microbial community as drivers of SOM production and character is
creating a new understanding of how C is transformed and stabilized in soils [26,47]. Understanding
of the relative importance of physicochemical stabilization mechanisms across ecosystem types is also
improving [48]. However, the role of mineral chemistry in C stabilization is still not well defined in
natural soils, despite decades of lab work with model systems showing sorptive fractionation and
selective preservation effects. One reason for this may be that mineral influences are difficult to detect
in bulk soils, and difficult to identify among the myriad of other influential factors. The use of a
lithosequence allows for clearer examination of the role of mineral assemblage by limiting variation
in other soil-forming factors. The use of density separation additionally isolates the heavy fraction,
and therefore isolates the mineral-bound pool of organics from particulate organics. Below, we use a
lithosequence of heavy fractions from ponderosa pine forests as a case study to illustrate how mineral
chemistry influences the character and persistence of mineral-bound organics in naturally formed soils.

Across this lithosequence of forest soils, C, N, and 14C abundances of the heavy fractions
were specifically linked to mineralogical parameters, namely Fe and Al abundances in the form
of oxyhydroxide or organo-metal phases. Associated data on the molecular composition of heavy
fraction organics suggests the preferential binding of nitrogenous compounds on Fe-rich mineral
surfaces. Increasing abundance of nitrogenous compounds on Fe-rich surfaces was accompanied by
depletion in 14C, suggesting that organics on Fe-rich surfaces are more tightly bound relative to the
other mineral assemblages examined here.

4.1. Competitive Sorption and Selective Preservation

If we assume that the free/light fraction is the primary source of microbial growth substrate [49,50],
we can use differences between the composition of the free/light fraction organics and the heavy fraction
organics to look for evidence of competitive sorption and/or selective preservation. In comparison to
the composition of the free/light fraction, mineral-bound organics were enriched in benzene-based
compounds and nitrogenous compounds, while depleted in lignin, phenol, and lipids (38; Figure S1).

The abundance of benzene-based compounds in the heavy fraction was not related to any
physicochemical or microbial property available in the current dataset, but may be attributable
to structural recalcitrance, as previous work on these soils suggests that these compounds may be
pyrogenic in origin. Fire is a natural part of Pinus ponderosa systems, and previous measurements on
these soils utilizing 13C solid-state nuclear magnetic resonance indicated that 5–10% of bulk SOM was
pyrogenic [33]. Strong pi-pi bonding between these benzene compounds and mineral surfaces may
additionally account for their selective preservation [51].

Nitrogenous compound abundance was higher in general in heavy fractions in comparison to
free/light fractions (Figure S1), but was especially concentrated in the Fe-rich basalt soils (Figure 2).
The preferential binding of N-bearing moieties on Fe-rich mineral surfaces at circum-neutral pH has
been illustrated in both laboratory settings and natural soils [52–56]. Recently, atomic force microscopy
was used to illustrate the strong binding of N to goethite, where ammonia bonds were on average
3 times stronger than carboxylate, phosphate, or methyl bonds [24]. Keiluweit et al. [52] hypothesized
that this preferential bonding of N-bearing compounds to Fe-rich surfaces was due to competitive
sorption of phosphorylated proteins with hydroxylated Fe oxide surfaces [57]. The relationship of
heavy fraction %N with δ15N and FePY (Table 3 and Table S1) adds additional support to the argument
of competitive sorption of microbially-derived nitrogenous compounds with Fe, as δ15N increases
with degree of microbial processing, and FePY is representative of the pool of Fe most available for
reaction with organic constituents in the soil.
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In addition to illustrating competitive sorption behavior, bonding to Fe surfaces seems to confer
greater stability to the bound organics. In previous work exploring the possibility of an influence
of mineral chemistry on organic matter composition and stability, no clear patterns were found
aside from a consistent increase in MRT associated with increasing concentration of Fe-rich mineral
phases [17]. In the dataset examined here, heavy fraction MRT was explained almost equally by
FeD and SSA (Table 3 and Table S1). The production of surface area (SSA) and pedogenic Fe go
hand-in-hand as weathering progresses, and both may act as a proxy for the general developmental
stage of the soil [58,59] (absolute abundance of clay and pedogenic Fe also varying with parent
material composition). However, mounting evidence suggests that Fe-rich phases play a unique
and highly influential role in the stabilization and preservation of SOM. Iron- and Al-oxyhydroxide
phases, especially short-range-order phases, are hypothesized to play a prominent role in metal- and
mineral-organic matter precipitation and bonding reactions due to their ubiquity in soils [60] and their
abundance of reactive surface area [61]. Al-oxyhydroxide phases are often recognized for their unique
role in SOM cycling in acidic soils and Andisols, whereas Fe-oxyhydroxide phases may exert more
influence in soils with circum-neutral pH values, such as those examined in the current lithosequence.
A large body of work has accumulated that examines the conditions influencing coprecipitation and
surface sorption to oxyhydroxide phases of differing crystallinity, as well as the relative stability of
these organo-mineral/metal compounds e.g., [62–64]. Across a diversity of naturally-formed soils,
Mayes et al. [65] identified a prominent role of Fe-oxyhydroxide content for predicting sorptive capacity
across a diversity of bulk soils. The long-term persistence of organo-mineral/metal compounds in
natural soils has yet to be quantified, though recent radiocarbon analysis has suggested a significant
dependence of heavy fraction MRT on the abundance of Al- and Fe-oxyhydroxide phases [66].

4.2. Feedbacks between Soil Physicochemical Properties and Microbial Communities

Mineral surface chemistry influences the character of mineral-bound organics directly through the
mostly abiotic processes outlined above, but also has an influence on SOM composition through
its impacts on microbial communities. Because soil microbes live on mineral surfaces, mineral
surface characteristics are likely to affect them. Microbial community structure has been linked
to the presence/absence of particular elements in the mineral surface that may have toxic effects
(e.g., Al) or are nutrients essential for life (e.g., Ca, K, P) [7]. Mineral composition also influences the
abundance of Fe, which can be employed as a terminal electron acceptor by certain soil microbes,
as well as determining the abundance of specific surface area and buffering capacity. Furthermore,
a significant portion of bulk SOM is composed of microbial metabolites and necromass [26], and much
of this microbially-derived SOM is associated with mineral surfaces as indicated by heavy fraction
organic characteristics such as low C:N ratios, enrichment in heavy isotopes, and strong indications of
microbial alteration including degree of oxidation and thermal lability [25,67].

It has been shown that mineralogy directly influences microbial community composition [8,30,32],
with composition differing even among mineral grains of differing phases within the same bulk
material [7]. Fungal:bacterial ratios are also strongly influenced by soil pH, with ratios increasing
with decreasing pH [28]. The C:N ratios of bacteria are lower than that of fungi, which has led to C:N
being employed to roughly approximate shifts in fungal:bacterial ratios, e.g., [68], but also leads to a
difference in C:N ratio of microbial residues/necromass and therefore differences in the abundance
and availability of N-bearing compounds.

A detailed examination of microbial communities from this lithosequence of soils additionally
highlights the influence of soil mineralogy on microbial communities. Variation in bacterial
communities, as measured by terminal restriction fragment length polymorphism, was clearly divided
by soil parent material type, with variation primarily explained by pH, trivalent Al, and amorphous
Fe-oxyhydroxide content [9].

Our work is consistent with the literature, with the correlation among microbial biomass N
abundance and heavy fraction N abundance in our lithosequence (Figure 3c) likely arising from a
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combination of two major processes: (1) variation in microbial community composition resulting from
the influences of soil pH and mineral assemblage; and (2) the selective sorption and preservation of
N-bearing compounds on the Fe-rich basalt surfaces. Enrichment in δ13C is associated with increasing
degree of microbial processing, since the heavier C isotope is preferentially incorporated into biomass
during respiration and growth. In soils, decreasing C:N ratios are also associated with advancing
degree of biodegradation, because as substrate is processed into microbial biomass, it begins to be
more N-enriched. Therefore, we suggest that increased δ13C enrichment associated with increased
nitrogenous compound: polysaccharide (Figure 3a) also points to an increase in microbial processing
associated with an increase in mineral-bound nitrogenous compound abundance.

5. Conclusions

There is strong evidence in the literature showing that mineral assemblage can influence the
character and stability of the mineral-bound pool of organics, with mineral Fe content playing a
large role in competitive sorption and selective preservation mechanisms, leading to an enrichment
of N-containing compounds associated with Fe-rich surfaces. We suggest that the composition and
stability of the mineral-bound pool of organics, often isolated through density fractionation and termed
the heavy fraction, reflects dynamic feedbacks among biotic and abiotic soil components and processes.
As mineral assemblage shapes the physicochemical environment of the soil through its influence on
soil acidity, nutrient availability, and specific mineral surface characteristics such as Fe abundance,
microbial communities influence the character of organics made available for interaction with mineral
surfaces. Our work is consistent with previous findings of a unique role of Fe-N bonding in the
retention and long-term preservation of mineral-bound organics.

Supplementary Materials: The following are available online at http://www.mdpi.com/2571-8789/2/2/36/s1,
Figure S1: Pyrolysis GC/MS compound class abundance, Table S1: Full regression models.
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